metal-organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Dichlorido(6,6'-dimethyl-2,2'-bipyridine- $\kappa^2 N, N'$)zinc(II)

Robabeh Alizadeh,^a* Khadijeh Kalateh,^b Amin Ebadi,^c Roya Ahmadi^b and Vahid Amani^b

^aDamghan University of Basic Sciences, School of Chemistry, Damghan, Iran, ^bIslamic Azad University, Shahr-e-Rey Branch, Tehran, Iran, and ^cDepartment of Chemistry, Islamic Azad University, Kazerun Branch, Kazerun, Fars, Iran Correspondence e-mail: robabeh_alizadeh@yahoo.com

Received 17 September 2009; accepted 21 September 2009

Key indicators: single-crystal X-ray study; T = 298 K; mean σ (C–C) = 0.004 Å; *R* factor = 0.034; *wR* factor = 0.101; data-to-parameter ratio = 25.0.

In the title compound, $[ZnCl_2(C_{12}H_{12}N_2)]$, the complete molecule is generated by crystallographic mirror symmetry, with the Zn atom and both chloride ions lying on the reflecting plane, yielding a distorted ZnN₂Cl₂ tetrahedral coordination for the metal ion. In the crystal, there are π - π contacts between the pyridine rings [centroid–centroid distance = 3.7857 (17) Å].

Related literature

For related structures containing Zn bonded to two chloride ions and a phenanthroline/bipyridine derivative, see: Ahmadi *et al.* (2008, 2009*a,b*); Alizadeh *et al.* (2009); Gruia *et al.* (2007); Khalighi *et al.* (2008); Khan & Tuck (1984); Khavasi *et al.* (2008); Khoshtarkib *et al.* (2009); Kozhevnikov *et al.* (2006); Liu *et al.* (2004); Preston & Kennard (1969); Reimann *et al.* (1966).

Experimental

Crystal data $[\text{ZnCl}_2(\text{C}_{12}\text{H}_{12}\text{N}_2)]$ $M_r = 320.53$ Monoclinic, $P2_1/m$ a = 7.6957 (15) Å b = 11.266 (2) Å c = 8.1431 (16) Å $\beta = 110.61$ (3)° Data collection

 $V = 660.8 (3) \text{ Å}^{3}$ Z = 2Mo K α radiation $\mu = 2.24 \text{ mm}^{-1}$ T = 298 K

$0.40 \times 0.33 \times 0.30 \text{ mm}$

Bruker SMART CCD diffractometer Absorption correction: multi-scan (SADABS; Sheldrick, 1998) $T_{min} = 0.421, T_{max} = 0.512$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.034$	83 parameters
$vR(F^2) = 0.101$	H-atom parameters constrained
S = 1.26	$\Delta \rho_{\rm max} = 0.70 \ {\rm e} \ {\rm \AA}^{-3}$
2075 reflections	$\Delta \rho_{\min} = -0.55 \text{ e } \text{\AA}^{-3}$

8852 measured reflections 2075 independent reflections

 $R_{\rm int} = 0.043$

1972 reflections with $I > 2\sigma(I)$

(10)

Table 1 Selected geometric parameters (Å, $^{\circ}$).

0	1			
Zn1-N1 Zn1-Cl1	2.0569 (18) 2.2013 (11)	Zn1-Cl2	2.2035	

 $N1^{i} - Zn1 - N1$ 80.71 (10)

Symmetry code: (i) x, $-y + \frac{3}{2}$, z.

Data collection: *SMART* (Bruker, 1998); cell refinement: *SAINT* (Bruker, 1998); data reduction: *SAINT*; program(s) used to solve structure: *SHELXTL* (Sheldrick, 2008); program(s) used to refine structure: *SHELXTL*; molecular graphics: *ORTEP-3* (Farrugia, 1997); software used to prepare material for publication: *WinGX* (Farrugia, 1999).

We are grateful to the Damghan University of Basic Sciences and Islamic Azad University, Shahr-e-Rey Branch, for financial support.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB5106).

References

- Ahmadi, R., Kalateh, K., Alizadeh, R., Khoshtarkib, Z. & Amani, V. (2009a). Acta Cryst. E65, m848–m849.
- Ahmadi, R., Kalateh, K., Alizadeh, R., Khoshtarkib, Z. & Amani, V. (2009b). Acta Cryst. E65, m1169–m1170.
- Ahmadi, R., Kalateh, K., Ebadi, A., Amani, V. & Khavasi, H. R. (2008). Acta Cryst. E64, m1266.
- Alizadeh, R., Heidari, A., Ahmadi, R. & Amani, V. (2009). Acta Cryst. E65, m483-m484.
- Bruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
- Gruia, L. M., Rochon, F. D. & Beauchamp, A. L. (2007). Inorg. Chim. Acta, 360, 1825–1840.
- Khalighi, A., Ahmadi, R., Amani, V. & Khavasi, H. R. (2008). Acta Cryst. E64, m1211–m1212.
- Khan, M. A. & Tuck, D. G. (1984). Acta Cryst. C40, 60-62.
- Khavasi, H. R., Abedi, A., Amani, V., Notash, B. & Safari, N. (2008). Polyhedron, 27, 1848–1854.
- Khoshtarkib, Z., Ebadi, A., Alizadeh, R., Ahmadi, R. & Amani, V. (2009). Acta Cryst. E65, m739–m740.
- Kozhevnikov, D. N., Shabunina, O. V., Kopchuk, D. S., Slepukhin, P. A. & Kozhevnikov, V. N. (2006). *Tetrahedron Lett.* 47, 7025–7029.
- Liu, Q. D., Wang, R. & Wang, S. (2004). Dalton Trans. pp. 2073-2079.
- Preston, H. S. & Kennard, C. H. L. (1969). J. Chem. Soc. A, pp. 1965-1968.
- Reimann, C. W., Block, S. & Perloff, A. (1966). Inorg. Chem. 5, 1185–1189.
- Sheldrick, G. M. (1998). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

supporting information

Acta Cryst. (2009). E65, m1250 [doi:10.1107/S1600536809038215]

Dichlorido(6,6'-dimethyl-2,2'-bipyridine- $\kappa^2 N, N'$)zinc(II)

Robabeh Alizadeh, Khadijeh Kalateh, Amin Ebadi, Roya Ahmadi and Vahid Amani

S1. Comment

Recently, we reported the synthes and crystal structure of $[ZnCl_2(phend)]$, (II), (Khoshtarkib *et al.*, 2009), [HgBr₂(2,9-dmphen)], (III), (Alizadeh *et al.*, 2009), [HgCl₂(2,9-dmPh2phen)].0.5 CH₃CN, (IV) (Ahmadi, *et al.*, 2009*a*) and $[Pb_4(NO_3)_8(6-mbpy)_4]$, (V), (Ahmadi, *et al.*, 2009*b*) [where phend is phenanthridine, 2,9-dmphen is 2,9-dimethyl-1,10-phenanthroline, 2,9-dmPh2phen is 2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline and 6-mbpy is 6-methyl-2,2'-bi-pyridine].

There are several Zn^{II} complexes, with formula, [ZnCl₂(N—N)], such as [ZnCl₂(bipy)], (VI), (Khan & Tuck, 1984), [ZnCl₂(biim)], (VII), (Gruia *et al.*, 2007), [ZnCl₂(phbipy)], (IIX), (Kozhevnikov *et al.*, 2006), [ZnCl₂(phen)], (IX), (Reimann *et al.*, 1966), [ZnCl₂(dmphen)], (X), (Preston & Kennard, 1969), [ZnCl₂(dpdmbip)], (XI), (Liu *et al.*, 2004), [ZnCl₂(dm4bt)], (XII), (Khavasi *et al.*, 2008), [ZnCl₂(5,5'-dmbpy)], (XIII), (Khalighi *et al.*, 2008) and [ZnCl₂(6-mbpy)], (XIV), (Ahmadi, Kalateh, Ebadi *et al.*, 2008) [where bipy is 2,2'-bipyridine, biim is 2,2'-biimidazole, phbipy is 5-phenyl-2,2'-bipyridine, phen is 1,10-phenanthroline, dmphen is 2,9-dimethyl-1,10-phenanthroline, dpdmbip is 4,4'-diphenyl-6,6'-dimethyl-2,2'-bipyrimidine, dm4bt is 2,2'-dimethyl-4,4'-bithiazole and 5,5'-dmbpy 5,5'-dimethyl-2,2'-bipyridine] have been synthesized and characterized by single-crystal X-ray diffraction methods. We report herein the synthesis and crystal structure of the title compound (I).

The asymmetric unit of the title compound, (I), (Fig. 1), contains half molecule. The Zn^{II} atom is four-coordinated in distorted tetrahedral configurations by two N atoms from one 6,6'-dimethyl-2,2'-bipyridine and two terminal Cl atoms. The Zn—Cl and Zn—N bond lengths and angles are collected in Table 1.

In the crystal structure, the π - π contacts between the rings A (N1/C2—C6) and rings A, Cg2··· $Cg2^{i}$ [distance = 3.7857 (17) Å, symmetry cods: 1-*X*,2-Y,1-*Z*]. It seems this π - π stacking is effective in the stabilization of the crystal structure (Fig. 2).

S2. Experimental

A solution of 6,6'-dimethyl-2,2'-bipyridine (0.20 g, 1.10 mmol) in methanol (10 ml) was added to a solution of $ZnCl_2$ (0.15 g, 0.88 mmol) in acetonitrile (10 ml) and the resulting colourless solution was stirred for 20 min at at 313 K. This solution was left to evaporate slowly at room temperature. After one week, colorless prisms of (I) were isolated (yield 0.26 g, 73.7%).

S3. Refinement

All H atoms were positioned geometrically, with C—H = 0.93–0.96Å and constrained to ride on their parent atoms, with $U_{iso}(H)=1.2U_{eq}(C)$ or $1.5U_{eq}(methyl C)$.

Figure 1

The molecular structure of (I). Displacement ellipsoids are drawn at the 50% probability level. [Symmetry codes: (a) x,-y + 3/2,z]

Figure 2

Tha unit-cell packing of (I).

Dichlorido(6,6'-dimethyl-2,2'-bipyridine- $\kappa^2 N, N'$)zinc(II)

Crystal data

 $[ZnCl_2(C_{12}H_{12}N_2)]$ $M_r = 320.53$ Monoclinic, $P2_1/m$ Hall symbol: -P 2yb a = 7.6957 (15) Å b = 11.266 (2) Å c = 8.1431 (16) Å $\beta = 110.61$ (3)° V = 660.8 (3) Å³ Z = 2

Data collection

Bruker SMART CCD diffractometer Radiation source: fine-focus sealed tube Graphite monochromator ω scans Absorption correction: multi-scan (*SADABS*; Sheldrick, 1998) $T_{\min} = 0.421, T_{\max} = 0.512$

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.034$ $wR(F^2) = 0.101$ S = 1.26 F(000) = 324 $D_x = 1.611 \text{ Mg m}^{-3}$ Mo K\alpha radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 1170 reflections $\theta = 2.8-30.6^{\circ}$ $\mu = 2.24 \text{ mm}^{-1}$ T = 298 KPrism, colourless $0.40 \times 0.33 \times 0.30 \text{ mm}$

8852 measured reflections 2075 independent reflections 1972 reflections with $I > 2\sigma(I)$ $R_{int} = 0.043$ $\theta_{max} = 30.6^{\circ}, \theta_{min} = 2.8^{\circ}$ $h = -10 \rightarrow 10$ $k = -16 \rightarrow 16$ $l = -11 \rightarrow 10$

2075 reflections83 parameters0 restraintsPrimary atom site location: structure-invariant direct methods

Secondary atom site location: difference Fourier map	$w = 1/[\sigma^2(F_o^2) + (0.036P)^2 + 0.4143P]$ where $P = (F_o^2 + 2F_c^2)/3$
Hydrogen site location: inferred from	$(\Delta/\sigma)_{\rm max} < 0.001$
neighbouring sites	$\Delta ho_{ m max} = 0.70 \ { m e} \ { m \AA}^{-3}$
H-atom parameters constrained	$\Delta \rho_{\rm min} = -0.55 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
C1	0.9103 (5)	1.0397 (3)	0.7493 (4)	0.0605 (7)	
H1A	0.8626	1.0161	0.8386	0.091*	
H1B	0.9085	1.1247	0.7405	0.091*	
H1C	1.0355	1.0117	0.7793	0.091*	
C2	0.7921 (3)	0.9875 (2)	0.5768 (3)	0.0415 (5)	
C3	0.6959 (4)	1.0566 (2)	0.4331 (4)	0.0525 (6)	
Н3	0.7041	1.1389	0.4413	0.063*	
C4	0.5891 (4)	1.0046 (3)	0.2791 (4)	0.0524 (6)	
H4	0.5246	1.0512	0.1825	0.063*	
C5	0.5776 (3)	0.8820 (2)	0.2679 (3)	0.0424 (5)	
Н5	0.5053	0.8449	0.1644	0.051*	
C6	0.6762 (3)	0.81599 (18)	0.4143 (3)	0.0317 (4)	
N1	0.7813 (2)	0.86822 (16)	0.5661 (2)	0.0330 (3)	
Cl1	1.20088 (11)	0.7500	0.88188 (13)	0.0521 (2)	
C12	0.74082 (14)	0.7500	0.94980 (13)	0.0511 (2)	
Znl	0.89560 (5)	0.7500	0.76788 (4)	0.03392 (12)	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	0.0688 (19)	0.0401 (13)	0.0625 (17)	-0.0094 (12)	0.0104 (15)	-0.0154 (12)
C2	0.0457 (12)	0.0306 (10)	0.0480 (12)	-0.0039 (8)	0.0162 (10)	-0.0032 (8)
C3	0.0694 (17)	0.0281 (10)	0.0616 (16)	0.0033 (10)	0.0249 (14)	0.0063 (10)
C4	0.0641 (16)	0.0434 (13)	0.0473 (13)	0.0122 (12)	0.0168 (12)	0.0161 (11)
C5	0.0453 (12)	0.0424 (12)	0.0342 (10)	0.0048 (9)	0.0074 (9)	0.0057 (9)
C6	0.0326 (9)	0.0308 (9)	0.0300 (8)	0.0014 (7)	0.0091 (7)	0.0016 (7)
N1	0.0341 (8)	0.0288 (8)	0.0328 (8)	-0.0010 (6)	0.0075 (6)	-0.0002 (6)
Cl1	0.0325 (4)	0.0642 (6)	0.0492 (5)	0.000	0.0014 (3)	0.000
C12	0.0548 (5)	0.0567 (5)	0.0479 (4)	0.000	0.0255 (4)	0.000
Zn1	0.03172 (18)	0.03621 (19)	0.02830 (18)	0.000	0.00368 (12)	0.000

Geometric parameters (Å, °)

C1—C2	1.499 (4)	C4—H4	0.9300
C1—H1A	0.9600	C5—C6	1.383 (3)
C1—H1B	0.9600	С5—Н5	0.9300
C1—H1C	0.9600	C6—N1	1.350 (3)
C2—N1	1.347 (3)	C6—C6 ⁱ	1.487 (4)
C2—C3	1.384 (4)	Zn1—N1	2.0569 (18)
C3—C4	1.366 (4)	Zn1—Cl1	2.2013 (11)
С3—Н3	0.9300	Zn1—Cl2	2.2035 (10)
C4—C5	1.386 (4)	Zn1—N1 ⁱ	2.0569 (18)
C2—C1—H1A	109.5	C6—C5—C4	118.4 (2)
C2—C1—H1B	109.5	С6—С5—Н5	120.8
H1A—C1—H1B	109.5	C4—C5—H5	120.8
C2—C1—H1C	109.5	N1—C6—C5	121.6 (2)
H1A—C1—H1C	109.5	N1-C6-C6 ⁱ	115.83 (11)
H1B—C1—H1C	109.5	C5C6C6 ⁱ	122.51 (14)
N1—C2—C3	120.3 (2)	C2—N1—C6	119.82 (19)
N1—C2—C1	117.1 (2)	C2—N1—Zn1	126.50 (16)
C3—C2—C1	122.6 (2)	C6—N1—Zn1	113.51 (13)
C4—C3—C2	120.3 (2)	N1 ⁱ —Zn1—N1	80.71 (10)
С4—С3—Н3	119.8	N1 ⁱ —Zn1—Cl1	115.45 (6)
С2—С3—Н3	119.8	N1—Zn1—Cl1	115.45 (6)
C3—C4—C5	119.5 (2)	N1 ⁱ —Zn1—Cl2	110.90 (6)
C3—C4—H4	120.3	N1—Zn1—Cl2	110.90 (6)
C5—C4—H4	120.3	Cl1—Zn1—Cl2	117.76 (5)
N1—C2—C3—C4	0.0 (4)	C5—C6—N1—C2	-0.2 (3)
C1—C2—C3—C4	-179.6 (3)	C6 ⁱ —C6—N1—C2	178.78 (16)
C2—C3—C4—C5	0.1 (5)	C5-C6-N1-Zn1	175.34 (17)
C3—C4—C5—C6	-0.2 (4)	C6 ⁱ —C6—N1—Zn1	-5.7 (3)
C4—C5—C6—N1	0.3 (4)	C2—N1—Zn1—N1 i	-178.10 (16)
$C4-C5-C6-C6^{i}$	-178.63 (19)	C6—N1—Zn1—N1 ⁱ	6.69 (17)
C3—C2—N1—C6	0.0 (4)	C2—N1—Zn1—Cl1	-64.2 (2)
C1-C2-N1-C6	179.7 (2)	C6—N1—Zn1—Cl1	120.55 (13)
C3—C2—N1—Zn1	-174.88 (19)	C2—N1—Zn1—Cl2	73.0 (2)
C1—C2—N1—Zn1	4.7 (3)	C6—N1—Zn1—Cl2	-102.24 (14)

Symmetry code: (i) x, -y+3/2, z.