# metal-organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

# Poly[diaqua( $\mu_2$ -5-carboxypyridine-3carboxylato- $\kappa^2 N$ :O<sup>3</sup>)hemi( $\mu_2$ -oxalato- $\kappa^4 O^1$ ,O<sup>2</sup>:O<sup>1'</sup>,O<sup>2'</sup>)( $\mu_4$ -pyridine-3,5dicarboxylato- $\kappa^4 N$ :O<sup>3</sup>:O<sup>3'</sup>:O<sup>5</sup>)silver(I)terbium(III)]

### Hai-Fu Guo,\* Liang Qin and Xiang-Ying Hao

School of Chemistry and Chemical Engineering, Zhao Qing University, Zhao Qing 526061, People's Republic of China Correspondence e-mail: guohf60@yahoo.cn

Received 2 September 2009; accepted 9 September 2009

Key indicators: single-crystal X-ray study; T = 293 K; mean  $\sigma$ (C–C) = 0.006 Å; R factor = 0.023; wR factor = 0.062; data-to-parameter ratio = 10.7.

In the title coordination polymer, [AgTb(C7H3NO4)(C7H4- $NO_4$ )(C<sub>2</sub>O<sub>4</sub>)<sub>0.5</sub>(H<sub>2</sub>O)<sub>2</sub>]<sub>n</sub>, the Tb<sup>III</sup> ion is eight-coordinated by three O atoms from three different pydc ( $H_2$ pydc = pyridine-3,5-dicarboxylic acid) ligands, one O atom from one Hpydc ligand, two O atoms from one oxalate ligand and two water molecules in a distorted square-antiprismatic geometry. The Ag<sup>I</sup> ion is coordinated in an almost linear fashion by two pyridyl N atoms from one pydc and one Hpydc ligand and has weak interactions with two carboxylate O atoms. The carboxylate groups of pydc and Hpydc ligands link Tb centers, forming a one-dimensional chain. The oxalate adopts a tetradentate bis-chelating coordination mode, connecting the chains into a two-dimensional layer. These layers are further assembled via [Ag(pydc)(Hpydc)] pillars and  $O-H \cdots O$  and C-H···O hydrogen bonds into a three-dimensional coordination framework.

### **Related literature**

For general background to transition metal-lanthanide complexes, see: Barbour (2006); Kepert (2006); Kong *et al.* (2008); Rao *et al.* (2004); Wu *et al.* (2008); Zhang *et al.* (2005).



 $\beta = 99.556 \ (4)^{\circ}$  $\gamma = 95.839 \ (5)^{\circ}$ 

V = 861.3 (6) Å<sup>3</sup>

Mo  $K\alpha$  radiation

 $0.30 \times 0.24 \times 0.19 \ \mathrm{mm}$ 

4416 measured reflections

3032 independent reflections

2862 reflections with  $I > 2\sigma(I)$ 

 $\mu = 5.29 \text{ mm}^{-1}$ 

T = 293 K

 $R_{\rm int} = 0.018$ 

Z = 2

## **Experimental**

Crystal data  $[AgTb(C_7H_3NO_4)(C_7H_4NO_4)-(C_2O_4)_{0.5}(H_2O)_2]$   $M_r = 678.05$ Triclinic,  $P\overline{1}$  a = 7.592 (3) Å b = 8.249 (3) Å c = 14.241 (6) Å  $\alpha = 98.956$  (4)°

## Data collection

Bruker APEXII CCD diffractometer Absorption correction: multi-scan (*SADABS*; Sheldrick, 1996)  $T_{\rm min} = 0.251, T_{\rm max} = 0.378$ 

#### Refinement

| $R[F^2 > 2\sigma(F^2)] = 0.023$ | H atoms treated by a mixture of                            |
|---------------------------------|------------------------------------------------------------|
| $wR(F^2) = 0.062$               | independent and constrained                                |
| S = 1.09                        | refinement                                                 |
| 3032 reflections                | $\Delta \rho_{\rm max} = 0.85 \ {\rm e} \ {\rm \AA}^{-3}$  |
| 284 parameters                  | $\Delta \rho_{\rm min} = -0.79 \ {\rm e} \ {\rm \AA}^{-3}$ |
|                                 |                                                            |

## Table 1

Selected bond lengths (Å).

| Tb1-O2                 | 2.346 (3) | Tb1 - O1W            | 2.421 (3) |
|------------------------|-----------|----------------------|-----------|
| Tb1-O5                 | 2.364 (3) | Tb1 - O2W            | 2.468 (3) |
| Tb1-O6 <sup>i</sup>    | 2.365 (3) | Ag1-N1               | 2.172 (4) |
| Tb1-O8 <sup>ii</sup>   | 2.317 (3) | Ag1-N2 <sup>iv</sup> | 2.162 (4) |
| Tb1-O9                 | 2.444 (3) | Ag1-O7 <sup>v</sup>  | 2.772 (3) |
| Tb1-O10 <sup>iii</sup> | 2.401 (3) | Ag1-O7 <sup>vi</sup> | 2.859 (3) |
|                        |           |                      |           |

Symmetry codes: (i) -x + 2, -y + 1, -z; (ii) x, y - 1, z; (iii) -x + 1, -y, -z; (iv) -x + 1, -y + 1, -z + 1; (v) x - 1, y - 1, z; (vi) -x + 1, -y + 2, -z + 1.

| Table 2       |          | _   |     |
|---------------|----------|-----|-----|
| Hydrogen-bond | geometry | (Å, | °). |

| $D - H \cdot \cdot \cdot A$             | D-H      | $H \cdot \cdot \cdot A$ | $D \cdot \cdot \cdot A$ | $D - \mathbf{H} \cdot \cdot \cdot A$ |
|-----------------------------------------|----------|-------------------------|-------------------------|--------------------------------------|
| O1W−H1W···O5 <sup>i</sup>               | 0.84     | 2.08                    | 2.820 (5)               | 147                                  |
| $O1W - H1W \cdot \cdot \cdot O2W^{i}$   | 0.84     | 2.55                    | 3.221 (5)               | 138                                  |
| O1W−H2W···O9 <sup>vii</sup>             | 0.84     | 2.05                    | 2.855 (4)               | 159                                  |
| O2W−H3W···O10 <sup>viii</sup>           | 0.84     | 2.13                    | 2.839 (4)               | 142                                  |
| $O2W - H4W \cdot \cdot \cdot O1^{viii}$ | 0.84     | 2.04                    | 2.873 (5)               | 173                                  |
| $O3-H3A\cdots O1^{ix}$                  | 0.90 (6) | 1.71 (7)                | 2.554 (5)               | 154 (6)                              |
| $C10-H10\cdots O2W^{ix}$                | 0.93     | 2.40                    | 3.314 (6)               | 169                                  |

Symmetry codes: (i) -x + 2, -y + 1, -z; (vii) -x + 1, -y + 1, -z; (viii) x + 1, y, z; (ix) x, y + 1, z.

Data collection: *APEX2* (Bruker, 2007); cell refinement: *SAINT* (Bruker, 2007); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008) and *DIAMOND* (Brandenburg, 1999); software used to prepare material for publication: *SHELXTL*.

The authors kindly acknowledge Zhao Qing University for supporting this work.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HY2227).

### References

- Barbour, L. J. (2006). Chem. Commun. pp. 1163-1168.
- Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany. Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Kepert, C. J. (2006). Chem. Commun. pp. 695-700.
- Kong, X. J., Ren, Y. P., Chen, W. X., Long, L. S., Zheng, Z. P., Huang, R. B. & Zheng, L. S. (2008). Angew. Chem. Int. Ed. 47, 2398–2401.
- Rao, C. N. R., Natarajan, S. & Vaidhyanthan, R. (2004). Angew. Chem. Int. Ed. 43, 1466–1496.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Wu, J. Y., Yin, J. F., Tseng, T. W. & Lu, K. L. (2008). Inorg. Chem. Commun. 11, 314–317.
- Zhang, M. B., Zhang, J., Zheng, S. T. & Yang, G. Y. (2005). Angew. Chem. Int. Ed. 44, 1385–1388.

# supporting information

Acta Cryst. (2009). E65, m1214-m1215 [doi:10.1107/S1600536809036393]

# Poly[diaqua( $\mu_2$ -5-carboxypyridine-3-carboxylato- $\kappa^2 N$ : $O^3$ )hemi( $\mu_2$ -oxalato- $\kappa^4 O^1, O^2$ : $O^1', O^{2'}$ )( $\mu_4$ -pyridine-3,5-dicarboxylato- $\kappa^4 N$ : $O^3$ : $O^5$ )silver(I)terbium(III)]

# Hai-Fu Guo, Liang Qin and Xiang-Ying Hao

# S1. Comment

The design and construction of transition–lanthanide metal complexes has gained great recognition over the last decade because of their intriguing network topolopies and potential applications, and due to their magnetic properties, their capacity for gas storage, as luminescent materials, and so on (Barbour, 2006; Kepert, 2006; Kong *et al.*, 2008; Rao *et al.*, 2004; Zhang *et al.*, 2005). Pyridine-3,5-dicarboxylic acid (H<sub>2</sub>pydc) is a multifunctional bridging ligand possessing of O and N donors, which can thus be chosen to construct lanthanide–transition heterometallic complex *via* the carboxyl O atoms binding to lanthanides and N atoms bonding to transition metal ions such as Ag<sup>I</sup> or Cu<sup>I</sup> (Wu *et al.*, 2008). On the basis of above considerations, we utilize H<sub>2</sub>pydc, mixed 4d–4f metal ions and nitric acid as our building blocks. A new three-dimensional 4d–4f coordination framework resulted from the hydrothermal treatment of Tb<sub>2</sub>O<sub>3</sub>, AgNO<sub>3</sub>, oxalic acid, H<sub>2</sub>pydc and nitric acid in water.

As depicted in Fig. 1, the asymmtric unit of the title compound contains one  $Tb^{III}$  ion, one  $Ag^{I}$  ion, half an oxalate ligand, one pydc ligand, one Hpydc ligand and two water molecules. The  $Tb^{III}$  ion is eight-coordinated in a distorted square-antiprismatic coordination geometry by three O atoms from three different pydc ligands, one O atom from one Hpydc ligand, two O atoms from one oxalate ligand and two water molecules. The  $Ag^{I}$  ion is located in an almost linear configuration, defined by two N atoms from one pydc and one Hpydc ligands. The carboxylate groups of the pydc and Hpydc ligands link  $Tb^{III}$  center to form a one-dimensional chain with a shortest  $Tb^{...}Tb$  distance of 5.261 (3) Å (Fig. 2a). The oxalate adopts tetradentate bischelating coordination mode to connect the neighboring chains into a two-dimensional layer (Fig. 2b). These layers are further assembled *via* [Ag(pydc)(Hpydc)] pillars into a three-dimensional coordinated water molecules enhance the stability of the three-dimensional network.

# **S2.** Experimental

A mixture of  $Tb_2O_3$  (0.183 g, 0.5 mmol), AgNO<sub>3</sub> (0.169 g, 1 mmol), H<sub>2</sub>pydc (0.167 g, 1 mmol), oxalic acid (0.09 g, 1 mmol), HNO<sub>3</sub> (0.12 ml) and H<sub>2</sub>O (10 ml) was placed in a 23 ml Teflon-lined reactor, which was heated to 443 K for 3 d and then cooled to room temperature at a rate of 10 K h<sup>-1</sup>. The colorless block crystals obtained were washed with water and dried in air (yield 46% based on Tb).

# **S3. Refinement**

C-bound H atoms were placed at calculated positions and treated as riding on the parent C atoms, with C—H = 0.93 Å, and with  $U_{iso}(H) = 1.2U_{eq}(C)$ . Water H atoms were tentatively located in difference Fourier maps and refined with distance restraints of O–H = 0.84 (1) and H…H = 1.39 (1) Å, and with  $U_{iso}(H) = 1.5U_{eq}(O)$ . Carboxyl H (H3A) atom was

refined isotropically.



# Figure 1

The asymmetric unit of the title compound. Non-H atoms are shown as 50% probability displacement ellipsoids. H atoms have been omitted for clarity. [Symmetry codes: (i) 1-x, -y, -z; (ii) 2-x, 1-y, -z; (iii) x, -1+y, z.]



# Figure 2

(a) A view of the one-dimensional chain in the title compound. (b) A polyhedral view of the two-dimensional layer. H atoms have been omitted for clarity.



# Figure 3

A polyhedral view of the three-dimensional framework. H atoms have been omitted for clarity.

Poly[diaqua( $\mu_2$ -5-carboxypyridine-3-carboxylato- $\kappa^2 N$ :O<sup>3</sup>)hemi( $\mu_2$ -oxalato- $\kappa^4 O^1$ ,O<sup>2</sup>:O<sup>1</sup>',O<sup>2</sup>)( $\mu_4$ - pyridine-3,5-dicarboxylato- $\kappa^4 N$ :O<sup>3</sup>:O<sup>5</sup>)silver(I)terbium(III)]

| $[\Lambda_{\alpha}Tb(C_{-}H_{-}NO_{-})(C_{-}H_{-}NO_{-})(C_{-}O_{-}), -(H_{-}O_{-})]$ | 7 = 2                                                 |
|---------------------------------------------------------------------------------------|-------------------------------------------------------|
| $[Ag10(C_7 I I_3 I I O_4)(C_7 I I_4 I I O_4)(C_2 O_4)_{0.5}(I I_2 O_2)_2]$            | $\Sigma = \Sigma$                                     |
| $M_r = 678.05$                                                                        | F(000) = 646                                          |
| Triclinic, $P\overline{1}$                                                            | $D_{\rm x} = 2.615 {\rm ~Mg} {\rm ~m}^{-3}$           |
| Hall symbol: -P 1                                                                     | Mo <i>K</i> $\alpha$ radiation, $\lambda = 0.71073$ Å |
| a = 7.592 (3) Å                                                                       | Cell parameters from 3600 reflections                 |
| b = 8.249 (3)  Å                                                                      | $\theta = 1.4 - 28^{\circ}$                           |
| c = 14.241 (6) Å                                                                      | $\mu = 5.29 \text{ mm}^{-1}$                          |
| $\alpha = 98.956 \ (4)^{\circ}$                                                       | T = 293  K                                            |
| $\beta = 99.556 \ (4)^{\circ}$                                                        | Block, colorless                                      |
| $\gamma = 95.839 \ (5)^{\circ}$                                                       | $0.30 \times 0.24 \times 0.19 \text{ mm}$             |
| V = 861.3 (6) Å <sup>3</sup>                                                          |                                                       |

Data collection

| Bruker APEXII CCD<br>diffractometer<br>Radiation source: fine-focus sealed tube<br>Graphite monochromator<br>$\varphi$ and $\omega$ scans<br>Absorption correction: multi-scan<br>( <i>SADABS</i> ; Sheldrick, 1996)<br>$T_{\min} = 0.251, T_{\max} = 0.378$<br>Refinement | 4416 measured reflections<br>3032 independent reflections<br>2862 reflections with $I > 2\sigma(I)$<br>$R_{int} = 0.018$<br>$\theta_{max} = 25.2^{\circ}, \ \theta_{min} = 2.5^{\circ}$<br>$h = -9 \rightarrow 6$<br>$k = -9 \rightarrow 9$<br>$l = -16 \rightarrow 17$                                                                                                                                            |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Refinement on $F^2$<br>Least-squares matrix: full<br>$R[F^2 > 2\sigma(F^2)] = 0.023$<br>$wR(F^2) = 0.062$<br>S = 1.09<br>3032 reflections<br>284 parameters<br>0 restraints<br>Primary atom site location: structure-invariant<br>direct methods                           | Secondary atom site location: difference Fourier<br>map<br>Hydrogen site location: inferred from<br>neighbouring sites<br>H atoms treated by a mixture of independent<br>and constrained refinement<br>$w = 1/[\sigma^2(F_o^2) + (0.0323P)^2]$<br>where $P = (F_o^2 + 2F_c^2)/3$<br>$(\Delta/\sigma)_{max} = 0.049$<br>$\Delta\rho_{max} = 0.85$ e Å <sup>-3</sup><br>$\Delta\rho_{min} = -0.79$ e Å <sup>-3</sup> |

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters  $(Å^2)$ 

|     | x           | у           | Ζ             | $U_{ m iso}$ */ $U_{ m eq}$ |  |
|-----|-------------|-------------|---------------|-----------------------------|--|
| Tb1 | 0.80756 (3) | 0.29706 (2) | 0.080761 (13) | 0.01369 (8)                 |  |
| Ag1 | 0.17209 (6) | 0.40250 (5) | 0.53284 (3)   | 0.03343 (12)                |  |
| 01  | 0.4372 (5)  | 0.2187 (4)  | 0.2009 (2)    | 0.0305 (8)                  |  |
| O1W | 0.7121 (5)  | 0.5291 (4)  | 0.0096 (2)    | 0.0278 (8)                  |  |
| H1W | 0.7742      | 0.5573      | -0.0302       | 0.042*                      |  |
| H2W | 0.6316      | 0.5904      | 0.0165        | 0.042*                      |  |
| O2  | 0.6205 (4)  | 0.4300 (4)  | 0.1747 (2)    | 0.0255 (7)                  |  |
| O2W | 1.0914 (4)  | 0.1769 (4)  | 0.0759 (2)    | 0.0253 (7)                  |  |
| H3W | 1.1070      | 0.1393      | 0.0200        | 0.038*                      |  |
| H4W | 1.1876      | 0.1905      | 0.1166        | 0.038*                      |  |
| O3  | 0.4778 (6)  | 0.9748 (5)  | 0.2896 (3)    | 0.0449 (10)                 |  |
| O4  | 0.3416 (5)  | 1.0334 (4)  | 0.4169 (2)    | 0.0346 (8)                  |  |
| 05  | 1.0531 (4)  | 0.5114 (3)  | 0.1239 (2)    | 0.0203 (7)                  |  |
| 09  | 0.5031 (4)  | 0.2064 (3)  | -0.0119 (2)   | 0.0209 (7)                  |  |
| N1  | 0.3034 (5)  | 0.5246 (4)  | 0.4335 (3)    | 0.0234 (8)                  |  |
| N2  | 0.8987 (5)  | 0.7556 (4)  | 0.3678 (2)    | 0.0192 (8)                  |  |
| C1  | 0.3576 (6)  | 0.4244 (5)  | 0.3627 (3)    | 0.0231 (10)                 |  |
| H1  | 0.3377      | 0.3106      | 0.3601        | 0.028*                      |  |
| C2  | 0.4420 (6)  | 0.4845 (5)  | 0.2934 (3)    | 0.0188 (9)                  |  |
| C3  | 0.4629 (6)  | 0.6531 (5)  | 0.2942 (3)    | 0.0204 (9)                  |  |
| H3  | 0.5162      | 0.6965      | 0.2476        | 0.025*                      |  |
| C4  | 0.4032 (6)  | 0.7568 (5)  | 0.3654 (3)    | 0.0200 (9)                  |  |
| C5  | 0.3273 (6)  | 0.6886 (5)  | 0.4347 (3)    | 0.0208 (10)                 |  |
| Н5  | 0.2917      | 0.7587      | 0.4838        | 0.025*                      |  |
|     |             |             |               |                             |  |

| C6  | 0.5041 (6) | 0.3688 (5)  | 0.2177 (3)  | 0.0216 (10) |
|-----|------------|-------------|-------------|-------------|
| C7  | 0.4047 (6) | 0.9388 (6)  | 0.3621 (3)  | 0.0246 (10) |
| C8  | 0.9565 (6) | 0.6777 (5)  | 0.2901 (3)  | 0.0165 (9)  |
| H8  | 0.9658     | 0.5652      | 0.2849      | 0.020*      |
| С9  | 1.0023 (6) | 0.7592 (5)  | 0.2182 (3)  | 0.0169 (9)  |
| C10 | 0.9849 (6) | 0.9277 (5)  | 0.2249 (3)  | 0.0168 (9)  |
| H10 | 1.0142     | 0.9848      | 0.1770      | 0.020*      |
| C11 | 0.9234 (6) | 1.0091 (5)  | 0.3038 (3)  | 0.0166 (9)  |
| C12 | 0.8845 (6) | 0.9188 (5)  | 0.3740 (3)  | 0.0201 (9)  |
| H12 | 0.8469     | 0.9732      | 0.4279      | 0.024*      |
| C13 | 1.0667 (6) | 0.6684 (5)  | 0.1333 (3)  | 0.0151 (9)  |
| C15 | 0.4376 (6) | 0.0595 (5)  | -0.0196 (3) | 0.0168 (9)  |
| 06  | 1.1310 (4) | 0.7500 (3)  | 0.0780 (2)  | 0.0211 (7)  |
| C14 | 0.9003 (6) | 1.1915 (5)  | 0.3113 (3)  | 0.0202 (10) |
| 07  | 0.8768 (5) | 1.2673 (4)  | 0.3899 (2)  | 0.0328 (8)  |
| O10 | 0.2771 (4) | -0.0028 (3) | -0.0543 (2) | 0.0219 (7)  |
| 08  | 0.9101 (5) | 1.2520 (4)  | 0.2359 (2)  | 0.0262 (8)  |
| H3A | 0.461 (9)  | 1.076 (8)   | 0.276 (4)   | 0.056 (18)* |
|     |            |             |             |             |

Atomic displacement parameters  $(\mathring{A}^2)$ 

|     | $U^{11}$     | $U^{22}$     | $U^{33}$     | $U^{12}$     | $U^{13}$     | $U^{23}$     |
|-----|--------------|--------------|--------------|--------------|--------------|--------------|
| Tb1 | 0.01701 (13) | 0.01146 (12) | 0.01419 (12) | 0.00272 (8)  | 0.00639 (8)  | 0.00282 (8)  |
| Ag1 | 0.0419 (3)   | 0.0381 (2)   | 0.0290 (2)   | 0.00612 (19) | 0.01825 (17) | 0.01948 (17) |
| O1  | 0.049 (2)    | 0.0185 (16)  | 0.0251 (17)  | 0.0037 (16)  | 0.0116 (15)  | 0.0024 (13)  |
| O1W | 0.033 (2)    | 0.0227 (16)  | 0.0388 (19)  | 0.0149 (15)  | 0.0194 (16)  | 0.0180 (14)  |
| O2  | 0.0281 (19)  | 0.0287 (17)  | 0.0241 (16)  | 0.0080 (15)  | 0.0150 (14)  | 0.0039 (13)  |
| O2W | 0.0241 (19)  | 0.0321 (17)  | 0.0215 (16)  | 0.0081 (15)  | 0.0070 (13)  | 0.0039 (13)  |
| O3  | 0.067 (3)    | 0.0275 (19)  | 0.055 (2)    | 0.018 (2)    | 0.035 (2)    | 0.0209 (18)  |
| O4  | 0.045 (2)    | 0.0241 (17)  | 0.0375 (19)  | 0.0126 (17)  | 0.0136 (17)  | 0.0024 (15)  |
| O5  | 0.0284 (18)  | 0.0129 (14)  | 0.0208 (15)  | 0.0011 (13)  | 0.0096 (13)  | 0.0029 (11)  |
| O9  | 0.0192 (17)  | 0.0147 (14)  | 0.0288 (16)  | 0.0013 (13)  | 0.0027 (13)  | 0.0063 (12)  |
| N1  | 0.031 (2)    | 0.025 (2)    | 0.0207 (19)  | 0.0084 (17)  | 0.0136 (17)  | 0.0089 (15)  |
| N2  | 0.022 (2)    | 0.0199 (18)  | 0.0191 (18)  | 0.0048 (16)  | 0.0083 (15)  | 0.0085 (14)  |
| C1  | 0.027 (3)    | 0.019 (2)    | 0.028 (2)    | 0.005 (2)    | 0.011 (2)    | 0.0102 (18)  |
| C2  | 0.019 (2)    | 0.023 (2)    | 0.016 (2)    | 0.0047 (19)  | 0.0063 (17)  | 0.0045 (17)  |
| C3  | 0.020 (2)    | 0.023 (2)    | 0.020 (2)    | 0.0026 (19)  | 0.0065 (18)  | 0.0074 (17)  |
| C4  | 0.016 (2)    | 0.017 (2)    | 0.027 (2)    | 0.0037 (18)  | 0.0038 (18)  | 0.0054 (17)  |
| C5  | 0.022 (3)    | 0.025 (2)    | 0.017 (2)    | 0.0078 (19)  | 0.0061 (18)  | 0.0011 (17)  |
| C6  | 0.027 (3)    | 0.022 (2)    | 0.017 (2)    | 0.008 (2)    | 0.0038 (19)  | 0.0046 (17)  |
| C7  | 0.019 (3)    | 0.026 (2)    | 0.028 (2)    | 0.003 (2)    | 0.0013 (19)  | 0.008 (2)    |
| C8  | 0.015 (2)    | 0.017 (2)    | 0.018 (2)    | 0.0021 (17)  | 0.0017 (17)  | 0.0056 (16)  |
| C9  | 0.019 (2)    | 0.018 (2)    | 0.014 (2)    | 0.0030 (18)  | 0.0041 (17)  | 0.0033 (16)  |
| C10 | 0.020 (2)    | 0.016 (2)    | 0.016 (2)    | 0.0018 (18)  | 0.0057 (17)  | 0.0056 (16)  |
| C11 | 0.018 (2)    | 0.018 (2)    | 0.015 (2)    | 0.0034 (18)  | 0.0038 (17)  | 0.0042 (16)  |
| C12 | 0.023 (3)    | 0.023 (2)    | 0.015 (2)    | 0.0060 (19)  | 0.0040 (18)  | 0.0027 (17)  |
| C13 | 0.017 (2)    | 0.016 (2)    | 0.0119 (19)  | 0.0015 (17)  | 0.0021 (16)  | 0.0009 (16)  |
| C15 | 0.021 (2)    | 0.015 (2)    | 0.014 (2)    | 0.0039 (19)  | 0.0058 (17)  | 0.0000 (16)  |

# supporting information

| O6  | 0.0315 (19) | 0.0181 (15) | 0.0161 (14) | 0.0030 (14) | 0.0113 (13) | 0.0034 (12) |  |
|-----|-------------|-------------|-------------|-------------|-------------|-------------|--|
| C14 | 0.025 (3)   | 0.017 (2)   | 0.019 (2)   | 0.0035 (19) | 0.0048 (18) | 0.0037 (17) |  |
| O7  | 0.058 (3)   | 0.0231 (17) | 0.0228 (17) | 0.0110 (17) | 0.0220 (16) | 0.0011 (13) |  |
| O10 | 0.0198 (18) | 0.0157 (14) | 0.0303 (16) | 0.0015 (13) | 0.0053 (13) | 0.0041 (12) |  |
| 08  | 0.045 (2)   | 0.0196 (15) | 0.0179 (15) | 0.0103 (15) | 0.0109 (14) | 0.0071 (12) |  |

Geometric parameters (Å, °)

| Tb1—O2                                   | 2.346 (3)   | N2—C8                     | 1.352 (5) |  |
|------------------------------------------|-------------|---------------------------|-----------|--|
| Tb1—O5                                   | 2.364 (3)   | N2—C12                    | 1.351 (5) |  |
| Tb1—O6 <sup>i</sup>                      | 2.365 (3)   | N2—Ag1 <sup>iv</sup>      | 2.162 (4) |  |
| Tb1—O8 <sup>ii</sup>                     | 2.317 (3)   | C1—C2                     | 1.388 (6) |  |
| Tb1—O9                                   | 2.444 (3)   | C1—H1                     | 0.9300    |  |
| Tb1—O10 <sup>iii</sup>                   | 2.401 (3)   | C2—C3                     | 1.382 (6) |  |
| Tb1—O1W                                  | 2.421 (3)   | C2—C6                     | 1.494 (6) |  |
| Tb1—O2W                                  | 2.468 (3)   | C3—C4                     | 1.388 (6) |  |
| Ag1—N1                                   | 2.172 (4)   | С3—Н3                     | 0.9300    |  |
| Ag1—N2 <sup>iv</sup>                     | 2.162 (4)   | C4—C5                     | 1.386 (6) |  |
| Ag1—O7 <sup>v</sup>                      | 2.772 (3)   | C4—C7                     | 1.508 (6) |  |
| Ag1—O7 <sup>vi</sup>                     | 2.859 (3)   | С5—Н5                     | 0.9300    |  |
| Ag1—Ag1 <sup>vii</sup>                   | 3.2867 (12) | C8—C9                     | 1.381 (6) |  |
| 01—C6                                    | 1.260 (5)   | C8—H8                     | 0.9300    |  |
| O1W—H1W                                  | 0.8401      | C9—C10                    | 1.400 (6) |  |
| O1W—H2W                                  | 0.8400      | C9—C13                    | 1.500 (6) |  |
| O2—C6                                    | 1.263 (6)   | C10—C11                   | 1.391 (6) |  |
| O2W—H3W                                  | 0.8402      | C10—H10                   | 0.9300    |  |
| O2W—H4W                                  | 0.8400      | C11—C12                   | 1.388 (6) |  |
| O3—C7                                    | 1.309 (6)   | C11—C14                   | 1.522 (6) |  |
| O3—H3A                                   | 0.90 (6)    | C12—H12                   | 0.9300    |  |
| O4—C7                                    | 1.207 (5)   | C13—O6                    | 1.241 (5) |  |
| O5—C13                                   | 1.273 (5)   | C15—O10                   | 1.260 (5) |  |
| O9—C15                                   | 1.244 (5)   | C15—C15 <sup>iii</sup>    | 1.535 (8) |  |
| N1C5                                     | 1.343 (6)   | C14—O7                    | 1.244 (5) |  |
| N1—C1                                    | 1.348 (5)   | C14—O8                    | 1.262 (5) |  |
| $O8^{ii}$ —Tb1—O2                        | 75.61 (11)  | C8—N2—Ag1 <sup>iv</sup>   | 114.8 (3) |  |
| O8 <sup>ii</sup> —Tb1—O6 <sup>i</sup>    | 141.96 (11) | $C12$ — $N2$ — $Ag1^{iv}$ | 127.0 (3) |  |
| O2—Tb1—O6 <sup>i</sup>                   | 142.34 (10) | N1—C1—C2                  | 122.6 (4) |  |
| O8 <sup>ii</sup> —Tb1—O5                 | 82.16 (11)  | N1—C1—H1                  | 118.7     |  |
| O2—Tb1—O5                                | 96.02 (11)  | C2—C1—H1                  | 118.7     |  |
| O6 <sup>i</sup> —Tb1—O5                  | 89.03 (10)  | C3—C2—C1                  | 118.6 (4) |  |
| O8 <sup>ii</sup> —Tb1—O10 <sup>iii</sup> | 81.37 (10)  | C3—C2—C6                  | 120.7 (4) |  |
| O2—Tb1—O10 <sup>iii</sup>                | 109.81 (11) | C1—C2—C6                  | 120.7 (4) |  |
| O6 <sup>i</sup> —Tb1—O10 <sup>iii</sup>  | 85.00 (10)  | C2—C3—C4                  | 119.1 (4) |  |
| O5—Tb1—O10 <sup>iii</sup>                | 144.60 (10) | С2—С3—Н3                  | 120.5     |  |
| O8 <sup>ii</sup> —Tb1—O1W                | 135.70 (10) | C4—C3—H3                  | 120.5     |  |
| O2—Tb1—O1W                               | 71.23 (11)  | C5—C4—C3                  | 119.0 (4) |  |
| O6 <sup>i</sup> —Tb1—O1W                 | 74.71 (10)  | C5—C4—C7                  | 120.2 (4) |  |
|                                          |             |                           |           |  |

| O5—Tb1—O1W                               | 73.14 (11)  | C3—C4—C7                   | 120.6 (4) |
|------------------------------------------|-------------|----------------------------|-----------|
| O10 <sup>iii</sup> —Tb1—O1W              | 137.38 (11) | N1C5C4                     | 122.3 (4) |
| O8 <sup>ii</sup> —Tb1—O9                 | 125.23 (12) | N1—C5—H5                   | 118.9     |
| O2—Tb1—O9                                | 75.56 (11)  | С4—С5—Н5                   | 118.9     |
| O6 <sup>i</sup> —Tb1—O9                  | 79.71 (11)  | O1—C6—O2                   | 124.7 (4) |
| O5—Tb1—O9                                | 146.28 (10) | O1—C6—C2                   | 118.4 (4) |
| O10 <sup>iii</sup> —Tb1—O9               | 66.38 (9)   | O2—C6—C2                   | 116.9 (4) |
| O1W—Tb1—O9                               | 73.25 (11)  | O4—C7—O3                   | 126.2 (4) |
| O8 <sup>ii</sup> —Tb1—O2W                | 73.67 (11)  | O4—C7—C4                   | 124.1 (4) |
| O2—Tb1—O2W                               | 147.82 (10) | O3—C7—C4                   | 109.6 (4) |
| O6 <sup>i</sup> —Tb1—O2W                 | 68.50 (10)  | N2—C8—C9                   | 122.3 (4) |
| O5—Tb1—O2W                               | 70.60 (11)  | N2—C8—H8                   | 118.8     |
| O10 <sup>iii</sup> —Tb1—O2W              | 74.76 (11)  | С9—С8—Н8                   | 118.8     |
| O1W—Tb1—O2W                              | 127.82 (11) | C8—C9—C10                  | 118.9 (4) |
| O9—Tb1—O2W                               | 131.32 (10) | C8—C9—C13                  | 120.7 (4) |
| N2 <sup>iv</sup> —Ag1—N1                 | 164.83 (14) | C10—C9—C13                 | 120.4 (4) |
| N2 <sup>iv</sup> —Ag1—Ag1 <sup>vii</sup> | 108.80 (10) | C11—C10—C9                 | 119.4 (4) |
| N1—Ag1—Ag1 <sup>vii</sup>                | 86.10 (10)  | C11—C10—H10                | 120.3     |
| $N2^{iv}$ —Ag1—O7 <sup>v</sup>           | 93.85 (11)  | С9—С10—Н10                 | 120.3     |
| $N1$ — $Ag1$ — $O7^{v}$                  | 92.40 (13)  | C12—C11—C10                | 117.9 (4) |
| N1—Ag1—O7 <sup>vi</sup>                  | 83.19 (11)  | C12—C11—C14                | 122.0 (4) |
| $N2^{iv}$ —Ag1—O7 <sup>vi</sup>          | 107.77 (11) | C10-C11-C14                | 120.1 (4) |
| O7 <sup>v</sup> —Ag1—O7 <sup>vi</sup>    | 108.60 (9)  | N2—C12—C11                 | 123.2 (4) |
| Tb1—O1W—H1W                              | 113.8       | N2—C12—H12                 | 118.4     |
| Tb1—O1W—H2W                              | 134.5       | C11—C12—H12                | 118.4     |
| H1W—O1W—H2W                              | 111.6       | O6—C13—O5                  | 124.4 (4) |
| C6—O2—Tb1                                | 129.6 (3)   | O6—C13—C9                  | 118.5 (3) |
| Tb1—O2W—H3W                              | 114.5       | O5—C13—C9                  | 117.1 (4) |
| Tb1—O2W—H4W                              | 131.1       | O9—C15—O10                 | 126.9 (4) |
| H3W—O2W—H4W                              | 111.7       | O9—C15—C15 <sup>iii</sup>  | 117.3 (5) |
| С7—О3—НЗА                                | 113 (4)     | O10-C15-C15 <sup>iii</sup> | 115.7 (4) |
| C13—O5—Tb1                               | 133.9 (3)   | C13—O6—Tb1 <sup>i</sup>    | 137.7 (3) |
| C15—O9—Tb1                               | 118.8 (3)   | O7—C14—O8                  | 126.2 (4) |
| C5—N1—C1                                 | 118.3 (4)   | O7—C14—C11                 | 118.2 (4) |
| C5—N1—Ag1                                | 125.6 (3)   | O8—C14—C11                 | 115.6 (4) |
| C1—N1—Ag1                                | 116.1 (3)   | C15—O10—Tb1 <sup>iii</sup> | 120.5 (2) |
| C8—N2—C12                                | 118.2 (4)   | C14—O8—Tb1 <sup>viii</sup> | 155.4 (3) |

Symmetry codes: (i) -*x*+2, -*y*+1, -*z*; (ii) *x*, *y*-1, *z*; (iii) -*x*+1, -*y*, -*z*; (iv) -*x*+1, -*y*+1, -*z*+1; (v) *x*-1, *y*-1, *z*; (vi) -*x*+1, -*y*+2, -*z*+1; (vii) -*x*, -*y*+1, -*z*+1; (viii) *x*, *y*+1, *z*.

| Hydrogen-bor  | nd geometrv | (Å.  | <i>o</i> ) |
|---------------|-------------|------|------------|
| iiya ogen ooi | ia geomeny  | (11) |            |

| D—H···A                                      | <i>D</i> —Н | H···A | $D \cdots A$ | <i>D</i> —H··· <i>A</i> |
|----------------------------------------------|-------------|-------|--------------|-------------------------|
| O1 <i>W</i> —H1 <i>W</i> ····O5 <sup>i</sup> | 0.84        | 2.08  | 2.820 (5)    | 147                     |
| $O1W$ — $H1W$ ··· $O2W^{i}$                  | 0.84        | 2.55  | 3.221 (5)    | 138                     |
| O1 <i>W</i> —H2 <i>W</i> ···O9 <sup>ix</sup> | 0.84        | 2.05  | 2.855 (4)    | 159                     |
| O2 <i>W</i> —H3 <i>W</i> ···O10 <sup>x</sup> | 0.84        | 2.13  | 2.839 (4)    | 142                     |
| O2W—H4 $W$ ···O1 <sup>x</sup>                | 0.84        | 2.04  | 2.873 (5)    | 173                     |

|                                     |          |          | supporting information |         |  |
|-------------------------------------|----------|----------|------------------------|---------|--|
| O3—H3A····O1 <sup>viii</sup>        | 0.90 (6) | 1.71 (7) | 2.554 (5)              | 154 (6) |  |
| C10—H10…O2 <i>W</i> <sup>viii</sup> | 0.93     | 2.40     | 3.314 (6)              | 169     |  |

Symmetry codes: (i) -*x*+2, -*y*+1, -*z*; (viii) *x*, *y*+1, *z*; (ix) -*x*+1, -*y*+1, -*z*; (x) *x*+1, *y*, *z*.