

(16) Å³

 \times 0.10 mm

14084 measured reflections 2628 independent reflections

 $R_{\rm int} = 0.071$

1962 reflections with $I > 2\sigma(I)$

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

Bis(3-acetyl-6-methyl-2-oxo-2H-pyran-4olato)bis(dimethyl sulfoxide)nickel(II)

Amel Djedouani,^a Sihem Boufas,^b* Abderrahmen Bendaas,^a Magali Allain^c and Gilles Bouet^d

^aLaboratoire d'Electrochimie des Matériaux, Moléculaires et Complexes, Département de Génie des Procédés, Faculté des Science de l'Ingénieur, Université Farhet Abbas de Setif, DZ-19000 Sétif, Algeria, ^bUniversité 20 Aout 1955, Skikda, Algeria, ^cCIMM, CNRS UMR 6200, Faculté des Science, Angers Cedex, France, and ^dSONAS, EA 921, Université D'Angers, Faculté de Pharmacie, Angers Cedex, France Correspondence e-mail: boufas_sihem@yahoo.fr

Received 20 August 2009; accepted 28 August 2009

Key indicators: single-crystal X-ray study; T = 100 K; mean σ (C–C) = 0.004 Å; R factor = 0.037; wR factor = 0.098; data-to-parameter ratio = 16.8.

In the title compound, $[Ni(C_8H_7O_4)_2\{(CH_3)_2SO\}_2]$, the Ni^{II} atom is located on a crystallographic centre of symmetry and has a distorted octahedral coordination geometry of type MO₆. The bidentate dehydroacetic acid (DHA) ligands occupy the equatorial plane of the complex in a trans configuration, and the dimethyl sulfoxide (DMSO) ligands are weakly coordinated through their O atoms in the axial positions.

Related literature

3-Acetyl-4-hydroxy-6-methyl-2-oxo-2H-pyran (dehydroacetic acid) (Arndt et al., 1936) is a versatile starting material for the synthesis of a wide variety of heterocyclic ring systems (Tan & Ang, 1988). It has been shown to possess modest antifungal properties, see: Rao et al. (1978). For natural fungicides possessing structures analogous to 5,6-dihydrodehydroacetic acid, see: Bartels-Keith (1960); Miyakado et al. (1982); Ayer et al. (1988). The complexes of DHA with copper and with several other transition metal cations are fungistatic, see: Rao et al. (1978). For the nickel-DHA complex, see: Casabò et al. (1987). The configuration of the complex molecule is similar to that found in [Zn(DHA)₂·2(DMSO) and Cd(DHA)₂·-2(DMSO)] (Zucolotto Chalaça et al., 2002), [Cu(DHA)2--2(DMSO)] (Djedouani et al., 2006) and bis(4,6-dibromo-2formylphenolato- $\kappa^2 O, O'$)-bis(dimethyl sulfoxide)nickel(II) (Zhang et al., 2007). For Ni-O_{DMSO} distances in similar structures, see: Ma et al. (2003); Tahir et al. (2007); Zhang et al. (2007).

Experimental

Crystal data	
$[Ni(C_8H_7O_4)_2(C_2H_6OS)_2]$	V = 1177.40 (16) Z = 2
$M_r = 549.24$ Monoclinic, $P2_1/c_{\rm e}$	L = 2 Mo $K\alpha$ radiation
a = 11.3850 (10) A b = 6.2833 (4) Å	$\mu = 1.05 \text{ mm}^{-1}$ T = 100 K
c = 19.7434 (15) Å	$0.25 \times 0.15 \times 0.1$
$\beta = 123.525 \ (6)^{\circ}$	

Data collection

Nonius KappaCCD diffractometer
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
$T_{\min} = 0.902, T_{\max} = 0.902$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.037$	156 parameters
$wR(F^2) = 0.098$	H-atom parameters constrained
S = 1.11	$\Delta \rho_{\rm max} = 0.55 \ {\rm e} \ {\rm \AA}^{-3}$
2628 reflections	$\Delta \rho_{\rm min} = -0.97 \ {\rm e} \ {\rm \AA}^{-3}$

Table 1

Selected	bond	lengths	(A)).
Selected	bollu	lengths	(\mathbf{A})	

Ni1-O2	1.9849 (16)	Ni1-O1	2.1255 (18)
Ni1-O3	2.0159 (15)		

Table 2

```
Hydrogen-bond geometry (Å, °).
```

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$C1 - H1B \cdots O4^{ii}$ $C2 - H2B \cdots O4^{ii}$ $C2 - H2C \cdots O2^{iii}$	0.96	2.55	3.384 (4)	145
	0.96	2.53	3.370 (4)	146
	0.96	2.46	3.378 (4)	160

Symmetry codes: (ii) x + 1, $-y + \frac{3}{2}$, $z + \frac{1}{2}$; (iii) x, y + 1, z.

Data collection: COLLECT (Nonius, 2002); cell refinement: DENZO and SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO and SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 1998) and Mercury (Macrae et al., 2006); software used to prepare material for publication: WinGX (Farrugia, 1999) and PARST (Nardelli, 1995).

This work was supported by Université Farhet Abbas de Sétif, Sétif, Algeria.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HG2559).

References

- Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343–350.
- Arndt, F., Eistert, B., Scholz, H. & Aron, E. (1936). Chem. Berichte Teil B, 69, 2373–2380.
- Ayer, W. A., Figueroa-Villar, J. D. & Migaj, B. (1988). Can. J. Chem. 66, 506– 521.
- Bartels-Keith, J. R. (1960). J. Chem. Soc. pp. 1662-1665.
- Brandenburg, K. (1998). DIAMOND. Crystal Impact GbR, Bonn, Germany. Casabò, J., Marquet, J., Moreno-Manas, M., Prior, M. & Teixidor, F. (1987). Polyhedron, 6, 1235–1238.
- Djedouani, A., Bendaâs, A., Bouacida, S., Beghidja, A. & Douadi, T. (2006). Acta Cryst. E62, m133-m135.

Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.

Ma, J.-F., Yang, J. & Liu, J.-F. (2003). Acta Cryst. E59, m483-m484.

- Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. **39**, 453–457.
- Miyakado, M., Inoue, S., Tanabe, Y., Watanabe, K., Ohno, N., Yoshioka, H. & Mabay, T. (1982). J. Chem. Lett. pp. 1539–1542.
- Nardelli, M. (1995). J. Appl. Cryst. 28, 659.
- Nonius (2002). COLLECT and EVAL. Nonius BV, Delft, The Netherlands.
- Otwinowski, Z. & Minor, W. (1997). *Methods in Enzymology*, Vol. 276, *Macromolecular Crystallography*, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
- Rao, D. S., Ganorkar, M. C., Rao, B. L. S. & John, V. T. (1978). *Natl Acad. Sci. Lett.* **1**, 402–404.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Tahir, A. A., Hamid, M., Zeller, M., Mazhar, M. & Hunter, A. D. (2007). Acta Cryst. E63, m272–m274.
- Tan, S. F. & Ang, K. P. (1988). Transition Met. Chem. 13, 64-68.
- Zhang, S.-H., Li, G.-Z., Feng, X.-Z. & Liu, Z. (2007). Acta Cryst. E63, m1319– m1320.
- Zucolotto Chalaça, M., Figueroa-Villar, J. D., Ellena, J. A. & Castellano, E. E. (2002). Inorg. Chim. Acta, 328, 45–52.

Mabay, T. (1982). J. Chem. Lett. pp. 1539-1542.

supporting information

Acta Cryst. (2009). E65, m1205-m1206 [doi:10.1107/S1600536809034655]

Bis(3-acetyl-6-methyl-2-oxo-2H-pyran-4-olato)bis(dimethyl sulfoxide)nickel(II)

Amel Djedouani, Sihem Boufas, Abderrahmen Bendaas, Magali Allain and Gilles Bouet

S1. Comment

3-Acetyl-4-hydroxy-6-methyl-2-oxo-2*H*-pyran (dehydroacetic acid) (Arndt *et al.*, 1936) is a versatile starting material for the synthesis of a wide variety of heterocyclic ring systems (Tan & Ang, 1988). It has been shown to possess modest antifungal properties (Rao *et al.*, 1978). The importance of similar pyrones as potential fungicides is reinforced by the existence of several natural fungicides possessing structures analogous to 5,6-dihydrodehydroacetic acid, such as alternaric acid (Bartels-Keith, 1960), the podoblastins (Miyakado *et al.*, 1982) and lachnelluloic acid (Ayer *et al.*, 1988). Also, it has been shown that the complexes of DHA with copper and with several other transition metal cations are fungistatic (Rao *et al.*, 1978). This has motivated our study of the structural characterization of complexes of dehydroacetic acid. The complex of DHA with nickel was previously reported by Casabò *et al.* (1987), but their characterization of the compound was based only on thermal and elemental analysis, and on IR and NMR spectroscopy.

We present here the crystal structure determination of the title complex, $[Ni(DHA)_2.2(DMSO)]$, (I) (DMSO = dimethylsulfoxide). The nature of the title compound, (I), was established by an X-ray structure determination and is shown in Fig. 1

The Ni atom lies on a crystallographic centre of symmetry with the ligands bonded to nickel in an all-*trans* fashion. The configuration of the complex molecule is similar to that found in [Zn(DHA)₂. 2(DMSO); Cd(DHA)2.2(DMSO)] (Zucolotto Chalaça *et al.*, 2002), [Cu(DHA)₂. 2(DMSO)] (Djedouani *et al.*, 2006), with (DHA: dehydroacetic acid) and Bis(4,6-dibromo-2-formylphenolato- $\kappa^2 O, O'$)-bis(dimethyl sulfoxide)nickel(II), [Ni(C₇H₃Br₂O₂)₂(C₂H₆OS)₂] (Zhang *et al.*, 2007).

The coordination polyhedron around the Ni atom is a slightly distorted octahedron (Table 1), with the O atoms of the DMSO groups in axial positions; and the Ni— O_{DMSO} distance is in agreement with literature values: [2.1139 (12) Å - 1.9897 (13) Å (Tahir *et al.*, 2007), 1.998 (3) Å - 2.105 (3) Å (Zhang *et al.* 2007), 2.030 (2) Å - 2.057 (2)Å (Ma *et al.*, 2003)].

The orientation of the DMSO molecule can be described by the torsion angles O3—Ni—O1—S [43.32 (4) °] and O2—Ni—O1—S [-137.70 (4) °]. The packing of (I) is stabilized by weak intermolecular C—H…O hydrogen bonds (Table 2) which form a three-dimensional network (Fig. 2).

S2. Experimental

Compound (I) was prepared by the reaction of dehydroacetic acid with nickel (II) chloride hexahydrate in the presence of sodium acetate (Casabò *et al.* 1987). Crystals of (I) were grown by slow evaporation of a dimethylsulfoxide solution.

S3. Refinement

H atoms were positioned geometrically and treated as riding, with C—H = 0.93 Å with $U_{iso}(H) = 1.2Ueq(C)$. The methyl H atoms were constrained to an ideal geometry (C—H = 0.96 Å) with $U_{iso}(H) = 1.2U_{eq}(C)$, but were allowed to rotate

freely about the C—C bonds.

Figure 1

The independent components of (I), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level.

Figure 2

The crystal packing of (I); Hydrogen atoms have been omitted for clarity.

Bis(3-acetyl-6-methyl-2-oxo-2H-pyran-4-olato)bis(dimethyl sulfoxide)nickel(II)

Crystal data	
$[Ni(C_8H_7O_4)_2(C_2H_6OS)_2]$	$V = 1177.40 (16) \text{ Å}^3$
$M_r = 549.24$	Z = 2
Monoclinic, $P2_1/c$	F(000) = 572
Hall symbol: -P 2ybc	$D_{\rm x} = 1.549 {\rm ~Mg} {\rm ~m}^{-3}$
a = 11.385 (1) Å	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
b = 6.2833 (4) Å	Cell parameters from 2190 reflections
c = 19.7434 (15) Å	$\theta = 2.8 - 27.3^{\circ}$
$\beta = 123.525 \ (6)^{\circ}$	$\mu = 1.05 ext{ mm}^{-1}$

T = 100 K Plates, colourless	$0.25 \times 0.15 \times 0.1 \text{ mm}$
Data collection	
Nonius KappaCCD diffractometer Radiation source: fine-focus sealed X-ray tube Graphite monochromator φ scans, and ω scans with κ offsets Absorption correction: multi-scan (<i>SADABS</i> ; Bruker, 1998) $T_{\min} = 0.902, T_{\max} = 0.902$	14084 measured reflections 2628 independent reflections 1962 reflections with $I > 2\sigma(I)$ $R_{int} = 0.071$ $\theta_{max} = 27.5^\circ, \ \theta_{min} = 3.5^\circ$ $h = -14 \rightarrow 14$ $k = -8 \rightarrow 7$ $l = -25 \rightarrow 25$
Refinement	
Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.037$ $wR(F^2) = 0.098$ S = 1.11 2628 reflections 156 parameters 0 restraints Primary atom site location: structure-invariant direct methods Secondary atom site location: difference Fourier	Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained $w = 1/[\sigma^2(F_o^2 + 0.3428P]]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} = 0.001$ $\Delta\rho_{max} = 0.55$ e Å ⁻³ $\Delta\rho_{min} = -0.97$ e Å ⁻³ Extinction correction: <i>SHELXL97</i> (Sheldrick, 2008), Fc*=kFc[1+0.001xFc ² \lambda ³ /sin(2\theta)] ^{-1/4} Extinction coefficient: 0.0084 (19)
map	(

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
Ni1	0.5	0.5	0.5	0.02521 (16)	
S1	0.75777 (6)	0.76611 (10)	0.53190 (4)	0.03283 (19)	
05	0.22643 (18)	0.1935 (3)	0.18093 (9)	0.0384 (4)	
01	0.62169 (17)	0.6626 (3)	0.46467 (10)	0.0387 (4)	
O2	0.47029 (16)	0.2626 (3)	0.42577 (9)	0.0307 (4)	
03	0.32165 (16)	0.6292 (3)	0.40600 (9)	0.0316 (4)	
04	0.1020 (2)	0.4798 (3)	0.15900 (11)	0.0478 (5)	
C6	0.2779 (2)	0.4022 (4)	0.29848 (13)	0.0252 (5)	
C3	0.1192 (3)	0.7190 (4)	0.28219 (15)	0.0378 (6)	
H3A	0.1101	0.8133	0.3173	0.057*	
H3B	0.0368	0.631	0.2527	0.057*	
H3C	0.1291	0.801	0.2446	0.057*	
C10	0.3256 (3)	0.0457 (4)	0.23083 (15)	0.0317 (6)	
C8	0.3859 (2)	0.2500 (4)	0.34964 (14)	0.0253 (5)	
С9	0.3994 (2)	0.0651 (4)	0.31075 (14)	0.0296 (5)	
H9	0.4616	-0.0426	0.3428	0.036*	

C5	0.2474 (2)	0.5807 (4)	0.33237 (13)	0.0265 (5)
C2	0.7743 (3)	1.0036 (4)	0.48915 (18)	0.0469 (7)
H2A	0.7626	0.9718	0.4382	0.07*
H2B	0.8659	1.0642	0.5256	0.07*
H2C	0.7034	1.1033	0.4805	0.07*
C7	0.1958 (2)	0.3697 (4)	0.21184 (14)	0.0312 (6)
C4	0.3357 (3)	-0.1273 (5)	0.18287 (17)	0.0470 (7)
H4A	0.4053	-0.2289	0.2191	0.071*
H4B	0.3623	-0.0679	0.1484	0.071*
H4C	0.246	-0.1966	0.1501	0.071*
C1	0.8954 (3)	0.6199 (5)	0.53594 (19)	0.0526 (8)
H1A	0.8972	0.4776	0.5542	0.079*
H1B	0.9841	0.6879	0.573	0.079*
H1C	0.8792	0.6154	0.4828	0.079*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Ni1	0.0190 (2)	0.0297 (3)	0.0197 (2)	0.00047 (17)	0.00610 (17)	-0.00322 (16)
S 1	0.0280 (3)	0.0421 (4)	0.0247 (3)	-0.0061 (3)	0.0122 (3)	-0.0037 (3)
05	0.0403 (10)	0.0450 (11)	0.0241 (9)	0.0070 (8)	0.0141 (8)	-0.0024 (7)
01	0.0292 (9)	0.0534 (11)	0.0275 (9)	-0.0120 (8)	0.0119 (8)	-0.0051 (8)
O2	0.0245 (8)	0.0336 (9)	0.0212 (8)	0.0057 (7)	0.0046 (7)	-0.0021 (7)
O3	0.0257 (8)	0.0336 (10)	0.0260 (9)	0.0043 (7)	0.0083 (7)	-0.0040 (7)
O4	0.0461 (12)	0.0539 (12)	0.0237 (9)	0.0148 (10)	0.0068 (8)	0.0052 (8)
C6	0.0210 (11)	0.0284 (13)	0.0226 (11)	-0.0001 (10)	0.0099 (9)	0.0003 (9)
C3	0.0292 (13)	0.0375 (15)	0.0335 (13)	0.0092 (11)	0.0090 (11)	-0.0011 (11)
C10	0.0273 (13)	0.0352 (14)	0.0342 (13)	-0.0012 (11)	0.0179 (11)	-0.0038 (10)
C8	0.0209 (11)	0.0285 (12)	0.0255 (11)	-0.0034 (10)	0.0122 (9)	-0.0008 (9)
C9	0.0225 (12)	0.0309 (13)	0.0286 (13)	0.0003 (10)	0.0098 (10)	-0.0023 (10)
C5	0.0202 (11)	0.0286 (13)	0.0266 (12)	-0.0018 (10)	0.0104 (10)	0.0025 (9)
C2	0.0358 (15)	0.0372 (16)	0.0524 (17)	0.0002 (12)	0.0148 (13)	0.0047 (12)
C7	0.0292 (13)	0.0347 (14)	0.0264 (12)	0.0010 (11)	0.0132 (10)	0.0013 (10)
C4	0.0510 (17)	0.0524 (18)	0.0395 (15)	0.0046 (15)	0.0262 (14)	-0.0127 (13)
C1	0.0350 (15)	0.0460 (18)	0.0587 (19)	0.0043 (14)	0.0144 (14)	-0.0056 (14)

Geometric parameters (Å, °)

Ni1—O2 ⁱ	1.9849 (16)	C3—C5	1.507 (3)
Nil—O2	1.9849 (16)	С3—НЗА	0.96
Nil—O3	2.0159 (15)	С3—Н3В	0.96
Nil—O3 ⁱ	2.0159 (15)	C3—H3C	0.96
Nil—Ol ⁱ	2.1255 (18)	С10—С9	1.321 (3)
Nil—Ol	2.1255 (18)	C10—C4	1.487 (4)
S1—01	1.5211 (17)	C8—C9	1.447 (3)
S1—C2	1.775 (3)	С9—Н9	0.93
S1—C1	1.780 (3)	C2—H2A	0.96
O5—C10	1.371 (3)	C2—H2B	0.96

O5—C7	1.398 (3)	C2—H2C	0.96
O2—C8	1.262 (3)	C4—H4A	0.96
O3—C5	1.250 (3)	C4—H4B	0.96
O4—C7	1.215 (3)	C4—H4C	0.96
C6—C8	1.440 (3)	C1—H1A	0.96
C6—C7	1.441 (3)	C1—H1B	0.96
C6—C5	1.443 (3)	C1—H1C	0.96
O2 ⁱ —Ni1—O2	180	C9—C10—C4	127.3 (2)
O2 ⁱ —Ni1—O3	92.94 (6)	O5—C10—C4	111.1 (2)
O2—Ni1—O3	87.06 (6)	O2—C8—C6	125.9 (2)
O2 ⁱ —Ni1—O3 ⁱ	87.06 (6)	O2—C8—C9	116.6 (2)
O2—Ni1—O3 ⁱ	92.94 (6)	C6—C8—C9	117.4 (2)
O3—Ni1—O3 ⁱ	180.0000 (10)	C10—C9—C8	121.6 (2)
O2 ⁱ —Ni1—O1 ⁱ	89.72 (7)	С10—С9—Н9	119.2
O2—Ni1—O1 ⁱ	90.28 (7)	С8—С9—Н9	119.2
O3—Ni1—O1 ⁱ	89.31 (7)	O3—C5—C6	123.2 (2)
O3 ⁱ —Ni1—O1 ⁱ	90.69 (7)	O3—C5—C3	114.3 (2)
O2 ⁱ —Ni1—O1	90.28 (7)	C6—C5—C3	122.51 (19)
O2—Ni1—O1	89.72 (7)	S1—C2—H2A	109.5
O3—Ni1—O1	90.69 (7)	S1—C2—H2B	109.5
O3 ⁱ —Ni1—O1	89.31 (7)	H2A—C2—H2B	109.5
O1 ⁱ —Ni1—O1	180	S1—C2—H2C	109.5
O1—S1—C2	105.60 (12)	H2A—C2—H2C	109.5
O1—S1—C1	105.41 (12)	H2B—C2—H2C	109.5
C2—S1—C1	97.65 (15)	O4—C7—O5	112.9 (2)
C10—O5—C7	121.85 (18)	O4—C7—C6	128.7 (2)
S1—O1—Ni1	116.97 (9)	O5—C7—C6	118.4 (2)
C8—O2—Ni1	129.32 (15)	C10—C4—H4A	109.5
C5—O3—Ni1	131.49 (15)	C10—C4—H4B	109.5
C8—C6—C7	118.8 (2)	H4A—C4—H4B	109.5
C8—C6—C5	121.45 (19)	C10—C4—H4C	109.5
C7—C6—C5	119.74 (19)	Н4А—С4—Н4С	109.5
С5—С3—НЗА	109.5	H4B—C4—H4C	109.5
С5—С3—Н3В	109.5	S1—C1—H1A	109.5
H3A—C3—H3B	109.5	S1—C1—H1B	109.5
С5—С3—Н3С	109.5	H1A—C1—H1B	109.5
НЗА—СЗ—НЗС	109.5	S1—C1—H1C	109.5
НЗВ—СЗ—НЗС	109.5	H1A—C1—H1C	109.5
C9—C10—O5	121.6 (2)	H1B—C1—H1C	109.5

Symmetry code: (i) -x+1, -y+1, -z+1.

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	D····A	<i>D</i> —H··· <i>A</i>
С1—Н1В…О4 ^{іі}	0.96	2.55	3.384 (4)	145

			supportin	supporting information		
C2—H2 <i>B</i> ···O4 ⁱⁱ	0.96	2.53	3.370 (4)	146		
C2—H2C···O2 ⁱⁱⁱ	0.96	2.46	3.378 (4)	160		

Symmetry codes: (ii) *x*+1, -*y*+3/2, *z*+1/2; (iii) *x*, *y*+1, *z*.