organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

(Z)-3-(3-Phenylallylidene)-1,5-dioxaspiro[5.5]undecane-2,4-dione

Wu-Lan Zeng,^a Hua-Xiang Zhang^a and Fang-Fang Jian^{b*}

^aMicroScale Science Institute, Department of Chemistry and Chemical Engineering, Weifang University, Weifang 261061, People's Republic of China, and ^bMicroScale Science Institute, Weifang University, Weifang 261061, People's Republic of China Correspondence e-mail: wulanzeng@163.com

Received 18 September 2009; accepted 24 September 2009

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.002 Å; R factor = 0.034; wR factor = 0.130; data-to-parameter ratio = 17.1.

In the title compound, C₁₈H₁₈O₄, the 1,3-dioxane ring adopts a distorted envelope conformation with the C atom common to the cyclohexane ring forming the flap. In the crystal, inversion dimers linked by pairs of $C-H \cdots O$ hydrogen bonds occur.

Related literature

For background information on spiro-compounds, see: Jiang et al. (1998); Lian et al. (2008); Wei et al. (2008).

Experimental

Crystal data

C18H18O4 $M_r = 298.32$ Triclinic, $P\overline{1}$ a = 7.1177 (14) Å

b = 9.5506 (19) Å c = 11.734 (2) Å $\alpha = 106.82 (3)^{\circ}$ $\beta = 100.14 (3)^{\circ}$ $\gamma = 93.35 (3)^{\circ}$ $V = 746.6 (3) \text{ Å}^{3}$	Z = 2 Mo $K\alpha$ radiation $\mu = 0.09 \text{ mm}^{-1}$ T = 293 K $0.22 \times 0.18 \times 0.10 \text{ mm}$		
Data collection			
Bruker SMART CCD diffractometer Absorption correction: none 7448 measured reflections	3401 independent reflections 2309 reflections with $I > 2\sigma(I)$ $R_{int} = 0.016$		
Refinement			
$R[F^2 > 2\sigma(F^2)] = 0.034$ wR(F^2) = 0.130	199 parameters H-atom parameters constrained		

Table 1

S = 1.17

3401 reflections

Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	$D-\mathrm{H}$	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$C10-H10A\cdots O2^{i}$	0.97	2.52	3.440 (2)	158
Symmetry code: (i) -r	-v + 1 - 7			

 $\Delta \rho_{\rm max} = 0.30 \ {\rm e} \ {\rm \AA}^{-3}$

 $\Delta \rho_{\rm min} = -0.21$ e Å⁻³

Symmetry code: (i) -x, -y + 1, -z.

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB5108).

References

- Bruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Jiang, Y. Z., Xue, S., Li, Z., Deng, J. G., Mi, A. Q. & Albert, S. C. C. (1998). Tetrahedron, 9, 3185-3189.
- Lian, Y., Guo, J. J., Liu, X. M. & Wei, R. B. (2008). Chem. Res. Chin. Univ. 24, 441-444.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Wei, R. B., Liu, B., Liu, Y., Guo, J. J. & Zhang, D. W. (2008). Chin. J. Or. C. 28, 1501-1514.

supporting information

Acta Cryst. (2009). E65, o2586 [doi:10.1107/S1600536809038781]

(Z)-3-(3-Phenylallylidene)-1,5-dioxaspiro[5.5]undecane-2,4-dione

Wu-Lan Zeng, Hua-Xiang Zhang and Fang-Fang Jian

S1. Comment

Spiro compounds are widely used in medicine, catalysis and optical materials (Lian *et al.*, 2008; Jiang *et al.*, 1998; Wei *et al.*, 2008) owing to their interesting conformational features. We report here the synthesis and structure of the title compound, (I) (Fig. 1), as part of our ongoing studies on new spiro compounds with potentially higher bioactivity.

The 1,3-dioxane ring is in a distored envelope conformation with atom C11 atom common to the cyclohexane forming the flap. The crystal structure is stabilized by weak intermolecular C—H···O hydrogen bonds (Table 1).

S2. Experimental

A mixture of malonic acid (6.24 g, 0.06 mol) and acetic anhydride(9 ml) in strong sulfuric acid (0.25 ml) was stirred with water at 303K, After dissolving, cyclohexanone (5.88 g, 0.06 mol) was added dropwise into solution for 1 h. The reaction was allowed to proceed for 4 h. The mixture was cooled and filtered, and then an ethanol solution of (*Z*)-3-phenylacryl-aldehyde (7.92g, 0.06 mol) was added. The solution was then filtered and concentrated. Yellow blocks of (I) were obtained by evaporation of a petroleum ether–ethylacetate (3:1 v/v) solution at room temperature over a period of one week.

S3. Refinement

The H atoms were placed in calculated positions (C—H = 0.93–0.97 Å), and refined as riding with $U_{iso}(H) = 1.2U_{eq}(C)$.

Figure 1

The molecular structure of (I), drawn with 30% probability ellipsoids and spheres of arbritrary size for the H atoms.

(Z)-3-(3-Phenylallylidene)-1,5-dioxaspiro[5.5]undecane-2,4-dione

Crystal data
$C_{18}H_{18}O_4$
$M_r = 298.32$
Triclinic, $P\overline{1}$
Hall symbol: -P 1
<i>a</i> = 7.1177 (14) Å
<i>b</i> = 9.5506 (19) Å
c = 11.734 (2) Å
$\alpha = 106.82 (3)^{\circ}$
$\beta = 100.14 \ (3)^{\circ}$
$\gamma = 93.35 \ (3)^{\circ}$
$V = 746.6 (3) \text{ Å}^3$

Data collection

Bruker SMART CCD diffractometer
Radiation source: fine-focus sealed tube
Graphite monochromator
ω scans
7448 measured reflections
3401 independent reflections

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.034$ $wR(F^2) = 0.130$ S = 1.173401 reflections Z = 2 F(000) = 316 $D_x = 1.327 \text{ Mg m}^{-3}$ Mo K α radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 3401 reflections $\theta = 3.1-27.5^{\circ}$ $\mu = 0.09 \text{ mm}^{-1}$ T = 293 K Block, yellow $0.22 \times 0.18 \times 0.10 \text{ mm}$

2309 reflections with $I > 2\sigma(I)$ $R_{int} = 0.016$ $\theta_{max} = 27.5^{\circ}, \ \theta_{min} = 3.1^{\circ}$ $h = -8 \rightarrow 9$ $k = -12 \rightarrow 12$ $l = -15 \rightarrow 15$

199 parameters0 restraintsPrimary atom site location: structure-invariant direct methodsSecondary atom site location: difference Fourier map

Hydrogen site location: inferred from	$w = 1/[\sigma^2(F_o^2) + (0.0724P)^2]$
neighbouring sites	where $P = (F_o^2 + 2F_c^2)/3$
H-atom parameters constrained	$(\Delta/\sigma)_{\rm max} < 0.001$
	$\Delta \rho_{\rm max} = 0.30 \text{ e } \text{\AA}^{-3}$
	$\Delta \rho_{\rm min} = -0.21 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. **Refinement**. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
04	0.07551 (13)	0.64682 (9)	0.13593 (9)	0.0440 (3)	
O3	0.27862 (12)	0.86963 (9)	0.18966 (9)	0.0435 (3)	
C18	-0.01600 (18)	0.86915 (14)	0.26210 (12)	0.0386 (3)	
O2	-0.18747 (14)	0.63080 (11)	0.20875 (11)	0.0555 (3)	
C17	-0.05451 (19)	0.70896 (14)	0.20042 (13)	0.0408 (3)	
C11	0.19207 (18)	0.73899 (13)	0.09196 (12)	0.0375 (3)	
C12	0.07076 (19)	0.77924 (15)	-0.01133 (13)	0.0443 (3)	
H12A	-0.0251	0.8396	0.0195	0.053*	
H12B	0.0042	0.6902	-0.0723	0.053*	
C10	0.35558 (19)	0.65608 (14)	0.05319 (14)	0.0440 (3)	
H10A	0.3043	0.5604	-0.0042	0.053*	
H10B	0.4353	0.6405	0.1235	0.053*	
C16	0.16915 (19)	0.94609 (15)	0.26336 (13)	0.0443 (3)	
C4	-0.2995 (2)	1.28109 (15)	0.52506 (13)	0.0430 (3)	
C14	-0.1418 (2)	1.08555 (15)	0.39392 (13)	0.0450 (3)	
H14A	-0.0315	1.1500	0.4069	0.054*	
C15	-0.15033 (19)	0.93622 (15)	0.32054 (13)	0.0426 (3)	
H15A	-0.2635	0.8767	0.3116	0.051*	
01	0.23340 (15)	1.06908 (12)	0.32633 (13)	0.0728 (4)	
C13	-0.2902 (2)	1.13463 (16)	0.44451 (13)	0.0453 (3)	
H13A	-0.3994	1.0674	0.4260	0.054*	
C5	-0.4695 (2)	1.31394 (17)	0.56535 (14)	0.0511 (4)	
H5A	-0.5745	1.2418	0.5408	0.061*	
C9	0.4779 (2)	0.74002 (16)	-0.00542 (15)	0.0520 (4)	
H9A	0.5422	0.8302	0.0551	0.062*	
H9B	0.5757	0.6807	-0.0346	0.062*	
C3	-0.1442 (2)	1.39115 (17)	0.56447 (14)	0.0505 (4)	
H3A	-0.0287	1.3716	0.5399	0.061*	
C6	-0.4845 (2)	1.45175 (18)	0.64115 (15)	0.0576 (4)	
H6A	-0.5987	1.4717	0.6676	0.069*	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

C8	0.3571 (2)	0.77756 (18)	-0.11085 (16)	0.0584 (4)	
H8A	0.3042	0.6875	-0.1755	0.070*	
H8B	0.4376	0.8363	-0.1426	0.070*	
C2	-0.1606 (2)	1.52867 (18)	0.63955 (15)	0.0585 (4)	
H2A	-0.0563	1.6015	0.6649	0.070*	
C7	0.1938 (2)	0.86284 (17)	-0.06957 (15)	0.0551 (4)	
H7A	0.2471	0.9577	-0.0115	0.066*	
H7B	0.1140	0.8803	-0.1390	0.066*	
C1	-0.3313 (3)	1.55903 (18)	0.67735 (15)	0.0590 (4)	
H1A	-0.3420	1.6523	0.7274	0.071*	

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
04	0.0515 (5)	0.0329 (5)	0.0487 (6)	0.0045 (4)	0.0164 (4)	0.0102 (4)
03	0.0393 (5)	0.0384 (5)	0.0451 (6)	0.0004 (4)	0.0101 (4)	0.0006 (4)
C18	0.0396 (6)	0.0387 (7)	0.0341 (7)	0.0034 (5)	0.0056 (5)	0.0072 (6)
02	0.0517 (6)	0.0479 (6)	0.0653 (8)	-0.0055 (5)	0.0172 (5)	0.0136 (5)
C17	0.0412 (7)	0.0411 (7)	0.0386 (7)	0.0026 (6)	0.0063 (6)	0.0112 (6)
C11	0.0407 (6)	0.0300 (6)	0.0389 (7)	0.0024 (5)	0.0092 (5)	0.0059 (5)
C12	0.0454 (7)	0.0429 (7)	0.0438 (8)	0.0112 (6)	0.0078 (6)	0.0113 (6)
C10	0.0470 (7)	0.0359 (6)	0.0493 (8)	0.0123 (6)	0.0113 (6)	0.0110 (6)
C16	0.0415 (7)	0.0416 (7)	0.0428 (8)	0.0034 (6)	0.0089 (6)	0.0024 (6)
C4	0.0470 (7)	0.0489 (7)	0.0366 (7)	0.0114 (6)	0.0134 (6)	0.0144 (6)
C14	0.0458 (7)	0.0465 (7)	0.0407 (8)	0.0060 (6)	0.0115 (6)	0.0082 (6)
C15	0.0420 (7)	0.0462 (7)	0.0384 (7)	0.0034 (6)	0.0086 (6)	0.0112 (6)
O1	0.0542 (6)	0.0493 (6)	0.0873 (9)	-0.0122 (5)	0.0238 (6)	-0.0238 (6)
C13	0.0448 (7)	0.0481 (7)	0.0426 (8)	0.0063 (6)	0.0109 (6)	0.0118 (6)
C5	0.0522 (8)	0.0555 (8)	0.0493 (9)	0.0097 (7)	0.0199 (7)	0.0151 (7)
C9	0.0492 (8)	0.0500 (8)	0.0612 (10)	0.0158 (7)	0.0235 (7)	0.0145 (7)
C3	0.0492 (8)	0.0571 (9)	0.0440 (9)	0.0071 (7)	0.0147 (6)	0.0104 (7)
C6	0.0644 (10)	0.0632 (9)	0.0533 (10)	0.0229 (8)	0.0298 (8)	0.0165 (8)
C8	0.0696 (10)	0.0579 (9)	0.0577 (10)	0.0154 (8)	0.0298 (8)	0.0216 (8)
C2	0.0685 (10)	0.0551 (9)	0.0474 (9)	0.0000 (8)	0.0143 (8)	0.0086 (8)
C7	0.0685 (10)	0.0530 (8)	0.0541 (10)	0.0214 (7)	0.0191 (8)	0.0253 (8)
C1	0.0802 (11)	0.0530 (9)	0.0458 (9)	0.0170 (8)	0.0236 (8)	0.0099 (7)

Geometric parameters (Å, °)

O4—C17	1.3536 (17)	C14—C15	1.428 (2)	_
O4—C11	1.4344 (16)	C14—H14A	0.9300	
O3—C16	1.3515 (17)	C15—H15A	0.9300	
O3—C11	1.4437 (16)	C13—H13A	0.9300	
C18—C15	1.3575 (19)	C5—C6	1.381 (2)	
C18—C16	1.4665 (19)	С5—Н5А	0.9300	
C18—C17	1.4765 (19)	C9—C8	1.522 (2)	
O2—C17	1.2062 (17)	С9—Н9А	0.9700	
C11—C10	1.5080 (18)	С9—Н9В	0.9700	

C11—C12	1.5174 (18)	C3—C2	1.378 (2)
C12—C7	1.522 (2)	С3—НЗА	0.9300
C12—H12A	0.9700	C6—C1	1.369 (2)
C12—H12B	0.9700	С6—Н6А	0.9300
С10—С9	1.524 (2)	C8—C7	1.526 (2)
C10—H10A	0.9700	C8—H8A	0.9700
C10—H10B	0.9700	C8—H8B	0.9700
C16—O1	1.2045 (17)	C2—C1	1.384 (2)
C4—C3	1.394 (2)	C2—H2A	0.9300
C4—C5	1.395 (2)	C7—H7A	0.9700
C4—C13	1.457 (2)	С7—Н7В	0.9700
C14—C13	1.344 (2)	C1—H1A	0.9300
C17—O4—C11	118.14 (10)	C14—C15—H15A	115.5
C16—O3—C11	119.54 (10)	C14—C13—C4	127.39 (14)
C15—C18—C16	123.28 (12)	C14—C13—H13A	116.3
C15—C18—C17	117.99 (12)	C4—C13—H13A	116.3
C16—C18—C17	118.63 (12)	C6—C5—C4	121.11 (15)
O2—C17—O4	118.86 (12)	C6—C5—H5A	119.4
O2—C17—C18	124.36 (14)	C4—C5—H5A	119.4
O4—C17—C18	116.68 (12)	C8—C9—C10	111.66 (12)
O4—C11—O3	110.01 (11)	С8—С9—Н9А	109.3
O4—C11—C10	107.54 (10)	С10—С9—Н9А	109.3
O3—C11—C10	106.20 (10)	С8—С9—Н9В	109.3
O4—C11—C12	109.82 (10)	С10—С9—Н9В	109.3
O3—C11—C12	110.77 (10)	H9A—C9—H9B	107.9
C10—C11—C12	112.40 (12)	C2—C3—C4	120.55 (15)
C11—C12—C7	111.29 (12)	С2—С3—Н3А	119.7
C11—C12—H12A	109.4	С4—С3—Н3А	119.7
C7—C12—H12A	109.4	C1—C6—C5	119.95 (15)
C11—C12—H12B	109.4	С1—С6—Н6А	120.0
C7—C12—H12B	109.4	С5—С6—Н6А	120.0
H12A—C12—H12B	108.0	C9—C8—C7	110.64 (13)
C11—C10—C9	111.33 (10)	C9—C8—H8A	109.5
C11—C10—H10A	109.4	С7—С8—Н8А	109.5
C9—C10—H10A	109.4	С9—С8—Н8В	109.5
C11—C10—H10B	109.4	C7—C8—H8B	109.5
C9—C10—H10B	109.4	H8A—C8—H8B	108.1
H10A—C10—H10B	108.0	C3—C2—C1	120.34 (16)
O1—C16—O3	117.67 (13)	C3—C2—H2A	119.8
O1—C16—C18	125.75 (14)	C1—C2—H2A	119.8
O3—C16—C18	116.55 (12)	C12—C7—C8	111.50 (12)
C3—C4—C5	118.04 (14)	С12—С7—Н7А	109.3
C3—C4—C13	122.64 (13)	С8—С7—Н7А	109.3
C5—C4—C13	119.32 (14)	С12—С7—Н7В	109.3
C13—C14—C15	121.18 (14)	C8—C7—H7B	109.3
C13—C14—H14A	119.4	H7A—C7—H7B	108.0
C15—C14—H14A	119.4	C6—C1—C2	120.00 (16)
			× /

supporting information

C18—C15—C14 C18—C15—H15A	128.93 (13) 115.5	C6—C1—H1A C2—C1—H1A	1	20.0 20.0
Hydrogen-bond geometry (Å, °)				
D—H···A	D—H	H···A	$D \cdots A$	D—H···A
C10—H10 <i>A</i> ····O2 ⁱ	0.97	2.52	3.440 (2)	158

Symmetry code: (i) -x, -y+1, -z.