

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

(E)-N'-(4-Bromobenzylidene)-3,4dihvdroxvbenzohvdrazide monohvdrate

Dan-Yu Zhao,^a Chuan-Xun Li,^b Shan-shan Huang,^b Min-Tao Zhong^{b*} and Hou-Li Zhang^{b*}

^aLiaoning University of Traditional Chinese Medicine, Shenyang, 110032, People's Republic of China, and ^bDalian Medical University, Liaoning 116044, People's Republic of China

Correspondence e-mail: dalianzhongmintao@163.com, syzhaody@163.com

Received 6 September 2009; accepted 12 September 2009

Key indicators: single-crystal X-ray study; T = 295 K; mean σ (C–C) = 0.005 Å; R factor = 0.044; wR factor = 0.116; data-to-parameter ratio = 13.1.

In the title compound, $C_{14}H_{11}BrN_2O_3 \cdot H_2O$, the dihedral angle between the two benzene rings of the Schiff base is 22.7 (2)° and an intramolecular $O-H \cdots O$ hydrogen bond is observed. In the crystal, molecules are linked into layers parallel to the *ab* plane by $O-H \cdots O$ and $N-H \cdots O$ hydrogen bonds.

Related literature

For the synthesis of Schiff base compounds from the reaction of aldehydes with primary amines, see: Herrick et al. (2008); Suresh et al. (2007). For a related structure, see: Ma et al. (2008). For reference structural data, see: Allen et al. (1987).

Experimental

Crystal data C14H11BrN2O3·H2O $M_r = 353.17$

Monoclinic, $P2_1/c$ a = 7.8119 (5) Å

Mo $K\alpha$ radiation

 $0.18 \times 0.16 \times 0.15 \text{ mm}$

 $\mu = 2.92 \text{ mm}^{-1}$

T = 295 K

b = 13.8504 (9) Å c = 13.0764 (9) Å $\beta = 91.708 \ (1)^{\circ}$ V = 1414.21 (16) Å³ Z = 4

Data collection

Siemens SMART CCD	7384 measured reflections
diffractometer	2511 independent reflections
Absorption correction: multi-scan	1810 reflections with $I > 2\sigma(I)$
SADABS (Sheldrick, 1996)	$R_{\rm int} = 0.096$
$T_{\min} = 0.621, \ T_{\max} = 0.668$	

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.044$	192 parameters
$wR(F^2) = 0.116$	H-atom parameters constrained
S = 1.02	$\Delta \rho_{\rm max} = 0.76 \text{ e } \text{\AA}^{-3}$
2511 reflections	$\Delta \rho_{\rm min} = -0.69 \text{ e } \text{\AA}^{-3}$

Table 1 Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
O1−H1···O2	0.82	2.30	2.734 (3)	114
$O4-H16\cdots O2^{i}$	0.85	2.03	2.760 (3)	143
O4−H15···O3 ⁱⁱ	0.85	1.94	2.761 (3)	163
$O2 - H2 \cdots O3^{iii}$	0.82	1.91	2.675 (3)	154
$O1 - H1 \cdots O4^{iv}$	0.82	2.16	2.929 (4)	155
$N1 - H1A \cdots O4^{v}$	0.86	2.07	2.898 (4)	162

Symmetry codes: (i) x, y = 1, z + 1; (ii) -x + 1, -y + 1, -z + 1; (iii) $x, -y + \frac{3}{2}, z - \frac{1}{2}$; (iv) $x, y + 1, z - 1; (v) - x + 1, y + \frac{1}{2}, -z + \frac{1}{2}.$

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1996); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB5092).

References

- Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.
- Herrick, R. S., Ziegler, C. J., Precopio, M., Crandall, K., Shaw, J. & Jarret, R. M. (2008). J. Organomet. Chem. 693, 619-624.
- Ma, H.-B., Huang, S.-S. & Diao, Y.-P. (2008). Acta Cryst. E64, o210.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
- Suresh, P., Srimurugan, S. & Pati, H. N. (2007). Chem. Lett. 36, 1332-1333.

supporting information

Acta Cryst. (2009). E65, o2489 [doi:10.1107/S1600536809036964]

(E)-N'-(4-Bromobenzylidene)-3,4-dihydroxybenzohydrazide monohydrate

Dan-Yu Zhao, Chuan-Xun Li, Shan-shan Huang, Min-Tao Zhong and Hou-Li Zhang

S1. Comment

Schiff base compounds can be easily synthesized from the reaction of aldehydes with primary amines (Herrick *et al.*, 2008; Suresh *et al.*, 2007). In this paper, the crystal structure of a new Schiff base compound derived from the condensation reaction of 3,4-dihydroxybenzohydrazide with 4-bromobenzaldehyde is reported.

The Schiff base molecule of the title compound, (I), displays a *trans* configuration with respect to the C=N and C—N bonds (Fig. 1). All the bond lengths are within normal ranges (Allen *et al.*, 1987), and are comparable to those in the related compound 3,4-Dihydroxy-*N'*-(2-hydroxybenzylidene)benzohydrazide- methanol-water (2/1/3) (Ma *et al.*, 2008). The dihedral angle between the two benzene rings in (I) is 22.7 (2)°. An intramolecular O—H…O hydrogen bond is observed. In the crystal structure the water molecule links three symmetry related molecules through O—H…O and O—H…N hydrogen bonds (Table 1). Together with two further intermolecular O—H…O hydrogen bonds, layers parallel to the *ab* plane are formed (Fig. 2).

S2. Experimental

4-Bromosalicylaldehyde (0.1 mmol, 15.6 mg) and 3,4-dihydroxybenzoic acid hydrazide (0.1 mmol, 16.8 mg) were dissolved in a 95% ethanol solution (10 ml). The mixture was stirred at room temperature to give a clear colorless solution. Light yellow blokes of (I) were formed by gradual evaporation of the solvent over a period of nine days at room temperature.

S3. Refinement

All H atoms were placed in geometrically idealized positions (C—H = 0.93 Å, O—H = 0.82–0.85 Å and N—H = 0.86 Å) and refined as riding with $U_{iso}(H) = 1.2U_{eq}(C,N)$ or $1.5U_{eq}(O)$.

Figure 1

The molecular structure of (I), with displacement ellipsoids drawn at the 30% probability level. The dashed lines indicate hydrogen bonds.

Figure 2

The molecular packing of (I). Intermolecular hydrogen bonds are shown as dashed lines. H atoms not involved in the hydrogen bonds have been omitted for clarity.

(E)-N'-(4-Bromobenzylidene)-3,4-dihydroxybenzohydrazide monohydrate

Crystal data

C₁₄H₁₁BrN₂O₃·H₂O $M_r = 353.17$ Monoclinic, $P2_1/c$ Hall symbol: -P 2ybc a = 7.8119 (5) Å b = 13.8504 (9) Å c = 13.0764 (9) Å $\beta = 91.708$ (1)° V = 1414.21 (16) Å³ Z = 4

Data collection

Siemens SMART CCD	7384 measured reflections
diffractometer	2511 independent reflections
Radiation source: fine-focus sealed tube	1810 reflections with $I > 2\sigma(I)$
Graphite monochromator	$R_{\rm int} = 0.096$
φ and ω scans	$\theta_{\text{max}} = 25.0^{\circ}, \ \theta_{\text{min}} = 2.1^{\circ}$
Absorption correction: multi-scan	$h = -9 \rightarrow 9$
SADABS (Sheldrick, 1996)	$k = -12 \rightarrow 16$
$T_{\min} = 0.621, \ T_{\max} = 0.668$	$l = -12 \rightarrow 15$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.044$	Hydrogen site location: inferred from
$wR(F^2) = 0.116$	neighbouring sites
S = 1.02	H-atom parameters constrained
2511 reflections	$w = 1/[\sigma^2(F_o^2) + (0.053P)^2 + 0.0453P]$
192 parameters	where $P = (F_o^2 + 2F_c^2)/3$
0 restraints	$(\Delta/\sigma)_{\rm max} < 0.001$
Primary atom site location: structure-invariant	$\Delta \rho_{\rm max} = 0.76 \text{ e } \text{\AA}^{-3}$
direct methods	$\Delta \rho_{\rm min} = -0.69 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

F(000) = 712

 $\theta = 2.7 - 24.2^{\circ}$

 $\mu = 2.92 \text{ mm}^{-1}$ T = 295 K

 $D_{\rm x} = 1.659 {\rm Mg} {\rm m}^{-3}$

Block, light yellow

 $0.18 \times 0.16 \times 0.15 \text{ mm}$

Mo *K* α radiation, $\lambda = 0.71073$ Å

Cell parameters from 2538 reflections

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
Br1	1.08523 (6)	0.16874 (3)	0.20512 (4)	0.0710 (2)
01	0.2102 (4)	1.04968 (18)	-0.1288 (2)	0.0561 (7)
H1	0.2496	1.0583	-0.1855	0.084*
O2	0.4375 (4)	0.94026 (17)	-0.23369 (19)	0.0590 (8)

H2	0.4882	0.8962	-0.2617	0.089*
O3	0.4997 (3)	0.72271 (16)	0.16417 (17)	0.0439 (6)
O4	0.4061 (3)	0.12989 (17)	0.70360 (19)	0.0500 (7)
H15	0.4361	0.1660	0.7536	0.075*
H16	0.4622	0.0787	0.7172	0.075*
N1	0.5896 (3)	0.66104 (17)	0.0155 (2)	0.0349 (6)
H1A	0.5932	0.6652	-0.0500	0.042*
N2	0.6628 (3)	0.58384 (19)	0.0659 (2)	0.0364 (7)
C1	0.4411 (4)	0.8144 (2)	0.0139 (2)	0.0310 (7)
C2	0.4779 (4)	0.8365 (2)	-0.0866 (3)	0.0343 (8)
H2A	0.5545	0.7982	-0.1215	0.041*
C3	0.4030 (5)	0.9141 (2)	-0.1350 (3)	0.0379 (8)
C4	0.2885 (4)	0.9734 (2)	-0.0836 (3)	0.0375 (8)
C5	0.2535 (4)	0.9517 (2)	0.0159 (3)	0.0435 (9)
Н5	0.1770	0.9901	0.0508	0.052*
C6	0.3290 (4)	0.8743 (2)	0.0652 (3)	0.0378 (8)
H6	0.3050	0.8619	0.1331	0.045*
C7	0.5118 (4)	0.7306 (2)	0.0699 (3)	0.0335 (7)
C8	0.7358 (4)	0.5211 (2)	0.0103 (3)	0.0357 (8)
H8	0.7339	0.5285	-0.0604	0.043*
C9	0.8220 (4)	0.4381 (2)	0.0570 (3)	0.0344 (8)
C10	0.8858 (4)	0.3655 (2)	-0.0043 (3)	0.0419 (9)
H10	0.8742	0.3708	-0.0750	0.050*
C11	0.9666 (4)	0.2852 (2)	0.0382 (3)	0.0456 (9)
H11	1.0085	0.2367	-0.0034	0.055*
C12	0.9835 (4)	0.2786 (2)	0.1423 (3)	0.0423 (9)
C13	0.9267 (5)	0.3516 (3)	0.2044 (3)	0.0454 (9)
H13	0.9435	0.3474	0.2750	0.054*
C14	0.8455 (4)	0.4301 (2)	0.1623 (3)	0.0412 (8)
H14	0.8056	0.4786	0.2045	0.049*

Atomic displacement parameters $(Å^2)$

	T 7 11	1 /22	1/33	1/12	1/13	1723
	U^{μ}	0	U	0	U	<i>U</i>
Br1	0.0630 (3)	0.0516 (3)	0.0988 (5)	0.02020 (19)	0.0116 (3)	0.0259 (2)
01	0.0711 (18)	0.0459 (15)	0.0516 (17)	0.0227 (13)	0.0093 (14)	0.0098 (13)
O2	0.114 (2)	0.0323 (13)	0.0316 (14)	0.0185 (14)	0.0206 (14)	0.0067 (11)
03	0.0707 (16)	0.0354 (13)	0.0260 (14)	0.0040 (11)	0.0064 (12)	-0.0001 (10)
O4	0.0816 (18)	0.0311 (12)	0.0372 (14)	0.0045 (12)	-0.0024 (13)	0.0006 (11)
N1	0.0483 (16)	0.0296 (14)	0.0268 (15)	0.0035 (12)	0.0031 (12)	0.0025 (12)
N2	0.0420 (16)	0.0286 (14)	0.0386 (17)	0.0000 (12)	0.0029 (13)	0.0034 (13)
C1	0.0393 (17)	0.0260 (15)	0.0277 (18)	-0.0034 (13)	0.0021 (14)	-0.0021 (14)
C2	0.0491 (19)	0.0243 (16)	0.0302 (19)	0.0000 (14)	0.0104 (15)	-0.0018 (14)
C3	0.058 (2)	0.0268 (17)	0.0290 (19)	-0.0029 (15)	0.0086 (16)	0.0006 (15)
C4	0.0461 (19)	0.0287 (17)	0.038 (2)	0.0047 (15)	0.0014 (16)	-0.0007 (15)
C5	0.050 (2)	0.040 (2)	0.042 (2)	0.0093 (16)	0.0136 (17)	-0.0038 (17)
C6	0.048 (2)	0.0382 (18)	0.0273 (18)	0.0036 (16)	0.0103 (15)	0.0009 (15)
C7	0.0406 (18)	0.0287 (17)	0.031 (2)	-0.0053 (14)	0.0025 (15)	-0.0014 (15)

supporting information

C8	0 0424 (18)	0.0322 (18)	0.0326 (19)	-0.0023(15)	0.0033 (15)	0.0000 (15)
C9	0.0424(16)	0.0322(18) 0.0298(17)	0.0320(1)) 0.042(2)	-0.0025(13)	0.0033(15)	0.0000(15)
C10	0.046 (2)	0.0290(17) 0.0390(19)	0.042(2)	-0.0008(16)	0.0039 (17)	-0.0066(17)
C11	0.0411 (19)	0.0340 (19)	0.062 (3)	0.0026 (15)	0.0049 (18)	-0.0069 (18)
C12	0.0335 (18)	0.0343 (19)	0.059 (3)	0.0005 (14)	0.0078 (17)	0.0066 (18)
C13	0.047 (2)	0.052 (2)	0.037 (2)	0.0060 (17)	0.0031 (17)	0.0067 (18)
C14	0.046 (2)	0.0391 (19)	0.039 (2)	0.0044 (16)	0.0041 (16)	-0.0044 (16)

Geometric parameters (Å, °)

Br1—C12	1.893 (3)	C3—C4	1.402 (5)
O1—C4	1.348 (4)	C4—C5	1.372 (5)
O1—H1	0.8200	C5—C6	1.374 (5)
O2—C3	1.374 (4)	С5—Н5	0.9300
O2—H2	0.8200	С6—Н6	0.9300
O3—C7	1.244 (4)	C8—C9	1.458 (5)
O4—H15	0.8499	C8—H8	0.9300
O4—H16	0.8500	C9—C10	1.387 (5)
N1—C7	1.353 (4)	C9—C14	1.387 (5)
N1—N2	1.372 (4)	C10—C11	1.387 (5)
N1—H1A	0.8600	C10—H10	0.9300
N2—C8	1.277 (4)	C11—C12	1.367 (5)
C1—C2	1.387 (5)	C11—H11	0.9300
C1—C6	1.393 (4)	C12—C13	1.378 (5)
C1—C7	1.471 (4)	C13—C14	1.367 (5)
C2—C3	1.369 (5)	C13—H13	0.9300
C2—H2A	0.9300	C14—H14	0.9300
C4—O1—H1	109.5	O3—C7—N1	120.5 (3)
С3—О2—Н2	109.5	O3—C7—C1	121.6 (3)
H15—O4—H16	101.6	N1—C7—C1	117.9 (3)
C7—N1—N2	119.3 (3)	N2	120.4 (3)
C7—N1—H1A	120.3	N2—C8—H8	119.8
N2—N1—H1A	120.3	С9—С8—Н8	119.8
C8—N2—N1	116.3 (3)	C10—C9—C14	118.4 (3)
C2—C1—C6	118.4 (3)	C10—C9—C8	119.9 (3)
C2—C1—C7	124.1 (3)	C14—C9—C8	121.6 (3)
C6—C1—C7	117.5 (3)	C11—C10—C9	121.1 (3)
C3—C2—C1	120.9 (3)	C11—C10—H10	119.4
C3—C2—H2A	119.5	C9—C10—H10	119.4
C1—C2—H2A	119.5	C12-C11-C10	118.8 (3)
C2—C3—O2	123.3 (3)	C12—C11—H11	120.6
C2—C3—C4	120.6 (3)	C10-C11-H11	120.6
O2—C3—C4	116.1 (3)	C11—C12—C13	121.0 (3)
O1—C4—C5	119.2 (3)	C11—C12—Br1	120.8 (3)
O1—C4—C3	122.5 (3)	C13—C12—Br1	118.2 (3)
C5—C4—C3	118.3 (3)	C14—C13—C12	119.9 (3)
C4—C5—C6	121.4 (3)	C14—C13—H13	120.0

C4—C5—H5 C6—C5—H5 C5—C6—C1 C5—C6—H6 C1—C6—H6	119.3 119.3 120.4 (3) 119.8 119.8	C12—C13—H13 C13—C14—C9 C13—C14—H14 C9—C14—H14	120.0 120.7 (3) 119.7 119.7
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} -179.3 (3) \\ -1.4 (5) \\ 177.9 (3) \\ 178.7 (3) \\ 0.6 (5) \\ -179.1 (3) \\ 2.7 (5) \\ -0.2 (5) \\ -178.4 (3) \\ 179.5 (3) \\ 0.5 (5) \\ -1.4 (5) \\ 1.8 (5) \\ -177.5 (3) \\ -3.3 (5) \\ 177.5 (2) \\ 1(7.2 (2)) \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{r} -13.4 (5) \\ -13.4 (5) \\ 165.9 (3) \\ 178.0 (3) \\ 173.5 (3) \\ -7.8 (5) \\ 2.0 (5) \\ -179.3 (3) \\ -0.3 (5) \\ -2.1 (5) \\ 177.7 (2) \\ 2.8 (5) \\ -177.0 (3) \\ -1.1 (5) \\ -1.3 (5) \\ -180.0 (3) \end{array}$

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —H	H···A	$D \cdots A$	D—H···A
01—H1…O2	0.82	2.30	2.734 (3)	114
O4—H16…O2 ⁱ	0.85	2.03	2.760 (3)	143
O4—H15…O3 ⁱⁱ	0.85	1.94	2.761 (3)	163
O2—H2…O3 ⁱⁱⁱ	0.82	1.91	2.675 (3)	154
O1—H1···O4 ^{iv}	0.82	2.16	2.929 (4)	155
N1—H1 A ···O4 ^v	0.86	2.07	2.898 (4)	162

Symmetry codes: (i) x, y-1, z+1; (ii) -x+1, -y+1, -z+1; (iii) x, -y+3/2, z-1/2; (iv) x, y+1, z-1; (v) -x+1, y+1/2, -z+1/2.