organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

(2*R*)-2-Benzenesulfonamido-2-phenylethanoic acid: a new monoclinic polymorph

Islam Ullah Khan,* Shahzad Sharif, Muhammad Nadeem Arshad, Ejaz and Muhammad Idrees

Materials Chemistry Laboratory, Department of Chemistry, GC University, Lahore, Pakistan

Correspondence e-mail: iukhan.gcu@gmail.com

Received 1 September 2009; accepted 7 September 2009

Key indicators: single-crystal X-ray study; T = 296 K; mean σ (C–C) = 0.004 Å; R factor = 0.042; wR factor = 0.099; data-to-parameter ratio = 17.0.

In the title compound, $C_{14}H_{13}NO_4S$, a sulfonamide derivative of phenyl glycine, the aromatic rings are inclined at a dihedral angle of 28.03 (12)°. In the crystal, $O-H\cdots O$ hydrogen bonds link the molecules into chains propagating in [100] and a weak $C-H\cdots O$ interaction cross-links the chains in the *c*-axis direction. In the previously published polymorph, the dihedral angle between the aromatic rings is 45.52 (18)° and the structure is stabilized by three different types of ring motif.

Related literature

For related sulfonamide structures see: Arshad *et al.* (2008*a*,*b*, 2009).

Experimental

Crystal data

 $C_{14}H_{13}NO_4S$ $M_r = 291.31$ Monoclinic, $P2_1$ a = 8.2464 (8) Å b = 5.3251 (4) Å

c = 15.3642 (15) Å
$\beta = 100.384 (3)^{\circ}$
V = 663.64 (10) Å
Z = 2
Mo $K\alpha$ radiation

 $\mu = 0.26 \text{ mm}^{-1}$ T = 296 K

Data collection

Bruker Kappa APEXII CCD diffractometer Absorption correction: multi-scan (SADABS; Bruker, 2007) $T_{min} = 0.918, T_{max} = 0.972$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.042$ $wR(F^2) = 0.099$ S = 1.013174 reflections 187 parameters 1 restraint

$0.34 \times 0.19 \times 0.11 \text{ mm}$

7864 measured reflections 3174 independent reflections 2372 reflections with $I > 2\sigma(I)$ $R_{\text{int}} = 0.034$

H atoms treated by a mixture of independent and constrained refinement $\Delta \rho_{max} = 0.24 \text{ e } \text{\AA}^{-3}$ $\Delta \rho_{min} = -0.26 \text{ e } \text{\AA}^{-3}$ Absolute structure: Flack (1983), 1360 Friedel pairs Flack parameter: -0.04 (9)

Table 1 Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
O4−H4O···O2 ⁱ	0.83 (4)	1.98 (4)	2.727 (3)	150 (5)
$C4-H4A\cdots O3^{ii}$	0.93	2.56	3.317 (4)	139
$C4 - H4A \cdots O3^{n}$	0.93	2.56	3.317 (4)	1

Symmetry codes: (i) x + 1, y, z; (ii) -x + 2, $y + \frac{1}{2}$, -z + 1.

Data collection: *APEX2* (Bruker, 2007); cell refinement: *SAINT* (Bruker, 2007); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *ORTEP-3 for Windows* (Farrugia, 1997) and *PLATON* (Spek, 2009); software used to prepare material for publication: *WinGX* (Farrugia, 1999) and *PLATON*.

MNA acknowledges the Higher Education Commission of Pakistan for providing a PhD Scholarship under the Indigenous 5000 PhD fellowship program (PIN 042-120607-PS2-183).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HG2562).

References

- Arshad, M. N., Tahir, M. N., Khan, I. U., Ahmad, E. & Shafiq, M. (2008a). Acta Cryst. E64, o2380.
- Arshad, M. N., Tahir, M. N., Khan, I. U., Shafiq, M. & Ahmad, S. (2009). Acta Cryst. E65, 0940.
- Arshad, M. N., Tahir, M. N., Khan, I. U., Siddiqui, W. A. & Shafiq, M. (2008b). Acta Cryst. E64, 02045.
- Bruker (2007). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
- Flack, H. D. (1983). Acta Cryst. A39, 876–881.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.

supporting information

Acta Cryst. (2009). E65, o2436 [doi:10.1107/S160053680903606X]

(2*R*)-2-Benzenesulfonamido-2-phenylethanoic acid: a new monoclinic polymorph

Islam Ullah Khan, Shahzad Sharif, Muhammad Nadeem Arshad, Ejaz and Muhammad Idrees

S1. Comment

We have already reported the crystal structures of sulfonamides (Arshad *et al.*, 2008*a*, *b*), (Arshad *et al.*, 2009). In continuation of our studies in this area, we report here a new polymorph of our previously published sulfonamide (Arshad *et al.*, 2009a), derivative (II).

The title compound (I) crystallizes in the monoclinic space group P21. The molecule has a chiral center at C_{13} with a slightly distorted tetrahedral geometry. The dihedral angles between the two aromatic ring are 28.03 (12)° in (I) and 45.52 (18)° in (II). The crystal structure of I has no complex intermolecular interactions like II. There are only two types of hydrogen bonding interaction of O–H—O making a polymeric chain along the a-axes and C–H—O which linked these polymeric chain along c-axes (Fig. 2 and Table 1).

S2. Experimental

Phenyl glycine (2 g, 13.2 mmol) was dissolved in distilled water (15 ml) in a round bottom flask (50 ml). The pH of the solution was maintained at 8–9 using 1M, Na₂CO₃ solution. Benzene sulfonyl chloride (2.32 g, 13.2 mmol) was then suspended to the solution, and stirred at room temperature until all the suspension had been disappeared. On completion of the reaction the pH was adjusted 1–2, using 1 M HCl with stirring. The precipitate formed was filtered off, washed with distilled water, dried and recrystalized in methanol.

S3. Refinement

The H atoms for the C atoms were refined geometrically and treated as riding atoms: C—H = 0.93 for aromatic and C— H = 0.98 for the chiral carbon with $U_{iso}(H) = 1.2U_{eq}$. The N—H and O—H were refined in calculated positions and treated as riding atoms: O—H = 0.83 (4) Å, N—H = 0.82 (3) Å, with $U_{iso}(H) = 1.5U_{eq}$ (parent O atom) and = $1.2U_{eq}$ (parent N atom)

Figure 1

The labelled molecular structure diagram of the title compound with the 50% probability level of drawn thermal ellipsoids.

Figure 2

Unit cell packing diagram showing the intermolecular hydrogen bonding using dashed lines. The hydrogen atoms not involved in hydrogen bonding have been omitted.

(2R)-2-Benzenesulfonamido-2-phenylethanoic acid

Crystal data

C₁₄H₁₃NO₄S $M_r = 291.31$ Monoclinic, P2₁ Hall symbol: P 2yb a = 8.2464 (8) Å b = 5.3251 (4) Å c = 15.3642 (15) Å $\beta = 100.384$ (3)° V = 663.64 (10) Å³ Z = 2

Data collection

Bruker Kappa APEXII CCD
diffractometer
Radiation source: fine-focus sealed tube
Graphite monochromator
φ and ω scans
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
$T_{\min} = 0.918, \ T_{\max} = 0.972$

Refinement

Refinement on F^2 Hydrogen site location: inferred from Least-squares matrix: full neighbouring sites $R[F^2 > 2\sigma(F^2)] = 0.042$ H atoms treated by a mixture of independent $wR(F^2) = 0.099$ and constrained refinement S = 1.01 $w = 1/[\sigma^2(F_0^2) + (0.0379P)^2 + 0.1295P]$ where $P = (F_o^2 + 2F_c^2)/3$ 3174 reflections 187 parameters $(\Delta/\sigma)_{\rm max} < 0.001$ $\Delta \rho_{\rm max} = 0.24 \text{ e} \text{ Å}^{-3}$ 1 restraint $\Delta \rho_{\rm min} = -0.26 \text{ e} \text{ Å}^{-3}$ Primary atom site location: structure-invariant direct methods Absolute structure: Flack (1983), 1360 Friedel Secondary atom site location: difference Fourier pairs Absolute structure parameter: -0.04 (9) map

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

F(000) = 304

 $\theta = 2.5 - 23.4^{\circ}$

 $\mu = 0.26 \text{ mm}^{-1}$

Needle, white

 $0.34 \times 0.19 \times 0.11$ mm

7864 measured reflections 3174 independent reflections 2372 reflections with $I > 2\sigma(I)$

 $\theta_{\text{max}} = 28.3^{\circ}, \ \theta_{\text{min}} = 1.4^{\circ}$

T = 296 K

 $R_{\rm int} = 0.034$

 $h = -10 \rightarrow 11$ $k = -7 \rightarrow 6$ $l = -20 \rightarrow 20$

 $D_{\rm x} = 1.458 {\rm Mg} {\rm m}^{-3}$

Mo $K\alpha$ radiation, $\lambda = 0.71073$ Å Cell parameters from 1972 reflections

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
S1	0.53130 (7)	0.77328 (15)	0.29076 (4)	0.03965 (18)
O1	0.5315 (3)	1.0355 (4)	0.27187 (13)	0.0569 (6)
O2	0.3791 (2)	0.6402 (4)	0.28841 (13)	0.0560 (6)

03	0.9213 (3)	0.3901 (5)	0.25951 (16)	0.0728 (7)
O4	1.0525 (2)	0.7469 (6)	0.23666 (16)	0.0700 (7)
H4O	1.137 (5)	0.660 (9)	0.249 (3)	0.105*
N1	0.6206 (3)	0.6352 (5)	0.21858 (15)	0.0396 (6)
H1N	0.615 (4)	0.482 (6)	0.223 (2)	0.047*
C1	0.6493 (3)	0.7278 (5)	0.39752 (16)	0.0334 (6)
C2	0.6187 (3)	0.5204 (5)	0.44644 (19)	0.0411 (6)
H2	0.5406	0.4020	0.4222	0.049*
C3	0.7045 (3)	0.4914 (6)	0.53080 (19)	0.0448 (7)
H3	0.6846	0.3519	0.5637	0.054*
C4	0.8199 (3)	0.6657 (6)	0.56754 (19)	0.0454 (7)
H4A	0.8754	0.6469	0.6255	0.054*
C5	0.8524 (4)	0.8670 (6)	0.5181 (2)	0.0499 (8)
Н5	0.9327	0.9823	0.5422	0.060*
C6	0.7673 (3)	0.9015 (6)	0.43262 (18)	0.0423 (6)
H6	0.7893	1.0393	0.3995	0.051*
C7	0.7556 (3)	0.7445 (5)	0.09274 (15)	0.0334 (5)
C8	0.6714 (3)	0.5591 (6)	0.03958 (18)	0.0433 (7)
H8	0.6165	0.4334	0.0647	0.052*
С9	0.6688 (4)	0.5605 (6)	-0.0501 (2)	0.0518 (8)
H9	0.6131	0.4341	-0.0852	0.062*
C10	0.7472 (4)	0.7454 (7)	-0.08849 (19)	0.0540 (8)
H10	0.7440	0.7458	-0.1493	0.065*
C11	0.8301 (4)	0.9294 (7)	-0.0367(2)	0.0601 (9)
H11	0.8839	1.0552	-0.0624	0.072*
C12	0.8347 (4)	0.9302 (6)	0.0532 (2)	0.0492 (7)
H12	0.8915	1.0566	0.0877	0.059*
C13	0.7667 (3)	0.7445 (6)	0.19245 (15)	0.0360 (6)
H13	0.7771	0.9186	0.2133	0.043*
C14	0.9209 (4)	0.6019 (6)	0.23465 (19)	0.0461 (7)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
S 1	0.0295 (3)	0.0577 (4)	0.0306 (3)	0.0117 (3)	0.0025 (2)	-0.0032 (4)
01	0.0695 (15)	0.0584 (14)	0.0409 (12)	0.0304 (11)	0.0050 (10)	0.0040 (10)
O2	0.0254 (9)	0.0997 (17)	0.0418 (12)	0.0027 (10)	0.0028 (8)	-0.0118 (11)
O3	0.0545 (14)	0.0755 (17)	0.0822 (18)	0.0204 (13)	-0.0038 (12)	0.0157 (14)
O4	0.0300 (10)	0.0916 (18)	0.0829 (17)	0.0032 (14)	-0.0042 (10)	-0.0082 (17)
N1	0.0373 (12)	0.0503 (13)	0.0324 (13)	0.0042 (11)	0.0096 (10)	-0.0076 (11)
C1	0.0263 (11)	0.0461 (17)	0.0274 (12)	0.0045 (12)	0.0038 (9)	-0.0056 (12)
C2	0.0339 (14)	0.0466 (16)	0.0425 (16)	-0.0035 (13)	0.0058 (12)	-0.0041 (13)
C3	0.0458 (16)	0.0509 (18)	0.0387 (16)	0.0017 (14)	0.0101 (13)	0.0087 (14)
C4	0.0434 (16)	0.0590 (19)	0.0317 (15)	0.0069 (14)	0.0013 (12)	-0.0001 (14)
C5	0.0445 (17)	0.0542 (18)	0.0465 (19)	-0.0095 (14)	-0.0036 (14)	-0.0098 (15)
C6	0.0412 (14)	0.0438 (14)	0.0405 (16)	-0.0008 (14)	0.0041 (12)	0.0043 (14)
C7	0.0277 (11)	0.0397 (15)	0.0324 (12)	0.0074 (12)	0.0041 (9)	-0.0005 (13)
C8	0.0457 (16)	0.0482 (16)	0.0344 (16)	-0.0072 (13)	0.0034 (13)	-0.0014 (13)

supporting information

С9	0.0510 (18)	0.066 (2)	0.0370 (17)	-0.0071 (16)	0.0034 (14)	-0.0084 (16)
C10	0.0566 (16)	0.070 (2)	0.0360 (15)	0.0064 (19)	0.0107 (13)	0.0054 (17)
C11	0.064 (2)	0.066 (2)	0.056 (2)	-0.0083 (18)	0.0258 (17)	0.0109 (18)
C12	0.0486 (16)	0.0516 (18)	0.0479 (19)	-0.0066 (15)	0.0100 (14)	-0.0056 (15)
C13	0.0289 (11)	0.0439 (15)	0.0343 (13)	0.0034 (13)	0.0030 (9)	-0.0071 (13)
C14	0.0400 (16)	0.065 (2)	0.0310 (15)	0.0090 (15)	0.0002 (12)	-0.0056 (15)

Geometric parameters (Å, °)

S1—O1	1.426 (2)	C5—C6	1.385 (4)
S1—O2	1.436 (2)	С5—Н5	0.9300
S1—N1	1.615 (2)	С6—Н6	0.9300
S1—C1	1.766 (2)	C7—C12	1.384 (4)
O3—C14	1.191 (4)	C7—C8	1.385 (4)
O4—C14	1.328 (4)	C7—C13	1.518 (3)
O4—H4O	0.83 (4)	C8—C9	1.375 (4)
N1—C13	1.458 (3)	C8—H8	0.9300
N1—H1N	0.82 (3)	C9—C10	1.368 (4)
C1—C6	1.380 (4)	С9—Н9	0.9300
C1—C2	1.384 (4)	C10—C11	1.365 (5)
C2—C3	1.369 (4)	C10—H10	0.9300
C2—H2	0.9300	C11—C12	1.374 (4)
C3—C4	1.376 (4)	C11—H11	0.9300
С3—Н3	0.9300	C12—H12	0.9300
C4—C5	1.368 (4)	C13—C14	1.522 (4)
C4—H4A	0.9300	C13—H13	0.9800
01—\$1—02	120.73 (14)	C12—C7—C8	118.4 (3)
01—\$1—N1	106.78 (13)	C12—C7—C13	119.7 (2)
O2—S1—N1	105.24 (13)	C8—C7—C13	121.9 (2)
O1—S1—C1	107.61 (13)	C9—C8—C7	120.2 (3)
O2—S1—C1	106.75 (12)	С9—С8—Н8	119.9
N1—S1—C1	109.41 (12)	С7—С8—Н8	119.9
C14—O4—H4O	109 (3)	C10—C9—C8	120.8 (3)
C13—N1—S1	120.6 (2)	С10—С9—Н9	119.6
C13—N1—H1N	119 (2)	С8—С9—Н9	119.6
S1—N1—H1N	111 (2)	C11—C10—C9	119.4 (3)
C6—C1—C2	120.5 (2)	C11—C10—H10	120.3
C6-C1-S1	120.2 (2)	C9—C10—H10	120.3
C2—C1—S1	119.33 (19)	C10-C11-C12	120.5 (3)
C3—C2—C1	119.4 (3)	C10-C11-H11	119.7
C3—C2—H2	120.3	C12—C11—H11	119.7
C1—C2—H2	120.3	C11—C12—C7	120.6 (3)
C2—C3—C4	120.9 (3)	С11—С12—Н12	119.7
С2—С3—Н3	119.6	C7—C12—H12	119.7
С4—С3—Н3	119.6	N1—C13—C7	112.0 (2)
C5—C4—C3	119.4 (3)	N1—C13—C14	110.6 (2)
С5—С4—Н4А	120.3	C7—C13—C14	108.9 (2)

С5—С6—Н6 120.6) C13—		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} C7-C8-C9\\ *8-C9-C10\\ *9-C10-C11\\ *10-C11-C12\\ C11-C12-C7\\ *7-C12-C11\\ 1-C13-C7\\ 1-C13-C7\\ 1-C13-C14\\ C7-C13-N1\\ *7-C13-N1\\ *7-C13-C14\\ *7-C13-C14\\ *7-C13-C14\\ *7-C13-C14\\ *7-C13-C14\\ *13-C14-O3\\ *13-C14-O4\\ *13-C14-$	$\begin{array}{c} -177.7 (3) \\ -0.8 (5) \\ 0.6 (5) \\ -0.2 (5) \\ 0.1 (5) \\ -0.2 (4) \\ 178.1 (3) \\ -133.6 (2) \\ 104.7 (2) \\ 150.2 (2) \\ -31.6 (4) \\ -87.1 (3) \\ 91.1 (3) \\ 23.4 (4) \\ -100.1 (3) \\ -158.5 (2) \\ 78.0 (3) \end{array}$

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D····A	D—H··· A
04—H4 <i>O</i> ···O2 ⁱ	0.83 (4)	1.98 (4)	2.727 (3)	150 (5)
C4—H4 <i>A</i> ···O3 ⁱⁱ	0.93	2.56	3.317 (4)	139

Symmetry codes: (i) x+1, y, z; (ii) -x+2, y+1/2, -z+1.