organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

4-(Methylamino)benzoic acid

Ísmail Çelik,^a Mehmet Akkurt,^b* Hacali Necefoğlu,^c Özgür Aybirdi^c and Santiago García-Granda^d

^aDepartment of Physics, Faculty of Arts and Sciences, Cumhuriyet University, 58140 Sivas, Turkey, ^bDepartment of Physics, Faculty of Arts and Sciences, Erciyes University, 38039 Kayseri, Turkey, ^cDepartment of Chemistry, Kafkas University, 63100 Kars, Turkey, and ^dDepartamento Química Física y Analítica, Facultad de Química, Universidad Oviedo, C/ Julián Clavería, 8, 33006 Oviedo (Asturias), Spain Correspondence e-mail: akkurt@erciyes.edu.tr

Received 8 September 2009; accepted 25 September 2009

Key indicators: single-crystal X-ray study; T = 296 K; mean σ (C–C) = 0.005 Å; R factor = 0.066; wR factor = 0.239; data-to-parameter ratio = 14.2.

The asymmetric unit of the title compound, $C_8H_9NO_2$, contains three crystallographically independent molecules, which are essentially planar, the carboxyl O atoms deviating by 0.091 (3), 0.101 (2) and 0.164 (3) Å from the mean plane through the non-H atoms. In the crystal, all three molecules form $O-H\cdots O$ hydrogen-bonded about inversion centers, forming eight-membered rings with graph-set notation $R_2^2(8)$. In addition, $N-H\cdots O$ hydrogen bonding and $C-H\cdots \pi$ interactions reinforce the packing.

Related literature

For comparison bond-length data in some substituted amino benzoic acid compounds, see: Dzierżawska-Majewska *et al.* (2006); Smith *et al.* (2007).

Experimental

Crystal data

 $C_8H_9NO_2$ $M_r = 151.16$ Monoclinic, $P2_1/n$

<i>a</i> =	5.0456	(3) Å
<i>b</i> =	36.339	(2) Å
<i>c</i> =	12.6496	6 (5) Å

OH

$\beta = 96.129 \ (4)^{\circ}$
$V = 2306.1 (2) \text{ Å}^3$
Z = 12
0 1/ 1/

Cu $K\alpha$ radiation

Data collection

Oxford Diffraction Xcalibur	
diffractometer with a Ruby	
Gemini CCD detector	
Absorption correction: none	

Refinement

$$\begin{split} R[F^2 > 2\sigma(F^2)] &= 0.066 & 301 \text{ parameters} \\ wR(F^2) &= 0.239 & \text{H-atom parameters constrained} \\ S &= 1.08 & \Delta\rho_{\text{max}} = 0.29 \text{ e } \text{\AA}^{-3} \\ 4266 \text{ reflections} & \Delta\rho_{\text{min}} = -0.28 \text{ e } \text{\AA}^{-3} \end{split}$$

 $\mu = 0.78 \text{ mm}^{-1}$ T = 296 K

 $R_{\rm int} = 0.043$

 $0.11 \times 0.08 \times 0.06 \text{ mm}$

7671 measured reflections

4266 independent reflections 2680 reflections with $I > 2\sigma(I)$

 Table 1

 Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdot \cdot \cdot A$	$D - \mathbf{H} \cdot \cdot \cdot A$
N1-H1···O3	0.86	2.25	3.074 (3)	161
$O1 - HO1 \cdots O6^{i}$	0.82	1.86	2.678 (3)	174
$N2 - H2 \cdots O6$	0.86	2.16	3.003 (3)	168
$O4-HO4\cdots O3^{ii}$	0.82	1.85	2.661 (3)	171
$O5-HO5\cdots O2^{iii}$	0.82	1.82	2.627 (4)	170
$C24 - H24B \cdots O2^{iv}$	0.96	2.58	3.305 (4)	132
$C8 - H8C \cdots Cg1^{v}$	0.96	2.76	3.564 (4)	142
$C16-H16A\cdots Cg2^{v}$	0.96	2.61	3.482 (4)	151
$C24 - H24A \cdots Cg3^{vi}$	0.96	2.70	3.572 (4)	150

Symmetry codes: (i) x - 2, y, z - 1; (ii) -x, -y, -z + 1; (iii) x + 2, y, z + 1; (iv) $x + \frac{1}{2}, -y + \frac{1}{2}, z + \frac{1}{2}$; (v) x + 1, y, z; (vi) x - 1, y, z. *Cg1*, *Cg2* and *Cg3* are the centroids of the C2–C7, C10–C15 and C18–C23 benzene rings, respectively.

Data collection: *CrysAlis Pro* (Oxford Diffraction, 2009); cell refinement: *CrysAlis Pro*; data reduction: *CrysAlis Pro*; program(s) used to solve structure: *SIR97* (Altomare *et al.*, 1999); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *ORTEP-3 for Windows* (Farrugia, 1999); software used to prepare material for publication: *WinGX* (Farrugia, 1997) and *PLATON* (Spek, 2009).

The authors thank the Cumhriyet University Reseach Foundation (CUBAP grant No 2009/F-266) for financial support.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HG2564).

References

- Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.
- Dzierżawska-Majewska, A., Karolak-Wojciechowska, J. & Obniska, J. (2006). Acta Cryst. E62, 0931–0932.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
- Oxford Diffraction (2009). CrysAlis Pro. Oxford Diffraction Ltd, Yarnton, England.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Smith, G., Wermuth, U. D. & White, J. M. (2007). Acta Cryst. E63, 04803.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.

supporting information

Acta Cryst. (2009). E65, o2574 [doi:10.1107/S1600536809038859]

4-(Methylamino)benzoic acid

Ísmail Çelik, Mehmet Akkurt, Hacali Necefoğlu, Özgür Aybirdi and Santiago García-Granda

S1. Comment

Three independent molecules of the title compound (I) in the asymmetric unit are shown in Fig. 1.The bond lengths and angles in the three molecules have normal values. These molecules are not essentially planar (r.m.s. deviations from the mean plane of the non-H atoms are -0.091 (3) Å for atom O1 of the molecule 1, -0.101 (2)Å and 0.164 (3) Å, for atoms O1, O3 and O5 of each molecule, respectively). The dihedral angles between the benzene rings A(C2–C7), B(C10–C17) and C(C18–C23) are A/B = 88.27 (15)°, A/C = 10.63 (16)° and B/C = 89.16 (15)°.

In this structure, the three molecules all form O—H···O hydrogen bonded dimers, between molecules lying about inversion centers, forming eight-membered rings with an $R_2^2(8)$ motif in graph-set notation (Fig. 2). Further, N—H···O hydrogen bonding and C—H··· π interactions reinforces the packing (Table 1, Fig. 3).

S2. Experimental

4-(Methylamino)benzoic acid (0.60468 g, 0.4 mol) (Aldrich) was added to water of 300 ml. The temperature was kept constant at 343 K and solution stirred in a mixer for 1 h, and then solution was left at room temperature to be crystalline. A day later, colourless crystals formed.

S3. Refinement

All H atoms were observed in a differences Fourier map. The H atoms in the title compound were placed geometrically $[C-H = 0.93 \text{ Å} \text{ for aromatic, } C-H = 0.93 \text{ Å} \text{ for methyl, } O-H = 0.82 \text{ Å} \text{ for hydroxyl and } N-H = 0.86 \text{ Å} \text{ for NH}] \text{ and} refined with <math>U_{iso}(H) = 1.2 \text{ or } 1.5U_{eq}(C, N, O)$, using a riding model. To determine the OH groups correctly, the OH H atoms were geometrically located to both oxygen atoms of the carboxyl group of each molecule, in which their total s.o.f. will be 1. In the final refinement, the values of the s.o.f. 's were determined [0.74 (5) for O1 and 0.26 (5) for O2 in molecule IA, 0.16 (6) for O3 and 0.86 (6) for O4 in molecule IB and 0.75 (5) for O5 and 0.25 (5) for O6 in molecule IC]. Then, *via* the only OH H atoms with the high s.o.f.'s, the refinement process was maintained. Unlike the other two molecules, in the molecule B of the three molecules in the asymmetric unit, the OH H atom is located to the O4(HO4) atom in the opposite direction of the $-NHCH_3$ group.

Figure 1

View of the three molecules in the asymmetric unit of the title compound with numbering scheme and thermal ellipsoids drawn at 30% probability.

Figure 2

The packing diagram and hydrogen bonding of compound (I) viewed down *a* axis.

Figure 3

View of the packing of (I) viewed down c axis.

4-(Methylamino)benzoic acid

Crystal data C₈H₉NO₂ $M_r = 151.16$ Monoclinic, $P2_1/n$ Hall symbol: -P 2yn a = 5.0456 (3) Å b = 36.339 (2) Å c = 12.6496 (5) Å $\beta = 96.129$ (4)° V = 2306.1 (2) Å³ Z = 12

F(000) = 960 $D_x = 1.306 \text{ Mg m}^{-3}$ Cu K\alpha radiation, $\lambda = 1.54184 \text{ Å}$ Cell parameters from 2063 reflections $\theta = 3.5-70.5^{\circ}$ $\mu = 0.78 \text{ mm}^{-1}$ T = 296 KPrism, colourless $0.11 \times 0.08 \times 0.06 \text{ mm}$ Data collection

Oxford Diffraction Xcalibur diffractometer with a Ruby Gemini CCD detector Radiation source: Enhance (Cu) X-ray Source Graphite monochromator Detector resolution: 10.2673 pixels mm ⁻¹ ω scans 7671 measured reflections <i>Refinement</i>	4266 independent reflections 2680 reflections with $I > 2\sigma(I)$ $R_{int} = 0.043$ $\theta_{max} = 70.9^{\circ}, \theta_{min} = 3.7^{\circ}$ $h = -6 \rightarrow 4$ $k = -42 \rightarrow 43$ $l = -15 \rightarrow 14$
Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.066$	Hydrogen site location: inferred from
$wR(F^2) = 0.239$	neighbouring sites
S = 1.08	H-atom parameters constrained
4266 reflections	$w = 1/[\sigma^2(F_o^2) + (0.1482P)^2]$
301 parameters	where $P = (F_o^2 + 2F_c^2)/3$
0 restraints	$(\Delta/\sigma)_{max} < 0.001$
Primary atom site location: structure-invariant	$\Delta\rho_{max} = 0.29 \text{ e } \text{Å}^{-3}$
direct methods	$\Delta\rho_{min} = -0.28 \text{ e } \text{Å}^{-3}$

Special details

Geometry. Bond distances, angles *etc*. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement on F^2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted *R*-factors *wR* and all goodnesses of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The observed criterion of $F^2 > \sigma(F^2)$ is used only for calculating *-R*-factor-obs *etc*. and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	r	1/	7	I]. */ I]
	<u>л</u>	y	2	O iso / O eq
01	-0.5205 (5)	0.12626 (7)	-0.07946 (17)	0.0620 (8)
02	-0.5929 (5)	0.14715 (7)	0.08094 (18)	0.0641 (8)
N1	0.3153 (6)	0.02834 (8)	0.2055 (2)	0.0596 (10)
C1	-0.4683 (6)	0.12683 (9)	0.0238 (3)	0.0507 (10)
C2	-0.2579 (6)	0.10184 (9)	0.0690 (2)	0.0492 (10)
C3	-0.1092 (7)	0.08070 (9)	0.0043 (3)	0.0539 (10)
C4	0.0835 (6)	0.05678 (9)	0.0485 (2)	0.0530 (10)
C5	0.1363 (6)	0.05280 (9)	0.1578 (2)	0.0487 (9)
C6	-0.0136 (7)	0.07442 (10)	0.2229 (2)	0.0580 (10)
C7	-0.2032 (7)	0.09828 (10)	0.1783 (3)	0.0598 (11)
C8	0.4803 (7)	0.00493 (10)	0.1470 (3)	0.0631 (12)
03	0.2287 (4)	0.02308 (6)	0.44193 (16)	0.0521 (7)
O4	0.1669 (5)	0.02371 (7)	0.61435 (17)	0.0598 (8)
N2	1.0422 (6)	0.14849 (8)	0.6220 (2)	0.0591 (10)
С9	0.2865 (6)	0.03502 (8)	0.5326 (2)	0.0459 (9)
C10	0.4885 (6)	0.06362 (8)	0.5575 (2)	0.0444 (9)
C11	0.6396 (6)	0.07621 (9)	0.4797 (2)	0.0477 (9)

C12	0.8277 (6)	0.10371 (8)	0.4994 (2)	0.0475 (9)
C13	0.8671 (6)	0.12006 (8)	0.6004 (2)	0.0470 (9)
C14	0.7175 (6)	0.10686 (9)	0.6793 (2)	0.0514 (10)
C15	0.5309 (6)	0.07949 (9)	0.6592 (2)	0.0518 (10)
C16	1.2134 (7)	0.16264 (10)	0.5479 (3)	0.0610 (11)
05	0.9848 (5)	0.18634 (7)	1.01396 (17)	0.0577 (8)
O6	1.0807 (4)	0.17171 (6)	0.85095 (17)	0.0574 (8)
N3	0.1885 (6)	0.29613 (8)	0.7547 (2)	0.0628 (10)
C17	0.9450 (6)	0.18920 (9)	0.9107 (2)	0.0484 (10)
C18	0.7373 (6)	0.21582 (8)	0.8699 (3)	0.0491 (10)
C19	0.5713 (6)	0.23242 (9)	0.9371 (3)	0.0516 (10)
C20	0.3868 (6)	0.25830 (9)	0.8989 (3)	0.0536 (10)
C21	0.3610 (6)	0.26915 (9)	0.7929 (2)	0.0507 (10)
C22	0.5231 (7)	0.25154 (9)	0.7247 (3)	0.0585 (11)
C23	0.7058 (7)	0.22514 (9)	0.7627 (3)	0.0569 (11)
C24	0.0149 (7)	0.31542 (10)	0.8198 (3)	0.0652 (12)
H1	0.33120	0.02670	0.27370	0.0720*
HO1	-0.63770	0.14130	-0.09770	0.0930*
H3A	-0.14070	0.08280	-0.06930	0.0650*
H4	0.18040	0.04300	0.00410	0.0630*
H6	0.01700	0.07240	0.29650	0.0690*
H7	-0.29810	0.11250	0.22240	0.0720*
H8A	0.36910	-0.01170	0.10320	0.0950*
H8B	0.60030	-0.00880	0.19600	0.0950*
H8C	0.58080	0.01980	0.10290	0.0950*
H2	1.05010	0.15850	0.68380	0.0710*
HO4	0.03750	0.01110	0.59310	0.0900*
H11	0.61370	0.06590	0.41210	0.0570*
H12	0.92780	0.11140	0.44580	0.0570*
H14	0.74510	0.11690	0.74720	0.0620*
H15	0.43270	0.07150	0.71300	0.0620*
H16A	1.32940	0.14340	0.52840	0.0910*
H16B	1.31810	0.18250	0.58030	0.0910*
H16C	1.10710	0.17140	0.48560	0.0910*
Н3	0.18270	0.30200	0.68860	0.0750*
HO5	1.10800	0.17200	1.03020	0.0870*
H19	0.58550	0.22590	1.00860	0.0620*
H20	0.27660	0.26880	0.94510	0.0640*
H22	0.50720	0.25770	0.65300	0.0700*
H23	0.80890	0.21350	0.71610	0.0680*
H24A	-0.09690	0.29800	0.85100	0.0980*
H24B	-0.09420	0.33250	0.77650	0.0980*
H24C	0.12050	0.32860	0.87500	0.0980*

Atomic displacement parameters $(Å^2)$

	U^{11}	U ²²	U ³³	U^{12}	U^{13}	U ²³
01	0.0639 (15)	0.0705 (16)	0.0507 (12)	0.0160 (12)	0.0017 (11)	0.0032 (11)

O2	0.0620 (14)	0.0708 (16)	0.0587 (13)	0.0156 (12)	0.0035 (11)	-0.0050 (12)
N1	0.0614 (16)	0.0710 (19)	0.0462 (14)	0.0174 (14)	0.0046 (12)	0.0048 (13)
C1	0.0458 (16)	0.0541 (18)	0.0525 (17)	0.0004 (14)	0.0061 (14)	0.0050 (15)
C2	0.0448 (16)	0.0522 (18)	0.0513 (16)	0.0043 (13)	0.0080 (13)	0.0014 (14)
C3	0.0555 (18)	0.061 (2)	0.0451 (15)	0.0011 (15)	0.0054 (14)	0.0020 (15)
C4	0.0520 (17)	0.058 (2)	0.0495 (17)	0.0081 (15)	0.0079 (14)	-0.0025 (15)
C5	0.0414 (15)	0.0537 (18)	0.0513 (16)	-0.0015 (13)	0.0062 (13)	0.0029 (14)
C6	0.0600 (19)	0.071 (2)	0.0428 (15)	0.0112 (17)	0.0052 (14)	0.0001 (15)
C7	0.062 (2)	0.066 (2)	0.0512 (18)	0.0112 (17)	0.0053 (15)	-0.0032 (16)
C8	0.064 (2)	0.065 (2)	0.060 (2)	0.0114 (17)	0.0052 (16)	0.0013 (17)
O3	0.0541 (12)	0.0559 (13)	0.0456 (11)	-0.0049 (10)	0.0020 (9)	0.0007 (10)
O4	0.0584 (14)	0.0741 (17)	0.0470 (12)	-0.0168 (12)	0.0063 (10)	0.0013 (11)
N2	0.0625 (17)	0.0565 (17)	0.0594 (16)	-0.0091 (13)	0.0113 (13)	-0.0141 (13)
C9	0.0434 (15)	0.0498 (17)	0.0443 (15)	0.0059 (13)	0.0034 (13)	0.0060 (13)
C10	0.0426 (15)	0.0470 (16)	0.0434 (15)	0.0029 (12)	0.0041 (12)	0.0026 (13)
C11	0.0485 (16)	0.0497 (17)	0.0451 (15)	0.0030 (13)	0.0061 (13)	-0.0054 (13)
C12	0.0429 (15)	0.0536 (18)	0.0477 (16)	-0.0006 (13)	0.0127 (13)	-0.0019 (14)
C13	0.0446 (15)	0.0448 (16)	0.0509 (16)	0.0028 (12)	0.0024 (13)	0.0003 (13)
C14	0.0584 (18)	0.0542 (19)	0.0417 (15)	-0.0022 (15)	0.0057 (14)	-0.0034 (14)
C15	0.0549 (18)	0.0575 (19)	0.0438 (15)	-0.0017 (15)	0.0092 (13)	0.0025 (14)
C16	0.0547 (19)	0.056 (2)	0.073 (2)	-0.0041 (16)	0.0097 (17)	0.0014 (17)
05	0.0566 (14)	0.0633 (15)	0.0522 (12)	0.0102 (11)	0.0010 (10)	0.0001 (11)
06	0.0572 (13)	0.0593 (14)	0.0545 (12)	0.0078 (11)	0.0009 (10)	-0.0070 (11)
N3	0.0596 (17)	0.0620 (18)	0.0664 (17)	0.0113 (14)	0.0054 (14)	0.0139 (15)
C17	0.0451 (16)	0.0451 (17)	0.0535 (17)	-0.0046 (13)	-0.0010 (14)	-0.0052 (14)
C18	0.0428 (16)	0.0458 (17)	0.0568 (17)	-0.0044 (13)	-0.0030 (14)	-0.0016 (14)
C19	0.0511 (17)	0.0518 (18)	0.0510 (17)	-0.0050 (14)	0.0017 (14)	0.0050 (14)
C20	0.0451 (16)	0.0545 (19)	0.0606 (18)	-0.0004 (14)	0.0030 (14)	-0.0015 (15)
C21	0.0442 (16)	0.0481 (17)	0.0591 (18)	-0.0035 (13)	0.0022 (14)	0.0003 (14)
C22	0.064 (2)	0.057 (2)	0.0528 (18)	0.0046 (16)	-0.0019 (16)	0.0018 (15)
C23	0.0602 (19)	0.056 (2)	0.0529 (18)	0.0052 (15)	-0.0007 (15)	-0.0076 (15)
C24	0.055 (2)	0.059 (2)	0.080 (2)	0.0056 (16)	-0.0002 (18)	0.0012 (18)

Geometric parameters (Å, °)

01—C1	1.305 (4)	C8—H8C	0.9600
O2—C1	1.249 (4)	C8—H8A	0.9600
01—H01	0.8200	C9—C10	1.466 (4)
O3—C9	1.232 (3)	C10—C11	1.385 (4)
O4—C9	1.318 (4)	C10—C15	1.405 (4)
O4—HO4	0.8200	C11—C12	1.382 (4)
O5—C17	1.304 (3)	C12—C13	1.404 (4)
O6—C17	1.247 (4)	C13—C14	1.399 (4)
О5—НО5	0.8200	C14—C15	1.375 (4)
N1—C8	1.448 (5)	C11—H11	0.9300
N1—C5	1.361 (4)	C12—H12	0.9300
N1—H1	0.8600	C14—H14	0.9300
N2—C16	1.436 (5)	C15—H15	0.9300

N2—C13	1.368 (4)	C16—H16C	0.9600
N2—H2	0.8600	C16—H16B	0.9600
N3—C24	1.446 (5)	C16—H16A	0.9600
N3—C21	1.365 (4)	C17—C18	1.478 (4)
N3—H3	0.8600	C18—C23	1.390 (5)
C1-C2	1 466 (4)	C18 - C19	1 393 (5)
$C^2 - C^3$	1 398 (5)	C19 - C20	1 374 (5)
$C^2 - C^7$	1.390(5)	C_{20} C_{21}	1 390 (5)
$C_2 = C_4$	1 378 (5)	C_{21} C_{22}	1.590(5) 1.405(5)
C4 - C5	1.376(3) 1 387(4)	C^{22}	1.405(5) 1.381(5)
C5-C6	1.307(4) 1 414 (4)	C19H19	0.9300
$C_5 = C_0$	1.717(7)	C20 H20	0.9300
$C_0 = C_7$	0.0300	$\begin{array}{c} C_{20} \\ C_{22} \\ \end{array}$	0.9300
C_{J} H_{A}	0.9300	C22—1122 C23 H23	0.9300
C4—II4 C6 U6	0.9300	C_{23} H_{24A}	0.9300
Со—по	0.9300	C_{24} H_{24} H_{24} H_{24}	0.9000
$C/-\Pi/C^{0}$	0.9300	C24—H24B	0.9000
С8—Н8В	0.9600	C24—H24C	0.9600
01…06 ⁱ	2.678 (3)	C20····H24A ^{viii}	3.0900
01…C17 ⁱⁱ	3.290 (4)	C20H24A	2.8400
O2…C24 ⁱⁱⁱ	3.305 (4)	C20···H16C ^{xv}	2.9500
02…05 ⁱ	2.627 (4)	C20H24C	2.8900
$02C17^{i}$	3367(4)	$C21\cdots H24A^{viii}$	2,9500
02N3 ⁱⁱⁱ	3229(4)	$C22\cdots H24A^{viii}$	2,9000
03C9 ^{iv}	3.223(1) 3.221(4)	$C23 \cdots H24A^{\text{viii}}$	3 0000
03····C9 ^v	3391(4)	$C24\cdots H7^{ix}$	3 0900
03…N1	3.074(3)	C24···H20	2 5800
$03 \cdots 04^{v}$	2 661 (3)	H1O3	2 2 5 0 0
$04\cdots03^{v}$	2.661 (3)	Н1 05	2 3300
05…C1 ^{vi}	3159(4)	H1H11	2.5500
05 °C1 05…C2 ^{vi}	3 405 (4)	HO1···O6 ⁱ	1 8600
05 02 ^{vii}	2 627 (4)	$HO1 \cdots C17^{i}$	2 7400
05 02 06…N2	3,003,(3)	HO1HO5 ⁱ	2.7400
06C10 ^{viii}	3 407 (4)	H206	2.4400
06C1 ^{vii}	3,400(4)	H2H23	2.1000
0601 ^{vii}	2 678 (3)	H2H14	2.4000
00 01 01…H14 ⁱⁱ	2.078 (5)	$HO4\cdots HO4^{v}$	2.5000
O1H3A	2.7100		2.4800
01 IIJA 02H05 ⁱ	1 8200		2 7300
02H24Biii	2 5800		2.7500
02···H24D	2.5800		2.8300
02…H7 02…H2iii	2.5400	H3H19	2.4900
02····H3···	2.0100	$H3 \cdots H22$	2.5700
ОЗ П0	2./100		2.0100
O211	2.3300		2.4400
	2.200		1.8200
03···H04'	1.8500		2.7000
	2.4500		2.4800
U4…H8B"	2.6100	H4···H8C	2.4100

	2 8500	114 110 4	2 4900
	2.8500		2.4800
05H22 ^{IA}	2.6800	H4····C8	2.6200
05···H19	2.4/00	H603	2./100
06…H23	2.5700		2.3300
O6…H2	2.1600	$H6\cdots C12^{x}$	3.0500
O6…HO1 ^{vn}	1.8600	H6…H12 ^x	2.4400
O6…H14	2.8400	Н7…О2	2.5400
N1…O3	3.074 (3)	H7···C24 ⁱⁱⁱ	3.0900
N2…O6	3.003 (3)	H8A····C4	2.9200
N3…O2 ^{ix}	3.229 (4)	H8A…C3 ^{xiii}	3.0800
N2…H23	2.9500	H8A…H4	2.4800
C1···O6 ⁱ	3.400 (4)	H8B…O4 ^{iv}	2.6100
C1···C4 ^x	3.441 (4)	H8B…H15 ^{iv}	2.5700
C1···O5 ⁱⁱ	3.159 (4)	Н8С…Н4	2.4100
C1···C17 ⁱⁱ	3.489 (4)	H8C…C4 ^{viii}	3.0100
C2…O5 ⁱⁱ	3.405 (4)	H8C···C4	2.8600
C4…C1 ^{viii}	3.441 (4)	H8C····C5 ^{viii}	3.0600
C9····C9 ^{iv}	3.490 (4)	H8C····C3 ^{viii}	3.0500
C9…O3 ^{iv}	3.221 (4)	H11H1	2.5700
C9C11 ^x	3 588 (4)	H11O3	2,5500
C9C12 ^x	3400(4)	H12H16C	2.3900
$C9\cdots O3^{v}$	3 391 (4)	H12····C16	2.5900
	3.591(4)	H12H16A	2.0100
	3 400 (4)		2.4700
$C12^{-1}C9$	3.400 (4)		2.4400
	3.527(5)		2.7100
	3.327(3)		2.3000
C17 C10 ¹¹	5.495 (5) 2.512 (4)	H14···06	2.8400
	3.513 (4)		2.4500
	3.372 (4)		2.5/00
	3.489 (4)	HI6A····CII ^v ^m	3.0000
C17O2 ^{vn}	3.367 (4)	H16A…C12	2.9000
C17···O1 ^{v1}	3.290 (4)	H16A····C10 ^{viii}	3.0200
C19…C17 ^x	3.513 (4)	H16A···C13 ^{viii}	2.9000
C19…O6 ^x	3.407 (4)	H16A···C14 ^{viii}	2.9100
C20····C17 ^x	3.372 (4)	H16A···C12 ^{viii}	2.9600
C22····C24 ^{viii}	3.515 (5)	H16A…H12	2.4700
C24…C22 ^x	3.515 (5)	H16A····C15 ^{viii}	2.9700
C24····O2 ^{ix}	3.305 (4)	H16C····C20 ^{xiv}	2.9500
C24····C16 ^{xii}	3.495 (5)	H16C…H12	2.3900
C1···HO5 ⁱ	2.7000	H16C…C12	2.8500
C3···H8C ^x	3.0500	H19…O5	2.4700
C3····H8A ^{xiii}	3.0800	H19…H3 ^{ix}	2.4900
C4···H8A	2.9200	H20…C24	2.5800
C4···H8C	2.8600	H20…H24A	2.3700
C4···H8C ^x	3.0100	H20…H24C	2.4500
C5···H8C ^x	3.0600	H22…H3	2.3700
С8…Н4	2.6200	H22····O5 ⁱⁱⁱ	2.6800
С9…НО4 ^v	2.7300	H23…O6	2.5700
-			

C10…H16A ^x	3.0200	H23…N2	2.9500
C11…H16A ^x	3.0000	H23…H2	2.4000
C12…H16C	2.8500	H24A…C20 ^x	3.0900
C12····H6 ^{viii}	3.0500	H24A…C20	2.8400
C12…H16A	2.9000	H24A····C21 ^x	2.9500
C12···H16A ^x	2,9600	$H24A\cdots C22^{x}$	2 9000
$C12 \cdots H24C^{xiv}$	3 0400	$H24A\cdots C23^{x}$	3,0000
C12H164 ^x	2 9000	H24AH20	2 3700
C14H16Ax	2.9000	$H_2 4 R \cdots \Omega^{2ix}$	2.5700
C15H16Ax	2.9100	$H_2 + B = O_2$ $H_2 A C \cdots C_2 O_2$	2.3800
C16H12	2.9700	H24C C20	2.8900
	2.0100	$H_2 4 C_{11} C_{12} X Y$	2.4300
CI/···HOI···	2.7400	H24CC12**	3.0400
С1—01—НО1	109.00	C12—C13—C14	118.0 (3)
С9—О4—НО4	109.00	N2—C13—C14	120.2 (2)
С17—О5—НО5	109.00	N2—C13—C12	121.8 (3)
C5—N1—C8	123.2 (3)	C13—C14—C15	121.8 (2)
C5—N1—H1	118.00	C10-C15-C14	120.0 (3)
C8—N1—H1	118.00	C12—C11—H11	119.00
C13 - N2 - C16	124 1 (3)	C10-C11-H11	119.00
C16 - N2 - H2	118.00	C11—C12—H12	120.00
C13 - N2 - H2	118.00	C_{13} C_{12} H_{12}	120.00
$C_{11} = N_{12} = N_{12}$	123 3 (3)	C13 - C14 - H14	119.00
C_{24} N3 H3	118.00	C_{15} C_{14} H_{14}	110.00
$C_{24} = 103 = 113$ $C_{21} = 103 = 113$	118.00	$C_{10} = C_{14} = H_{15}$	120.00
$C_2 = 10$	116.00	$C_{10} = C_{15} = H_{15}$	120.00
01 - 01 - 02	110.2(3) 1210(3)	N2 C16 H16P	100.00
01 - 01 - 02	121.9(3)	$N_2 = C_{10} = H_{16}C_{10}$	109.00
02 - 01 - 02	121.9(3) 120.4(3)	$H_{16A} = C_{16} = H_{16D}$	109.00
$C_1 = C_2 = C_7$	120.4(5)		100.00
$C_{3} = C_{2} = C_{7}$	110.1(3)	HI0A - CIO - HI0C	109.00
$C_1 = C_2 = C_3$	121.0(3)	$N_2 = C_{10} = H_{10} A$	109.00
$C_2 = C_3 = C_4$	120.0(3)	H10B - C10 - H10C	110.00
$C_3 - C_4 - C_5$	121.5 (3)	06-017-018	122.5 (3)
NI-C5-C4	123.9 (3)	05-017-018	115.4 (3)
NI-C5-C6	118.4 (2)	05-01/-06	122.1 (3)
C4—C5—C6	117.7 (3)	C17—C18—C19	121.4 (3)
C5—C6—C7	120.4 (3)	C17—C18—C23	120.2 (3)
C2—C7—C6	121.8 (3)	C19—C18—C23	118.4 (3)
С4—С3—НЗА	120.00	C18—C19—C20	120.7 (3)
С2—С3—НЗА	120.00	C19—C20—C21	121.6 (3)
C3—C4—H4	119.00	N3—C21—C22	120.1 (3)
C5—C4—H4	119.00	N3—C21—C20	122.4 (3)
С7—С6—Н6	120.00	C20—C21—C22	117.5 (3)
С5—С6—Н6	120.00	C21—C22—C23	120.9 (3)
С6—С7—Н7	119.00	C18—C23—C22	120.8 (3)
С2—С7—Н7	119.00	C18—C19—H19	120.00
Н8А—С8—Н8С	109.00	С20—С19—Н19	120.00
H8A—C8—H8B	110.00	C19—C20—H20	119.00

109.00	C21—C20—H20	119.00
109.00	C21—C22—H22	120.00
110.00	C23—C22—H22	119.00
109.00	C18—C23—H23	120.00
122.7 (2)	С22—С23—Н23	120.00
122.6 (3)	N3—C24—H24A	109.00
114.8 (2)	N3—C24—H24B	109.00
118.3 (3)	N3—C24—H24C	109.00
121.5 (3)	H24A—C24—H24B	110.00
120.3 (2)	H24A—C24—H24C	110.00
122.0 (2)	H24B—C24—H24C	109.00
119.9 (3)		
3.1 (5)	C9-C10-C15-C14	-178.5 (3)
-179.7 (3)	C9—C10—C11—C12	178.5 (3)
176.8 (3)	C15—C10—C11—C12	-0.2 (5)
-4.4 (5)	C11—C10—C15—C14	0.3 (5)
-1.0 (5)	C10-C11-C12-C13	-0.9 (5)
179.8 (3)	C11—C12—C13—C14	1.9 (4)
4.4 (5)	C11—C12—C13—N2	-177.0 (3)
-174.7 (3)	N2-C13-C14-C15	177.0 (3)
-176.4 (3)	C12—C13—C14—C15	-1.9 (5)
4.6 (5)	C13—C14—C15—C10	0.8 (5)
0.8 (5)	O5—C17—C18—C19	-8.9 (4)
178.1 (3)	O5—C17—C18—C23	170.4 (3)
-178.5 (3)	O6—C17—C18—C19	173.9 (3)
-1.2 (5)	O6—C17—C18—C23	-6.9 (5)
0.1 (5)	C17—C18—C19—C20	177.2 (3)
-0.5 (5)	C23—C18—C19—C20	-2.1 (5)
176.8 (3)	C17—C18—C23—C22	-176.2 (3)
0.0 (5)	C19—C18—C23—C22	3.1 (5)
-177.4 (3)	C18—C19—C20—C21	-0.8 (5)
0.9 (5)	C19—C20—C21—N3	-176.6 (3)
176.1 (3)	C19—C20—C21—C22	2.6 (5)
-5.2 (4)	N3-C21-C22-C23	177.6 (3)
173.2 (3)	C20-C21-C22-C23	-1.7 (5)
-5.5 (5)	C21—C22—C23—C18	-1.2 (5)
	109.00 109.00 110.00 109.00 $122.7 (2)$ $122.6 (3)$ $114.8 (2)$ $118.3 (3)$ $121.5 (3)$ $120.3 (2)$ $122.0 (2)$ $119.9 (3)$ $3.1 (5)$ $-179.7 (3)$ $176.8 (3)$ $-4.4 (5)$ $-174.7 (3)$ $-176.4 (3)$ $4.6 (5)$ $0.8 (5)$ $178.1 (3)$ $-178.5 (3)$ $-1.2 (5)$ $0.1 (5)$ $-0.5 (5)$ $176.8 (3)$ $0.0 (5)$ $-177.4 (3)$ $0.9 (5)$ $176.1 (3)$ $-5.2 (4)$ $173.2 (3)$ $-5.5 (5)$	109.00 $C21C20-H20$ 109.00 $C21C22-H22$ 110.00 $C23C22-H22$ 109.00 $C18C23-H23$ 122.7 (2) $C22C23-H23$ 122.6 (3) $N3C24-H24A$ 114.8 (2) $N3C24-H24B$ 118.3 (3) $N3C24-H24B$ 120.3 (2) $H24AC24-H24C$ 122.0 (2) $H24BC24-H24C$ 122.0 (2) $H24BC24-H24C$ 119.9 (3) $C9C10C15C14$ -179.7 (3) $C9C10C15C14$ -179.7 (3) $C9C10C15C14$ -1.0 (5) $C10C11C12$ -4.4 (5) $C11C12C13$ 179.8 (3) $C11C12C13C14$ -1.7 (3) $N2C13C14C15$ -174.7 (3) $N2C13C14C15$ -176.4 (3) $C12C13C14C15$ -178.5 (3) $O6C17C18C19$ -178.5 (3) $O6C17C18C23$ -178.5 (3) $O6C17C18C23$ -176.8 (3) $C17C18C23C22$ -0.5 (5) $C23C18C19C20$ -176.8 (3) $C17C18C23C22$ -177.4 (3) $C18C19C20C21$ -176.8 (3) $C17C18C23C22$ -177.4 (3) $C18C19C20C21$ -177.4 (3) $C18C19C20C21C22$ -5.2 (4) $N3C21C22C23$ -5.5 (5) $C21C22C23C18$

Symmetry codes: (i) x-2, y, z-1; (ii) x-1, y, z-1; (iii) x-1/2, -y+1/2, z-1/2; (iv) -x+1, -y, -z+1; (v) -x, -y, -z+1; (vi) x+1, y, z+1; (vii) x+2, y, z+1; (viii) x+1, y, z; (ix) x+1/2, -y+1/2, z+1/2; (x) x-1, y, z; (ix) x+3/2, -y+1/2, z-1/2; (xi) x-3/2, -y+1/2, z+1/2; (xiii) -x, -y, -z; (xiv) x+1/2, -y+1/2, z-1/2; (xv) x-1/2, -y+1/2, z+1/2; (x) x-1/2, -y+1/2, z-1/2; (xv) x-1/2, -y+1/2, z+1/2; (x) x-1/2, -y+1/2, z-1/2; (xv) x-1/2, -y+1/2, z+1/2.

Hydrogen-bond	geometry	(Å,	<i>°</i>)
11,000000000000000000000000000000000000	Secureny	(,	/

D—H···A	<i>D</i> —Н	H···A	$D \cdots A$	D—H··· A	
N1—H1…O3	0.86	2.25	3.074 (3)	161	
O1—H <i>O</i> 1····O6 ⁱ	0.82	1.86	2.678 (3)	174	
N2—H2…O6	0.86	2.16	3.003 (3)	168	
O4—H <i>O</i> 4···O3 ^v	0.82	1.85	2.661 (3)	171	

supporting information

O5—H <i>O</i> 5····O2 ^{vii}	0.82	1.82	2.627 (4)	170	
C24—H24 B ···O2 ^{ix}	0.96	2.58	3.305 (4)	132	
C8—H8 <i>C</i> ··· <i>Cg</i> 1 ^{viii}	0.96	2.76	3.564 (4)	142	
C16—H16 A ··· $Cg2^{viii}$	0.96	2.61	3.482 (4)	151	
C24—H24 A ···Cg3 ^x	0.96	2.70	3.572 (4)	150	

Symmetry codes: (i) *x*-2, *y*, *z*-1; (v) -*x*, -*y*, -*z*+1; (vii) *x*+2, *y*, *z*+1; (viii) *x*+1, *y*, *z*; (ix) *x*+1/2, -*y*+1/2, *z*+1/2; (x) *x*-1, *y*, *z*.