organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

Ethyl 4-(4-hydroxyphenyl)-6-methyl-2-oxo-1,2,3,4-tetrahydropyrimidine-5-carboxylate monohydrate

Susanta K. Nayak,^a K. N. Venugopala,^b Deepak Chopra,^c* Thavendran Govender,^d Hendrik G. Kruger,^b Glenn E. M. Maguire^b and T. N. Guru Row^a

^aSolid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore 560 012, India, ^bSchool of Chemistry, University of KwaZulu-Natal, Durban 4000, South Africa, ^cDepartment of Chemistry, Indian Institute of Science Education and Research, Bhopal 462 023, India, and ^dSchool of Pharmacy and Pharmacology, University of Kwazulu-Natal, Durban 4000, South Africa Correspondence e-mail: dchopra@iiserbhopal.ac.in

Received 15 September 2009; accepted 16 September 2009

Key indicators: single-crystal X-ray study; T = 292 K; mean σ (C–C) = 0.002 Å; R factor = 0.037; wR factor = 0.102; data-to-parameter ratio = 13.9.

In the title compound, $C_{14}H_{16}N_2O_4 \cdot H_2O$, the dihedral angles between the planes of the 4-hydroxyphenyl and ester groups with the plane of the six-membered tetrahydropyrimidine ring are 87.3 (1) and 75.9 (1) $^{\circ}$, respectively. The crystal structure is stabilized by O-H···O and N-H···O hydrogen bonding between the water molecule and the organic functionalities.

Related literature

Bignelli compounds are poly-functionalized dihydropyrimidines exhibiting a broad range of therapeutic and pharmacological properties, see: Atwal et al. (1991); Jauk et al. (2000); Kappe (2000); Kato (1984).

HN

Experimental

Crystal data $C_{14}H_{16}N_2O_4 \cdot H_2O$ $M_r = 294.30$

Triclinic, $P\overline{1}$ a = 5.6859 (2) Å

NH

0

CH₃

.H₂O

b = 10.7190(5) A	
c = 12.1980 (5) Å	
$\alpha = 85.267 \ (3)^{\circ}$	
$\beta = 83.990 \ (3)^{\circ}$	
$\gamma = 74.936 \ (4)^{\circ}$	
V = 712.76 (6) Å ³	

Data collection

Goniometer Xcalibur with Eos	18207 measured reflections
(Nova) detector diffractometer	2792 independent reflections
Absorption correction: multi-scan	2109 reflections with $I > 2\sigma(I)$
(CrysAlis Pro; Oxford	$R_{\rm int} = 0.034$
Diffraction, 2009)	
$T_{\min} = 0.951, T_{\max} = 0.984$	

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.037$	H atoms treated by a mixture of
$wR(F^2) = 0.102$	independent and constrained
S = 1.09	refinement
2792 reflections	$\Delta \rho_{\rm max} = 0.19 \text{ e} \text{ Å}^{-3}$
201 parameters	$\Delta \rho_{\rm min} = -0.14 \text{ e } \text{\AA}^{-3}$

Z = 2

Mo $K\alpha$ radiation

 $0.38 \times 0.24 \times 0.15 \text{ mm}$

reflections

 $\mu = 0.11 \text{ mm}^-$

T = 292 K

Table 1			
Hydrogen-bond	geometry	(Å,	°).

$D - H \cdots A$	D-H	$H \cdots A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$N1 - H1 \cdots O1^{i}$ $N2 - H2 \cdots O4^{ii}$ $O4 - H4 \cdots O5W^{iv}$ $O5W - H1W \cdots O2$ $O5W - H2W \cdots O1^{iii}$	0.86 0.86 0.82 0.83 (3) 0.93 (3)	2.09 2.14 1.86 2.06 (3) 1.88 (3)	2.9411 (17) 2.978 (2) 2.674 (2) 2.881 (2) 2.799 (2)	171 165 176 172 (3) 167 (2)

Symmetry codes: (i) -x + 2, -y, -z + 2; (ii) -x + 1, -y, -z + 1; (iii) x - 1, y + 1, z; (iv) -x + 1, -y + 1, -z + 1.

Data collection: CrysAlis Pro (Oxford Diffraction, 2009); cell refinement: CrysAlis Pro; data reduction: CrysAlis Pro; program(s) used to solve structure: SHELXL97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008): molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and CAMERON (Watkin et al., 1993); software used to prepare material for publication: PLATON (Spek, 2009).

We are grateful for funding under DST-FIST (Level II) for the Oxford Diffraction facility at SSCU. SKN thanks the CSIR (SRF), India, for financial support.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HG2566).

References

- Atwal, K. S., Swanson, B. N., Unger, S. E., Floyd, D. M., Moreland, S., Hedberg, A. & O Reilly, B. C. (1991). J. Med. Chem. 34, 806-811.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Jauk, B., Pernat, T. & Kappe, C. O. (2000). Molecules, 5, 227-239.
- Kappe, C. O. (2000). Eur. J. Med. Chem. 35, 1043-1052.
- Kato, T. (1984). Chem. Abstr. 102, 132067.
- Oxford Diffraction (2009). CrysAlis CCD and CrysAlisPro RED. Oxford Diffraction Ltd, Yarnton, England.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.
- Watkin, D. M., Pearce, L. & Prout, C. K. (1993). CAMERON. Chemical Crystallography Laboratory, University of Oxford, England.

supporting information

Acta Cryst. (2009). E65, o2502 [doi:10.1107/S1600536809037441]

Ethyl 4-(4-hydroxyphenyl)-6-methyl-2-oxo-1,2,3,4-tetrahydropyrimidine-5carboxylate monohydrate

Susanta K. Nayak, K. N. Venugopala, Deepak Chopra, Thavendran Govender, Hendrik G. Kruger, Glenn E. M. Maguire and T. N. Guru Row

S1. Comment

Bignelli compounds are poly-functionalized dihydropyrimidine (DHPM) exhibiting a broad range of therapeutic and pharmacological properties (Kappe, 2000), namely, anticarcinogenic (Kato, 1984), antihypertensive (Atwal *et al.*, 1991) and calcium channel modulators (Jauk *et al.*, 2000, and references therein). It is observed that the six-membered tetra-hydropyrimidine ring exists in a nearly planar conformation (Figure 1). The ester moiety is in an s-*trans* conformation with respect to the endocyclic double bond. The water molecule is held by O—H…O hydrogen bond, involving H1W with the oxygen of the ester carbonyl moiety. The other hydrogen atom H2W forms intermolecular O—H…O hydrogen bond with the carbonyl group of the tetrahydropyrimidine ring, thereby acting as a bridge between two molecules. Furthermore, the amino hydrogen H1 forms centrosymmetric N—H…O dimers. The other acidic hydrogen H2 forms N—H…O hydrogen bond with the phenolic oxygen atom. The phenolic hydrogen in turn forms O—H…O intermolecular hydrogen bond with the oxygen of the water molecule (Figure 2).

S2. Experimental

A mixture of ethylacetoacetate (0.1 mol), *para* hydroxy substituted benzaldehyde (0.1 mol) and urea was refluxed in 50.0 mL of ethanol for 2.0 hrs in presence of concentrated hydrochloric acid as catalyst. The reaction completion was monitored through thin layer chromatography and the reaction mixture was quenched in ice cold water. The precipitate obtained was filtered, dried and crystallized from methanol to obtain the title compound.

S3. Refinement

The hydrogen atoms of the water molecule were located from a difference Fourier map and refined isotropically. The O— H bond lengths are in the range of 0.83 (3)—0.93 (3) Å. The remaining H atoms were positioned geometrically, with C— H = 0.93 Å, 0.96 Å, 0.97 Å, 0.98Å for aromatic, methyl, methylene and methine H atoms respectively and N—H = 0.86Å for amino H atoms and all refined using a riding model with $U_{iso}(H)=1.2 U_{eq}(C, N)$ for aromatic and amine hydrogen and 1.5 $U_{eq}(C)$ for methyl, methylene and methine H atoms respectively.

Figure 1

Molecular structure shows the atom labelling scheme with displacement ellipsoids for non-H atoms at 50% probability level. The dotted line shows the O—H…O intramolecular interaction.

Figure 2

The molecular packing depicting intermolecular N-H···O and O-H···O hydrogen bonds.

Ethyl 4-(4-hydroxyphenyl)-6-methyl-2-oxo-1,2,3,4-tetrahydropyrimidine-5-carboxylate monohydrate

Z = 2

Crystal data

C₁₄H₁₆N₂O₄·H₂O $M_r = 294.30$ Triclinic, *P*1 Hall symbol: -P 1 a = 5.6859 (2) Å b = 10.7190 (5) Å c = 12.1980 (5) Å a = 85.267 (3)° $\beta = 83.990$ (3)° $\gamma = 74.936$ (4)° V = 712.76 (6) Å³

Data collection

Goniometer Xcalibur with Eos (Nova) detector diffractometer Radiation source: Enhance (Mo) X-ray Source Graphite monochromator Detector resolution: 16.0839 pixels mm⁻¹ ω scans Absorption correction: multi-scan (*CrysAlis PRO*; Oxford Diffraction, 2009) $T_{\min} = 0.951, T_{\max} = 0.984$

Refinement

Refinement on F^2 Secondary atom site le
mapLeast-squares matrix: fullmap $R[F^2 > 2\sigma(F^2)] = 0.037$ Hydrogen site location
neighbouring sites $wR(F^2) = 0.102$ Hatoms treated by a r
and constrained refiS = 1.09Hatoms treated by a r
and constrained refi201 parameters $w = 1/[\sigma^2(F_o^2) + (0.040)]$
where $P = (F_o^2 + 2H)$ Primary atom site location: structure-invariant
direct methods $(\Delta/\sigma)_{max} < 0.000$
 $\Delta\rho_{max} = 0.19$ e Å⁻³
 Λ^{-3}

F(000) = 312 $D_x = 1.371 \text{ Mg m}^{-3}$ Mo K\alpha radiation, $\lambda = 0.7107 \text{ Å}$ Cell parameters from 400 reflections $\theta = 1.0-28.0^{\circ}$ $\mu = 0.11 \text{ mm}^{-1}$ T = 292 KPlate, colorless $0.38 \times 0.24 \times 0.15 \text{ mm}$

18207 measured reflections 2792 independent reflections 2109 reflections with $I > 2\sigma(I)$ $R_{int} = 0.034$ $\theta_{max} = 26.0^{\circ}, \ \theta_{min} = 3.4^{\circ}$ $h = -7 \rightarrow 7$ $k = -13 \rightarrow 13$ $l = -15 \rightarrow 15$

Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites H atoms treated by a mixture of independent and constrained refinement $w = 1/[\sigma^2(F_o^2) + (0.046P)^2 + 0.1184P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} < 0.000$ $\Delta\rho_{max} = 0.19$ e Å⁻³ $\Delta\rho_{min} = -0.14$ e Å⁻³

Special details

Experimental. CrysAlisPro, Oxford Diffraction Ltd., Version 1.171.33.34d Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
H1W	0.159 (5)	0.640 (3)	0.786 (2)	0.096 (9)*
H2W	0.059 (4)	0.773 (3)	0.799 (2)	0.096 (8)*
01	0.9249 (2)	-0.09595 (10)	0.89786 (9)	0.0468 (3)
04	0.4417 (2)	0.21103 (11)	0.32278 (8)	0.0479 (3)
H4	0.5634	0.2371	0.3022	0.072*
O3	-0.0136 (2)	0.32510 (10)	0.79355 (9)	0.0446 (3)
С9	0.3842 (3)	0.14292 (13)	0.66438 (12)	0.0322 (3)
C4	0.3717 (3)	0.11045 (13)	0.78842 (12)	0.0346 (3)
H4A	0.2225	0.0817	0.8101	0.041*
N2	0.5830(2)	0.00283 (11)	0.81312 (10)	0.0400 (3)
H2	0.6038	-0.0650	0.7766	0.048*
C5	0.1804 (3)	0.34545 (15)	0.83520 (12)	0.0391 (4)
C1	0.7456 (3)	-0.00217 (14)	0.88495 (12)	0.0352 (3)
N1	0.7088 (2)	0.10279 (12)	0.94695 (10)	0.0416 (3)
H1	0.8040	0.0987	0.9982	0.050*
C3	0.3665 (3)	0.22455 (14)	0.85610 (12)	0.0348 (3)
C12	0.4247 (3)	0.19198 (14)	0.43558 (12)	0.0366 (4)
C13	0.5795 (3)	0.22773 (15)	0.50023 (12)	0.0396 (4)
H13	0.6971	0.2686	0.4677	0.047*
C14	0.5585 (3)	0.20247 (14)	0.61345 (12)	0.0378 (4)
H14	0.6642	0.2261	0.6563	0.045*
C11	0.2467 (3)	0.13405 (15)	0.48509 (13)	0.0407 (4)
H11	0.1395	0.1117	0.4423	0.049*
C2	0.5263 (3)	0.21559 (14)	0.93180 (12)	0.0368 (4)
C10	0.2282 (3)	0.10937 (14)	0.59840 (13)	0.0379 (4)
H10	0.1090	0.0696	0.6309	0.046*
C6	-0.1877 (3)	0.43911 (17)	0.74982 (15)	0.0515 (4)
H6A	-0.1987	0.5121	0.7938	0.062*
H6B	-0.3484	0.4227	0.7537	0.062*
O2	0.1978 (2)	0.45309 (11)	0.85073 (11)	0.0594 (4)
C8	0.5280 (4)	0.31579 (16)	1.01034 (14)	0.0541 (5)
H8A	0.3836	0.3856	1.0053	0.081*
H8B	0.6701	0.3484	0.9917	0.081*
H8C	0.5316	0.2776	1.0843	0.081*
C7	-0.1064 (4)	0.47022 (19)	0.63274 (16)	0.0673 (6)
H7A	-0.0706	0.3936	0.5920	0.101*
H7B	0.0377	0.5015	0.6304	0.101*
H7C	-0.2341	0.5355	0.6005	0.101*
O5W	0.1583 (3)	0.71105 (16)	0.75335 (11)	0.0583 (4)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

Atomic displacement parameters $(Å^2)$

	U^{11}	U ²²	U^{33}	U^{12}	U^{13}	<i>U</i> ²³
01	0.0563 (7)	0.0347 (6)	0.0454 (6)	0.0015 (5)	-0.0149 (5)	-0.0075 (5)
O4	0.0647 (8)	0.0479 (7)	0.0323 (6)	-0.0128 (6)	-0.0113 (5)	-0.0060 (5)

O3	0.0406 (6)	0.0380 (6)	0.0526 (7)	-0.0044 (5)	-0.0058 (5)	-0.0040 (5)
С9	0.0347 (8)	0.0270 (7)	0.0340 (8)	-0.0034 (6)	-0.0057 (6)	-0.0065 (6)
C4	0.0376 (8)	0.0309 (8)	0.0355 (8)	-0.0085 (6)	-0.0030 (6)	-0.0040 (6)
N2	0.0543 (8)	0.0273 (7)	0.0376 (7)	-0.0035 (6)	-0.0129 (6)	-0.0076 (5)
C5	0.0446 (9)	0.0366 (9)	0.0337 (8)	-0.0068 (7)	0.0009 (7)	-0.0055 (6)
C1	0.0470 (9)	0.0292 (8)	0.0282 (7)	-0.0077 (7)	-0.0026 (7)	-0.0009 (6)
N1	0.0540 (9)	0.0349 (7)	0.0351 (7)	-0.0043 (6)	-0.0139 (6)	-0.0075 (5)
C3	0.0422 (9)	0.0321 (8)	0.0291 (7)	-0.0082 (7)	0.0005 (6)	-0.0046 (6)
C12	0.0457 (9)	0.0292 (8)	0.0323 (8)	-0.0008 (7)	-0.0097 (7)	-0.0071 (6)
C13	0.0460 (9)	0.0399 (9)	0.0357 (8)	-0.0154 (7)	-0.0034 (7)	-0.0053 (6)
C14	0.0416 (9)	0.0406 (9)	0.0352 (8)	-0.0131 (7)	-0.0096 (7)	-0.0081 (6)
C11	0.0390 (9)	0.0409 (9)	0.0440 (9)	-0.0057 (7)	-0.0170 (7)	-0.0106 (7)
C2	0.0491 (9)	0.0305 (8)	0.0291 (7)	-0.0073 (7)	-0.0014 (7)	-0.0039 (6)
C10	0.0342 (8)	0.0362 (8)	0.0442 (9)	-0.0080 (7)	-0.0066 (7)	-0.0057 (7)
C6	0.0433 (10)	0.0427 (10)	0.0637 (11)	0.0012 (8)	-0.0094 (8)	-0.0089 (8)
O2	0.0660 (8)	0.0335 (7)	0.0786 (9)	-0.0046 (6)	-0.0223 (7)	-0.0095 (6)
C8	0.0767 (13)	0.0410 (10)	0.0427 (9)	-0.0033 (9)	-0.0164 (9)	-0.0146 (7)
C7	0.0882 (16)	0.0475 (11)	0.0607 (12)	-0.0030 (10)	-0.0195 (11)	-0.0001 (9)
O5W	0.0737 (10)	0.0535 (9)	0.0480 (8)	-0.0163 (7)	-0.0009 (7)	-0.0085 (7)

Geometric parameters (Å, °)

01—C1	1.2450 (18)	C12—C13	1.383 (2)
O4—C12	1.3712 (18)	C13—C14	1.384 (2)
O4—H4	0.8200	C13—H13	0.9300
O3—C5	1.3354 (19)	C14—H14	0.9300
O3—C6	1.4601 (19)	C11—C10	1.384 (2)
C9—C14	1.382 (2)	C11—H11	0.9300
C9—C10	1.388 (2)	C2—C8	1.500 (2)
С9—С4	1.523 (2)	C10—H10	0.9300
C4—N2	1.4710 (18)	C6—C7	1.493 (3)
C4—C3	1.523 (2)	C6—H6A	0.9700
C4—H4A	0.9800	С6—Н6В	0.9700
N2—C1	1.3268 (19)	C8—H8A	0.9600
N2—H2	0.8600	C8—H8B	0.9600
С5—О2	1.2150 (19)	C8—H8C	0.9600
С5—С3	1.467 (2)	С7—Н7А	0.9600
C1—N1	1.3662 (19)	С7—Н7В	0.9600
N1—C2	1.3872 (19)	С7—Н7С	0.9600
N1—H1	0.8600	O5W—H1W	0.83 (3)
С3—С2	1.343 (2)	O5W—H2W	0.93 (3)
C12—C11	1.382 (2)		
C12—O4—H4	109.5	C9—C14—C13	121.54 (14)
С5—О3—С6	116.65 (13)	C9—C14—H14	119.2
C14—C9—C10	117.91 (13)	C13—C14—H14	119.2
C14—C9—C4	120.72 (13)	C12—C11—C10	119.95 (14)
C10—C9—C4	121.32 (13)	C12—C11—H11	120.0

		a a	
N2—C4—C9	108.75 (11)	C10—C11—H11	120.0
N2—C4—C3	109.61 (12)	C3—C2—N1	120.40 (13)
C9—C4—C3	113.46 (12)	C3—C2—C8	126.94 (14)
N2—C4—H4A	108.3	N1—C2—C8	112.60 (13)
С9—С4—Н4А	108.3	C11—C10—C9	121.23 (14)
C3—C4—H4A	108.3	C11—C10—H10	119.4
C1—N2—C4	127.84 (12)	C9—C10—H10	119.4
C1—N2—H2	116.1	O3—C6—C7	109.76 (14)
C4—N2—H2	116.1	O3—C6—H6A	109.7
O2—C5—O3	122.53 (15)	С7—С6—Н6А	109.7
O2—C5—C3	125.31 (15)	O3—C6—H6B	109.7
O3—C5—C3	112.14 (13)	С7—С6—Н6В	109.7
O1—C1—N2	123.60 (13)	H6A—C6—H6B	108.2
01—C1—N1	119.71 (14)	C2—C8—H8A	109.5
N2-C1-N1	116.69 (13)	C2—C8—H8B	109.5
C1-N1-C2	123.59 (13)	H8A—C8—H8B	109.5
C1—N1—H1	118.2	$C_2 = C_8 = H_8C$	109.5
$C_2 - N_1 - H_1$	118.2	H8A - C8 - H8C	109.5
$C_2 - C_3 - C_5$	120.99 (13)	H8B-C8-H8C	109.5
$C_2 C_3 C_4$	120.99(13) 121.53(13)	C6 $C7$ $H7A$	109.5
$C_{2} = C_{3} = C_{4}$	121.33(13) 117.47(13)	C6 C7 H7B	109.5
04 C12 C11	117.47(13) 118.08(13)		109.5
04 - C12 - C13	110.00(15) 122.22(15)	$\Pi/A - C / - \Pi/B$	109.5
$C_{11} = C_{12} = C_{13}$	122.55(15) 110.58(14)		109.5
C12 - C12 - C13	119.58 (14)	H/A - C/ - H/C	109.5
C12 - C13 - C14	119.76 (15)	H/B—C/—H/C	109.5
С12—С13—Н13	120.1	H1W—O5W—H2W	105 (2)
C14—C13—H13	120.1		
C14—C9—C4—N2	-71.27 (17)	C9—C4—C3—C5	52.91 (18)
C10—C9—C4—N2	106.19 (15)	O4—C12—C13—C14	-178.02 (14)
C14—C9—C4—C3	50.98 (18)	C11—C12—C13—C14	1.5 (2)
C10—C9—C4—C3	-131.56 (14)	C10-C9-C14-C13	-0.3 (2)
C9—C4—N2—C1	126.81 (16)	C4—C9—C14—C13	177.20 (13)
C3—C4—N2—C1	2.3 (2)	C12—C13—C14—C9	-0.6 (2)
C6—O3—C5—O2	10.0 (2)	O4—C12—C11—C10	177.99 (13)
C6—O3—C5—C3	-168.50 (13)	C13—C12—C11—C10	-1.6 (2)
C4—N2—C1—O1	-177.32 (14)	C5—C3—C2—N1	-176.83 (13)
C4—N2—C1—N1	2.8 (2)	C4—C3—C2—N1	2.9 (2)
01—C1—N1—C2	174.44 (14)	C5—C3—C2—C8	5.9 (2)
N2-C1-N1-C2	-5.6 (2)	C4—C3—C2—C8	-174.35 (15)
O2—C5—C3—C2	26.2 (2)	C1—N1—C2—C3	2.9 (2)
O3—C5—C3—C2	-155.34 (14)	C1—N1—C2—C8	-179.51 (15)
O2—C5—C3—C4	-153.49 (16)	C12—C11—C10—C9	0.7 (2)
03-C5-C3-C4	24.92 (18)	C14-C9-C10-C11	0.3 (2)
N2-C4-C3-C2	-5.05(19)	C4-C9-C10-C11	-177.23(13)
C9-C4-C3-C2	-126.82(15)	$C_{5}-O_{3}-C_{6}-C_{7}$	85 59 (18)
$N_{2} - C_{4} - C_{3} - C_{5}$	174 68 (12)		00.07 (10)
112 07 03 03	1, 1.00 (12)		

nyalogen oona geometry (m,)	Hydrogen-bond	geometry	(Å,	9
------------------------------	---------------	----------	-----	---

<i>D</i> —Н	H···A	$D \cdots A$	<i>D</i> —H… <i>A</i>
0.86	2.09	2.9411 (17)	171
0.83 (3)	2.06 (3)	2.881 (2)	172 (3)
0.86	2.14	2.978 (2)	165
0.93 (3)	1.88 (3)	2.799 (2)	167 (2)
0.82	1.86	2.674 (2)	176
	<i>D</i> —H 0.86 0.83 (3) 0.86 0.93 (3) 0.82	D—H H···A 0.86 2.09 0.83 (3) 2.06 (3) 0.86 2.14 0.93 (3) 1.88 (3) 0.82 1.86	D—HH···AD···A0.862.092.9411 (17)0.83 (3)2.06 (3)2.881 (2)0.862.142.978 (2)0.93 (3)1.88 (3)2.799 (2)0.821.862.674 (2)

Symmetry codes: (i) -x+2, -y, -z+2; (ii) -x+1, -y, -z+1; (iii) x-1, y+1, z; (iv) -x+1, -y+1, -z+1.