Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

(*E*)-3-(6-Nitrobenzo[*d*][1,3]dioxol-5-yl)-1-(2,4,6-trimethoxyphenyl)prop-2-en-1one

Hossein Loghmani-Khouzani,^a* Noorsaadah Abdul Rahman,^b Ward T. Robinson,^b Marzieh Yaeghoobi^b and Reza Kia^c‡

^aChemistry Department, University of Isfahan, Isfahan, 81746-73441, Iran, ^bUniversity of Malaya, Department of Chemistry, 50603, Kuala Lumpur, Malaysia, and ^cDepartment of Chemistry, Science and Research Campus, Islamic Azad University, Poonak, Tehran, Iran

Correspondence e-mail: loghmani_h@yahoo.com

Received 1 September 2009; accepted 9 September 2009

Key indicators: single-crystal X-ray study; T = 296 K; mean σ (C–C) = 0.002 Å; R factor = 0.032; wR factor = 0.083; data-to-parameter ratio = 11.9.

In the molecule of the title compound, C₁₉H₁₇NO₈, the benzodioxole unit is oriented at a dihedral angle of 61.45 (6)° with respect to the methoxy-substituted phenyl ring. The nitro group is not co-planar to the benzene ring to which it is attached, making a dihedral angle of $31.86 (17)^{\circ}$. In the crystal structure, intermolecular C-H···O interactions link the molecules into chains through $R_2^2(8)$ ring motifs. The $\pi \cdots \pi$ contacts between the benzodioxole rings, [centroid-centroid distances = 3.7610(9), 3.6613(9) and 3.7975(9)Å] may further stabilize the structure.

Related literature

For general background to synthesis, see: Nielsen & Houlihan (1968): Ko et al. (2003): Go et al. (2005): Nowakowska (2007). For related structures, see: Lawrence et al. (2006); Liu et al. (2002). For ring motifs, see: Bernstein et al. (1995).

‡ Additional correspondence author, e-mail: zsrkk@yahoo.com. Thomson Reuters Researcher ID: A-5471-2009.

4805 measured reflections

 $R_{\rm int} = 0.013$

3038 independent reflections

2733 reflections with $I > 2\sigma(I)$

Experimental

Crystal data

β

C ₁₉ H ₁₇ NO ₈	$\gamma = 105.384 \ (1)^{\circ}$
$M_r = 387.34$	V = 882.91 (2) Å ³
Triclinic, P1	Z = 2
a = 7.3044 (1) Å	Mo $K\alpha$ radiation
b = 10.1264 (1) Å	$\mu = 0.12 \text{ mm}^{-1}$
c = 12.8600 (2) Å	T = 296 K
$\alpha = 93.112 \ (1)^{\circ}$	$0.24 \times 0.14 \times 0.10 \text{ mm}$
$\beta = 103.959 \ (1)^{\circ}$	

Data collection

Bruker SMART APEXII CCD area-detector diffractometer Absorption correction: multi-scan (SADABS: Bruker, 2005) $T_{\min} = 0.973, T_{\max} = 0.989$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.032$	256 parameters
$wR(F^2) = 0.083$	H-atom parameters constrained
S = 1.04	$\Delta \rho_{\rm max} = 0.21 \text{ e } \text{\AA}^{-3}$
3038 reflections	$\Delta \rho_{\rm min} = -0.22 \text{ e } \text{\AA}^{-3}$

Table 1

Hydrogen-bond geometry (Å, °).

$D - \mathbf{H} \cdot \cdot \cdot A$	$D-\mathrm{H}$	$H \cdot \cdot \cdot A$	$D \cdot \cdot \cdot A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$C2-H2A\cdotsO1^{i}$	0.93	2.55	3.4512 (16)	164
$C6-H6A\cdots O6^{ii}$	0.93	2.36	3.2429 (16)	158

Symmetry codes: (i) -x, -y + 1, -z; (ii) x, y + 1, z.

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009).

We thank the University of Isfahan and the University of Malaya for supporting this work.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HK2765).

References

- Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.
- Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Go, M. L., Wu, X. & Liu, X. L. (2005). Curr. Med. Chem. 12, 483-499.
- Ko, H. H., Taso, L. T., Yu, K. L., Liu, C. T., Wang, J. P. & Lon, C. N. (2003). Bioorg. Med. Chem. 11, 105-111.
- Lawrence, N. J., Patterson, R. P., Ooi, L.-L., Cook, D. & Ducki, S. (2006). Bioorg. Med. Chem. 16, 5844-5848.
- Liu, Z.-Q., Fang, Q., Yu, W.-T., Xue, G., Cao, D.-X. & Jiang, M.-H. (2002). Acta Cryst. C58, 0445-0446.
- Nielsen, A. T. & Houlihan, W. J. (1968). Org. React. 16, 1-10.

- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.

Nowakowska, Z. (2007). Eur. J. Med. Chem. 42, 125-137.

supporting information

Acta Cryst. (2009). E65, o2545 [doi:10.1107/S1600536809036435]

(*E*)-3-(6-Nitrobenzo[*d*][1,3]dioxol-5-yl)-1-(2,4,6-trimethoxyphenyl)prop-2-en-1one

Hossein Loghmani-Khouzani, Noorsaadah Abdul Rahman, Ward T. Robinson, Marzieh Yaeghoobi and Reza Kia

S1. Comment

Aldol condensation reactions are important synthetic reactions and by classical methods they were performed in the presence of strong bases (Nielsen & Houlihan, 1968). Chalcones are open chain flavonides consisting of two aromatic rings linked by an α,β -unsaturated keton moiety. Chalcones have shown a wide variety of anticancer (Lawrence *et al.*, 2006), anti-inflammatory (Ko *et al.*, 2003), antimicrobial (Go *et al.*, 2005) and antifungal (Nowakowska, 2007) activies. Crystal structures of some Chalcones were reported (Lawrence *et al.*, 2006; Liu *et al.*, 2002). They showed the Chalcone molecules are in *s*-trans conformation.

In the molecule of the title compound, (Fig. 1), a new chalcone derivative, the dihedral angle between the benzodioxole ring and the methoxy-substituted phenyl ring is 61.45 (6)°. The nitro-group is tilted with respect to the benzene ring to which it is attached by a dihedral angle of 31.86 (17)°.

In the crystal structure, intermolecular C-H···O interactions link the molecules into chains through $R^2_2(8)$ ring motifs (Bernstein *et al.*, 1995) (Fig. 2), in which they may be effective in the stabilization of the structure. The π ··· π contacts between the benzodioxole rings, Cg1—Cg2ⁱ, Cg2—Cg2ⁱ and Cg2—Cg2ⁱⁱ [symmetry codes: (i) -x, 2 - y, -z, (ii) 1 - x, 2 - y, -z, where Cg1 and Cg2 are centroids of the rings (O4/O5/C7/C8/C16) and (C4-C9), respectively] may further stabilize the structure, with centroid-centroid distances of 3.7610 (9), 3.6613 (9) and 3.7975 (9) Å, respectively.

S2. Experimental

The title compound was obtained according to a literature method (Lawrence *et al.*, 2006), and crystallized in glacial acetic acid. Pale yellow, solid; m.p. 477-479 K; ¹H NMR (400 MHz; CDCl₃): δ 7.70 (d, 1H, J = 16 Hz), 7.50 (s, 1H), 7.24 (s, 1H), 6.70 (d, 1H, J = 16 Hz), 6.19 (s, 2H), 6.08 (s, 2H), 3.88 (s, 3H), 3.76 (s, 6H). ¹³C NMR (126 MHz; CDCl₃): δ 194.3 (C=O), 162.3 (C), 160.0(C), 151.9 (C), 148.0 (C), 146.0 (C), 145.0 (C), 142.9 (C), 140.6 (C), 132.6 (C), 120.0 (CH), 114.3 (C), 107.5 (CH), 105.6 (CH), 103.3 (CH), 90.5 (CH₂), 55.0 (3CH₃). IR (KBr, cm⁻¹): 3015, 1647 (C=O), 1605, 1492, 1511, 1488, 891, 823, 762, 649.

S3. Refinement

H atoms were positioned geometrically with C-H = 0.93, 0.97 and 0.96 Å for aromatic, methylene and methyl H atoms, respectively, and constrained to ride on their parent atoms, with $U_{iso}(H) = xU_{eq}(C)$, where x = 1.5 for methyl H and x = 1.2 for all other H atoms.

Figure 1

The molecular structure of the title molecule, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 40% probability level.

Figure 2

A partial packing diagram. Hydrogen bonds are shown as dashed lines.

(*E*)-3-(6-Nitrobenzo[*d*][1,3]dioxol-5-yl)-1-(2,4,6- trimethoxyphenyl) prop-2-en-1-one

Crystal data	
C ₁₉ H ₁₇ NO ₈	Z = 2
$M_r = 387.34$	F(000) = 404
Triclinic, $P\overline{1}$	$D_{\rm x} = 1.457 {\rm ~Mg} {\rm ~m}^{-3}$
Hall symbol: -P 1	Melting point: 497 K K
a = 7.3044 (1) Å	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
b = 10.1264(1) Å	Cell parameters from 3206 reflections
c = 12.8600 (2) Å	$\theta = 2.5 - 32.5^{\circ}$
$\alpha = 93.112(1)^{\circ}$	$\mu = 0.12 \text{ mm}^{-1}$
$\beta = 103.959(1)^{\circ}$	T = 296 K
$\gamma = 105.384 (1)^{\circ}$	Prism, pale yellow
V = 882.91 (2) Å ³	$0.24 \times 0.14 \times 0.10 \text{ mm}$

Data collection

Bruker SMART APEXII CCD area-detector	4805 measured reflections
diffractometer	3038 independent reflections
Radiation source: fine-focus sealed tube	2733 reflections with $I > 2\sigma(I)$
Graphite monochromator	$R_{int} = 0.013$
φ and ω scans	$\theta_{max} = 25.0^{\circ}, \theta_{min} = 2.1^{\circ}$
Absorption correction: multi-scan	$h = -8 \rightarrow 7$
(<i>SADABS</i> ; Bruker, 2005)	$k = -11 \rightarrow 12$
$T_{\min} = 0.973, T_{\max} = 0.989$	$l = -15 \rightarrow 15$
Refinement	
Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.032$	Hydrogen site location: inferred from
$wR(F^2) = 0.083$	neighbouring sites
S = 1.04	H-atom parameters constrained
3038 reflections	$w = 1/[\sigma^2(F_o^2) + (0.0394P)^2 + 0.3499P]$
256 parameters	where $P = (F_o^2 + 2F_c^2)/3$
0 restraints	$(\Delta/\sigma)_{max} < 0.001$
Primary atom site location: structure-invariant	$\Delta\rho_{max} = 0.21$ e Å ⁻³
direct methods	$\Delta\rho_{min} = -0.22$ e Å ⁻³

Special details

Experimental. The low-temperature data was collected with the Oxford Cyrosystem Cobra low-temperature attachment. **Geometry**. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2 , conventional R-factors R are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2$ sigma(F^2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
01	0.15752 (13)	0.44029 (9)	0.12868 (7)	0.0209 (2)	
O2	0.54955 (19)	1.20445 (11)	0.27950 (9)	0.0430 (3)	
03	0.37219 (16)	1.00784 (10)	0.30427 (8)	0.0309 (3)	
04	0.11057 (18)	1.00352 (10)	-0.19561 (8)	0.0355 (3)	
05	0.21032 (16)	1.22795 (10)	-0.11005 (8)	0.0298 (3)	
O6	0.58160 (13)	0.48499 (9)	0.17340 (7)	0.0198 (2)	
07	0.86143 (14)	0.63490 (10)	0.54849 (7)	0.0249 (2)	
08	0.23749 (13)	0.69600 (10)	0.35796 (7)	0.0210 (2)	
N1	0.42880 (18)	1.09155 (12)	0.24520 (9)	0.0240 (3)	
C1	0.25053 (18)	0.55935 (13)	0.16689 (10)	0.0163 (3)	
C2	0.20715 (19)	0.67463 (13)	0.11028 (10)	0.0180 (3)	
H2A	0.0969	0.6553	0.0515	0.022*	
C3	0.31798 (19)	0.80537 (13)	0.13907 (10)	0.0186 (3)	
H3A	0.4224	0.8247	0.2010	0.022*	
C4	0.28680 (19)	0.92101 (13)	0.07998 (10)	0.0185 (3)	

C5	0.34552 (19)	1.05839 (14)	0.12818 (10)	0.0191 (3)
C6	0.3278 (2)	1.17065 (14)	0.07231 (11)	0.0210 (3)
H6A	0.3692	1.2607	0.1069	0.025*
C7	0.24566 (19)	1.13955 (14)	-0.03640 (11)	0.0207 (3)
C8	0.1851 (2)	1.00527 (14)	-0.08729 (11)	0.0224 (3)
C9	0.2033 (2)	0.89551 (14)	-0.03263 (11)	0.0217 (3)
H9A	0.1616	0.8063	-0.0688	0.026*
C10	0.41339 (19)	0.58819 (13)	0.26927 (10)	0.0169 (3)
C11	0.40319 (19)	0.65461 (13)	0.36469 (10)	0.0177 (3)
C12	0.55162 (19)	0.67427 (13)	0.46034 (10)	0.0193 (3)
H12A	0.5443	0.7196	0.5234	0.023*
C13	0.71059 (19)	0.62434 (13)	0.45897 (11)	0.0195 (3)
C14	0.72776 (19)	0.55933 (13)	0.36521 (11)	0.0194 (3)
H14A	0.8367	0.5281	0.3656	0.023*
C15	0.57876 (19)	0.54221 (13)	0.27107 (10)	0.0169 (3)
C16	0.1199 (2)	1.14409 (14)	-0.21227 (11)	0.0261 (3)
H16A	0.1968	1.1736	-0.2631	0.031*
H16B	-0.0115	1.1523	-0.2414	0.031*
C17	0.7629 (2)	0.46353 (15)	0.16380 (12)	0.0242 (3)
H17A	0.7548	0.4414	0.0890	0.036*
H17B	0.7868	0.3887	0.2025	0.036*
H17C	0.8687	0.5460	0.1934	0.036*
C18	0.8713 (2)	0.72180 (16)	0.64213 (12)	0.0313 (4)
H18A	0.9939	0.7326	0.6950	0.047*
H18B	0.7640	0.6807	0.6718	0.047*
H18C	0.8627	0.8105	0.6226	0.047*
C19	0.2283 (2)	0.77177 (15)	0.45311 (11)	0.0245 (3)
H19A	0.1095	0.7994	0.4380	0.037*
H19B	0.3401	0.8522	0.4749	0.037*
H19C	0.2289	0.7144	0.5102	0.037*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
01	0.0207 (5)	0.0174 (5)	0.0213 (5)	0.0041 (4)	0.0013 (4)	-0.0011 (4)
O2	0.0559 (8)	0.0233 (6)	0.0267 (6)	-0.0099 (5)	-0.0077 (5)	-0.0010 (5)
03	0.0430 (6)	0.0253 (5)	0.0209 (5)	0.0040 (5)	0.0081 (5)	0.0036 (4)
O4	0.0602 (8)	0.0213 (5)	0.0176 (5)	0.0108 (5)	-0.0022 (5)	0.0031 (4)
05	0.0397 (6)	0.0189 (5)	0.0248 (5)	0.0073 (4)	-0.0019 (4)	0.0049 (4)
06	0.0191 (5)	0.0208 (5)	0.0201 (5)	0.0070 (4)	0.0056 (4)	-0.0017 (4)
07	0.0214 (5)	0.0317 (5)	0.0189 (5)	0.0096 (4)	-0.0015 (4)	0.0012 (4)
08	0.0195 (5)	0.0269 (5)	0.0177 (5)	0.0104 (4)	0.0037 (4)	-0.0013 (4)
N1	0.0283 (7)	0.0188 (6)	0.0209 (6)	0.0050 (5)	0.0013 (5)	0.0001 (5)
C1	0.0148 (6)	0.0180 (7)	0.0170 (6)	0.0045 (5)	0.0063 (5)	-0.0001 (5)
C2	0.0171 (7)	0.0220 (7)	0.0151 (6)	0.0077 (5)	0.0028 (5)	0.0012 (5)
C3	0.0184 (7)	0.0216 (7)	0.0160 (6)	0.0075 (5)	0.0036 (5)	0.0005 (5)
C4	0.0163 (7)	0.0189 (7)	0.0203 (7)	0.0048 (5)	0.0049 (5)	0.0021 (5)
C5	0.0165 (7)	0.0207 (7)	0.0175 (7)	0.0033 (5)	0.0023 (5)	0.0000 (5)

C6	0.0195 (7)	0.0158 (7)	0.0250 (7)	0.0037 (5)	0.0033 (6)	-0.0006 (5)	
C7	0.0193 (7)	0.0184 (7)	0.0250 (7)	0.0065 (5)	0.0049 (6)	0.0055 (5)	
C8	0.0245 (7)	0.0233 (7)	0.0176 (7)	0.0069 (6)	0.0025 (6)	0.0014 (5)	
C9	0.0268 (7)	0.0165 (7)	0.0204 (7)	0.0059 (6)	0.0044 (6)	-0.0006(5)	
C10	0.0183 (7)	0.0137 (6)	0.0169 (6)	0.0026 (5)	0.0036 (5)	0.0027 (5)	
C11	0.0170 (7)	0.0157 (6)	0.0201 (7)	0.0042 (5)	0.0047 (5)	0.0029 (5)	
C12	0.0209 (7)	0.0187 (7)	0.0171 (6)	0.0042 (5)	0.0050 (5)	0.0010 (5)	
C13	0.0179 (7)	0.0180 (6)	0.0191 (7)	0.0022 (5)	0.0008 (5)	0.0045 (5)	
C14	0.0166 (7)	0.0177 (6)	0.0242 (7)	0.0057 (5)	0.0048 (5)	0.0042 (5)	
C15	0.0193 (7)	0.0118 (6)	0.0189 (6)	0.0024 (5)	0.0060 (5)	0.0018 (5)	
C16	0.0305 (8)	0.0225 (7)	0.0227 (7)	0.0070 (6)	0.0018 (6)	0.0069 (6)	
C17	0.0231 (7)	0.0251 (7)	0.0281 (7)	0.0102 (6)	0.0105 (6)	0.0011 (6)	
C18	0.0335 (9)	0.0357 (9)	0.0194 (7)	0.0127 (7)	-0.0045 (6)	-0.0014 (6)	
C19	0.0243 (7)	0.0323 (8)	0.0191 (7)	0.0121 (6)	0.0063 (6)	-0.0010 (6)	

Geometric parameters (Å, °)

01—C1	1.2234 (16)	С6—Н6А	0.9300
O2—N1	1.2257 (16)	C7—C8	1.3847 (19)
O3—N1	1.2257 (16)	C8—C9	1.3657 (19)
O4—C8	1.3651 (16)	С9—Н9А	0.9300
O4—C16	1.4372 (17)	C10—C11	1.3946 (18)
O5—C7	1.3644 (16)	C10—C15	1.4009 (18)
O5—C16	1.4310 (17)	C11—C12	1.3941 (19)
O6—C15	1.3615 (15)	C12—C13	1.3874 (19)
O6—C17	1.4299 (16)	C12—H12A	0.9300
O7—C13	1.3649 (16)	C13—C14	1.3905 (19)
O7—C18	1.4280 (17)	C14—C15	1.3862 (19)
O8—C11	1.3677 (15)	C14—H14A	0.9300
O8—C19	1.4339 (16)	C16—H16A	0.9700
N1—C5	1.4637 (17)	C16—H16B	0.9700
C1—C2	1.4732 (18)	C17—H17A	0.9600
C1-C10	1.5007 (18)	C17—H17B	0.9600
С2—С3	1.3337 (19)	C17—H17C	0.9600
C2—H2A	0.9300	C18—H18A	0.9600
C3—C4	1.4680 (18)	C18—H18B	0.9600
С3—НЗА	0.9300	C18—H18C	0.9600
C4—C5	1.4017 (19)	C19—H19A	0.9600
С4—С9	1.4092 (18)	C19—H19B	0.9600
C5—C6	1.3954 (19)	C19—H19C	0.9600
C6—C7	1.3642 (19)		
C8—O4—C16	106.10 (10)	O8—C11—C10	115.53 (11)
C7—O5—C16	106.10 (10)	C12—C11—C10	121.51 (12)
C15—O6—C17	117.41 (10)	C13—C12—C11	118.22 (12)
C13—O7—C18	117.45 (11)	C13—C12—H12A	120.9
C11—O8—C19	116.76 (10)	C11—C12—H12A	120.9
O2—N1—O3	123.06 (12)	O7—C13—C12	123.09 (12)

O2—N1—C5	117.74 (11)	O7—C13—C14	114.85 (12)
O3—N1—C5	119.18 (11)	C12—C13—C14	122.06 (12)
O1—C1—C2	119.91 (12)	C15—C14—C13	118.46 (12)
O1—C1—C10	120.19 (11)	C15—C14—H14A	120.8
C2—C1—C10	119.86 (11)	C13—C14—H14A	120.8
C3—C2—C1	123.32 (12)	O6—C15—C14	124.12 (12)
C3—C2—H2A	118.3	O6—C15—C10	114.43 (11)
C1—C2—H2A	118.3	C14—C15—C10	121.42 (12)
C2—C3—C4	124.64 (12)	Q5—C16—Q4	107.78 (10)
C2—C3—H3A	117.7	O5—C16—H16A	110.1
C4—C3—H3A	117.7	04—C16—H16A	110.1
C5-C4-C9	117.26 (12)	05-C16-H16B	110.1
$C_{5}-C_{4}-C_{3}$	123.70(12)	O4-C16-H16B	110.1
C9-C4-C3	118 94 (12)	H16A—C16—H16B	108 5
C6-C5-C4	124 53 (12)	06-C17-H17A	109.5
C6-C5-N1	115 44 (11)	06-C17-H17B	109.5
C4-C5-N1	120.02(12)	H17A - C17 - H17B	109.5
C7 - C6 - C5	115, 53, (12)	06-C17-H17C	109.5
C7 - C6 - H6A	122.2	H17A - C17 - H17C	109.5
C_{5} C_{6} H_{6A}	122.2	H17B-C17-H17C	109.5
C6-C7-O5	122.2	07-C18-H18A	109.5
C6-C7-C8	121.86 (12)	07-C18-H18B	109.5
05-07-08	110.16(12)	$H_{18} = C_{18} = H_{18} B$	109.5
04 - C8 - C9	127.62 (12)	07-C18-H18C	109.5
04 - C8 - C7	127.02(12) 109.79(12)	H_{184} $-C_{18}$ $-H_{18C}$	109.5
$C_{9} - C_{8} - C_{7}$	109.79(12) 122.58(12)	H18B-C18-H18C	109.5
$C_{8} - C_{9} - C_{4}$	122.30(12) 118.24(12)	08-C19-H194	109.5
C_{8} C_{9} H_{9}	120.0	$O_8 C_{19} H_{19R}$	109.5
$C_{0} = C_{0} = H_{0} \Lambda$	120.9	$H_{10A} = C_{10} = H_{10B}$	109.5
$C_{11} = C_{10} = C_{15}$	120.9 118 31 (12)	$\frac{1117}{100}$	109.5
$C_{11} = C_{10} = C_{13}$	110.31(12) 122.28(11)		109.5
$C_{11} = C_{10} = C_{11}$	122.36(11) 110.26(11)	H10R C10 H10C	109.5
0° C11 C12	119.20(11) 122.05(12)	1119 D —C19—1119C	109.5
08-011-012	122.93 (12)		
01 C1 C2 C3	-17107(12)	01 C1 C10 C11	-114 47 (14)
$C_1 - C_1 - C_2 - C_3$	6.82(19)	C_{2}	67.64 (16)
C1 - C2 - C3 - C4	175 54 (12)	01 - C1 - C10 - C15	62 88 (17)
$C_1 - C_2 - C_3 - C_4$	173.34(12) 153.75(13)	$C_{1}^{2} = C_{1}^{1} = C_{10}^{10} = C_{15}^{15}$	-115.00(17)
$C_2 = C_3 = C_4 = C_3$	-200(2)	$C_{10} = 0^{8} = C_{11} = C_{12}^{12}$	4 76 (18)
$C_2 - C_3 - C_4 - C_5$	-0.4(2)	C19 - 08 - C11 - C12	-176 43 (11)
$C_{2} = C_{4} = C_{2} = C_{6}$	176.01.(12)	$C_{15} = C_{10} = C_{11} = C_{10}$	-170.43(11)
$C_{3} - C_{4} - C_{5} - C_{0}$	170.01(12) 178.47(12)	$C_{1} = C_{10} = C_{11} = C_{00}$	-2.00(19)
$C_{2} = C_{4} = C_{5} = N_{1}$	1/0.4/(12) -5.2(2)	$C_1 = C_1 $	2.09(18)
$C_{3} = C_{4} = C_{3} = 1 \times 1$	3.2(2) -21.22(18)	C_{13} C_{10} C_{11} C_{12}	0.03(19)
02 - 101 - 05 - 00	-31.32(18)	$C_1 - C_1 $	1/0.73(12)
03 - 11 - 05 - 06	140.95 (15)	$\bigcup_{i=1}^{i=1} \bigcup_{j=1}^{i=1} \bigcup_{i=1}^{i=1} \bigcup_{j=1}^{i=1} $	1//.98 (11)
02 - N1 - 05 - 04	149./3 (14)	C10 - C11 - C12 - C13	-0.70(19)
03 - N1 - 03 - 04	-32.00(19)	$C_{18} = 07 = C_{12} = C_{14}$	-11.05(19)
L4—L5—L6—L7	0.4 (2)	C18—O/—C13—C14	168.92 (12)

N1-C5-C6-C7 $C5-C6-C7-C8$ $C16-O5-C7-C6$ $C16-O5-C7-C8$ $C16-O4-C8-C9$ $C16-O4-C8-C7$ $C6-C7-C8-O4$ $C6-C7-C8-O4$ $C6-C7-C8-O4$ $C6-C7-C8-C9$ $O5-C7-C8-C9$ $O4-C8-C9-C4$ $C7-C8-C9-C4$ $C7-C8-C9-C4$ $C5-C4-C9-C8$ $C2-C4-C9-C8$	-178.43 (11) 179.77 (13) -0.2 (2) -179.08 (14) 0.93 (15) 178.84 (14) -1.85 (16) -179.39 (13) 0.60 (17) 0.0 (2) 179.95 (13) 179.36 (13) 0.1 (2) 0.05 (19)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-178.33 (12) 1.7 (2) 178.85 (11) -1.19 (19) -11.24 (17) 166.67 (11) 177.46 (11) -0.30 (19) -176.77 (10) 5.76 (17) 1.19 (19) -176.27 (11) -2.04 (15) 2.40 (16)
C3—C4—C9—C8	-176.50 (12)		

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	$D \cdots A$	<i>D</i> —H··· <i>A</i>
C2—H2A···O1 ⁱ	0.93	2.55	3.4512 (16)	164
C6—H6A···O6 ⁱⁱ	0.93	2.36	3.2429 (16)	158

Symmetry codes: (i) –*x*, –*y*+1, –*z*; (ii) *x*, *y*+1, *z*.