Acta Crystallographica Section E

Structure Reports
 Online

ISSN 1600-5368

3-Carbamothioylpyridinium iodide

Shahzad Sharif, ${ }^{\text {a }}$ Mehmet Akkurt, ${ }^{\mathbf{b}_{*}}$ Islam Ullah Khan, ${ }^{\text {a }}$
Shafqat Nadeem, ${ }^{\text {c }}$ Syed Ahmed Tirmizi ${ }^{\text {c }}$ and Saeed Ahmad ${ }^{\text {d }}$
${ }^{\text {a }}$ Materials Chemistry Laboratory, Department of Chemistry, Government College University, Lahore 54000, Pakistan, ${ }^{\mathbf{b}}$ Department of Physics, Faculty of Arts and Sciences, Erciyes University, 38039 Kayseri, Turkey, ${ }^{\text {c }}$ Department of Chemistry, Quaid-i-azam University, Islamabad, Pakistan, and ${ }^{\text {d }}$ Department of Chemistry, University of Engineering and Technology, Lahore 54890, Pakistan
Correspondence e-mail: akkurt@erciyes.edu.tr, saeed_a786@hotmail.com

Received 4 September 2009; accepted 4 September 2009

Key indicators: single-crystal X-ray study; $T=296 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.003 \AA$; R factor $=0.019 ; w R$ factor $=0.047$; data-to-parameter ratio $=22.9$.

In the crystal of the title salt, $\mathrm{C}_{6} \mathrm{H}_{7} \mathrm{~N}_{2} \mathrm{~S}^{+} \cdot \mathrm{I}^{-}$, inversion-related cations form an $R_{2}^{2}(8)$ dimer linked by a pair of $\mathrm{N}-\mathrm{H} \cdots \mathrm{S}$ hydrogen bonds. Pairs of iodide anions are located between adjacent cation dimers and are linked to them by way of $\mathrm{N}-$ $\mathrm{H} \cdots \mathrm{I}$ hydrogen bonds. This results in zigzag chains propagating in [001] lying parallel to the $b c$ plane.

Related literature

For graph-set theory, see: Bernstein et al. (1995).

Experimental

Crystal data
$\mathrm{C}_{6} \mathrm{H}_{7} \mathrm{~N}_{2} \mathrm{~S}^{+} \cdot \mathrm{I}^{-} \quad M_{r}=266.11$

Triclinic, $P \overline{1}$
$a=4.4024$ (3) \AA
$b=8.1943$ (5) \AA
$c=12.6815$ (8) \AA
$\alpha=102.485$ (2) ${ }^{\circ}$
$\beta=96.496(2)^{\circ}$
$\gamma=102.288(2)^{\circ}$

Data collection

Bruker Kappa APEXII CCD diffractometer
Absorption correction: none 8839 measured reflections

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.019 \quad 91$ parameters
$w R\left(F^{2}\right)=0.047$
$S=1.04$
2087 reflections
$V=430.31(5) \AA^{3}$
$Z=2$
Mo $K \alpha$ radiation
$\mu=3.89 \mathrm{~mm}^{-1}$
$T=296 \mathrm{~K}$
$0.17 \times 0.15 \times 0.14 \mathrm{~mm}$

2087 independent reflections 1890 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.020$

Table 1
Hydrogen-bond geometry ($\mathrm{A},{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 1-\mathrm{H} N 1 \cdots \mathrm{I} 1^{\mathrm{i}}$	0.86	2.62	$3.444(2)$	161
$\mathrm{~N} 2-\mathrm{H} 2 A \cdots 1^{\mathrm{ii}}$	0.86	3.04	$3.747(3)$	140
$\mathrm{~N} 2-\mathrm{H} 2 B \cdots \mathrm{~S} 1^{\mathrm{iii}}$	0.86	2.58	$3.420(3)$	164

Symmetry codes: (i) $-x,-y+1,-z+1$; (ii) $x+1, y, z$; (iii) $-x,-y+1,-z$.
Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB5088).

References

Altomare, A., Burla, M. C., Camalli, M., Carrozzini, B., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. \& Rizzi, R. (1999). J. Appl. Cryst. 32, 339-340.

Bernstein, J., Davis, R. E., Shimoni, L. \& Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.
Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Spek, A. L. (2009). Acta Cryst. D65, 148-155.

supporting information

Acta Cryst. (2009). E65, o2423 [doi:10.1107/S1600536809035892]

3-Carbamothioylpyridinium iodide

Shahzad Sharif, Mehmet Akkurt, Islam Ullah Khan, Shafqat Nadeem, Syed Ahmed Tirmizi and Saeed Ahmad

S1. Comment

In the present study we attempted to prepare a palladium(II) iodide complex with thionicotinamide, but it is surprising to note that the resulting compound is a simple salt of pyridine. Here we report the crystal structure of the salt (I).
In the title compund (I), (Fig. 1), the bond lengths and angles are entirely as expected. In the crystal structure of (I), two crystallographically independent cations form a dimer through $\mathrm{N}-\mathrm{H} \cdots \mathrm{S}$ hydrogen bonds. The two iodide anions are located between two adjacent dimers and forms $\mathrm{N}-\mathrm{H} \cdots \mathrm{I}$ hydrogen bonds with two iodide anions from each dimer. Thus, the molecules linked in the form of zigzag in the layers parallel to the $b c$ plane along the b axis (Fig. 2 and Fig. 3, Table 1).

S2. Experimental

The title compound was prepared by adding 2 equivalents of thionicotinamide in 15 ml methanol to a solution of $\mathrm{K}_{2}\left[\mathrm{PdCl}_{4}\right](0.326 \mathrm{~g})$ in 15 ml of water followed by addition of 2 equivalents of potassium iodide in water after half an hour stirring. The dark brown solution was the stirred for one hour. The resulting solution was filtrated and filtrate was kept at room temperature for crystallization. The brown product obtained from water-methanol mixture wasre-dissolved in methanol, which on slow evaporation yielded light brown crystals of (I).

S3. Refinement

All H atoms were located geometrically and treated as riding with $\mathrm{C}-\mathrm{H}=0.93 \AA$ and $\mathrm{N}-\mathrm{H}=0.86 \AA$ with $U_{\text {iso }}(\mathrm{H})=$ $1.2 U_{\mathrm{eq}}(\mathrm{C}, \mathrm{N})$.

Figure 1
The molecular structure of (I) with displacement ellipsoids for the non-H atoms drawn at the 50% probability level.

Figure 2
Packing diagram for (I) viewed down the a axis, showing the $R_{2}{ }^{2}(8)$ dimer motif further linked by $\mathrm{N}-\mathrm{H} \cdots \mathrm{I}$ hydrogen bonds between the adjacent dimers thorough the iodide anions to form an infinite chain in the [010] direction. Hydrogen atoms not involved in the showed interactions have been omitted for clarity.

Figure 3
A view of the packing and hydrogen bonding of (I). Hydrogen atoms not involved in the showed interactions have been omitted for clarity.

3-Carbamothioylpyridinium iodide

Crystal data

$\mathrm{C}_{6} \mathrm{H}_{7} \mathrm{~N}_{2} \mathrm{~S}^{+} \cdot \mathrm{I}^{-}$

$Z=2$
$M_{r}=266.11$
Triclinic, $P \overline{1}$
Hall symbol: -P 1
$a=4.4024$ (3) \AA
$b=8.1943$ (5) \AA
$c=12.6815(8) \AA$
$\alpha=102.485(2)^{\circ}$
$\beta=96.496(2)^{\circ}$
$\gamma=102.288(2)^{\circ}$
$V=430.31$ (5) \AA^{3}
$F(000)=252$
$D_{\mathrm{x}}=2.054 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 6584 reflections
$\theta=2.6-28.3^{\circ}$
$\mu=3.89 \mathrm{~mm}^{-1}$
$T=296 \mathrm{~K}$
Irregular chunk, light brown
$0.17 \times 0.15 \times 0.14 \mathrm{~mm}$

Data collection

Bruker Kappa APEXII CCD diffractometer
Radiation source: sealed tube
Graphite monochromator
phi and ω scans
8839 measured reflections
2087 independent reflections

Refinement

Refinement on $F^{2} \quad 91$ parameters
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.019$
$w R\left(F^{2}\right)=0.047$
$S=1.04$
2087 reflections

0 restraints
Primary atom site location: structure-invariant direct methods
Secondary atom site location: difference Fourier map

Hydrogen site location: inferred from neighbouring sites
H -atom parameters constrained

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0227 P)^{2}+0.219 P\right] \\
& \quad \text { where } P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }=0.001 \\
& \Delta \rho_{\max }=0.65 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-0.43 \mathrm{e} \AA^{-3}
\end{aligned}
$$

Special details

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles
Refinement. Refinement on F^{2} for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors $w R$ and all goodnesses of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The observed criterion of $F^{2}>\sigma\left(F^{2}\right)$ is used only for calculating $-R$-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\AA^{2})

	x	y	z	$U_{\text {iso }} * / U_{\text {eq }}$
S1	$0.1191(2)$	$0.24949(10)$	$-0.01595(5)$	$0.0620(3)$
N1	$0.3984(5)$	$0.2110(3)$	$0.37108(16)$	$0.0423(6)$
N2	$0.2489(8)$	$0.5132(3)$	$0.1550(2)$	$0.0708(12)$
C1	$0.3138(6)$	$0.3026(3)$	$0.30244(18)$	$0.0377(7)$
C2	$0.5245(6)$	$0.0778(3)$	$0.3413(2)$	$0.0449(8)$
C3	$0.5737(7)$	$0.0300(3)$	$0.2358(2)$	$0.0479(8)$
C4	$0.4852(6)$	$0.1197(3)$	$0.1621(2)$	$0.0438(8)$
C5	$0.3541(5)$	$0.2583(3)$	$0.19426(17)$	$0.0345(6)$
C6	$0.2468(6)$	$0.3524(3)$	$0.11482(19)$	$0.0395(7)$
I1	$-0.08685(4)$	$0.70787(2)$	$0.39126(1)$	$0.0426(1)$
H1	0.22840	0.39550	0.32730	0.0450^{*}
HN1	0.36980	0.23970	0.43790	0.0510^{*}
H2	0.57890	0.01770	0.39200	0.0540^{*}
H2A	0.31010	0.55920	0.22390	0.0850^{*}
H2B	0.18910	0.57340	0.11260	0.0850^{*}
H3	0.66530	-0.06150	0.21410	0.0570^{*}
H4	0.51400	0.08680	0.08980	0.0530^{*}

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
S1	$0.1014(6)$	$0.0573(4)$	$0.0263(3)$	$0.0304(4)$	$-0.0032(3)$	$0.0045(3)$
N1	$0.0534(12)$	$0.0464(12)$	$0.0256(9)$	$0.0090(10)$	$0.0078(9)$	$0.0083(9)$
N2	$0.131(3)$	$0.0457(14)$	$0.0331(12)$	$0.0312(15)$	$-0.0095(14)$	$0.0070(10)$
C1	$0.0430(12)$	$0.0388(12)$	$0.0296(11)$	$0.0094(10)$	$0.0060(9)$	$0.0055(9)$
C2	$0.0541(15)$	$0.0409(13)$	$0.0377(13)$	$0.0076(11)$	$0.0003(11)$	$0.0132(11)$
C3	$0.0572(15)$	$0.0428(14)$	$0.0441(14)$	$0.0204(12)$	$0.0045(12)$	$0.0057(11)$
C4	$0.0539(14)$	$0.0471(14)$	$0.0291(11)$	$0.0151(12)$	$0.0083(10)$	$0.0033(10)$
C5	$0.0377(11)$	$0.0371(11)$	$0.0261(10)$	$0.0063(9)$	$0.0030(8)$	$0.0063(9)$
C6	$0.0470(13)$	$0.0426(13)$	$0.0283(11)$	$0.0095(11)$	$0.0046(9)$	$0.0098(9)$
I1	$0.0421(1)$	$0.0492(1)$	$0.0351(1)$	$0.0154(1)$	$0.0065(1)$	$0.0034(1)$

Geometric parameters (A, ${ }^{\circ}$)

S1-C6	1.661 (2)	C2-C3	1.366 (4)
N1-C1	1.337 (3)	C3-C4	1.379 (4)
N1-C2	1.330 (3)	C4- 55	1.386 (3)
N2-C6	1.304 (4)	C5-C6	1.489 (3)
N1-HN1	0.8600	C1-H1	0.9300
N2-H2B	0.8600	C2-H2	0.9300
N2-H2A	0.8600	C3-H3	0.9300
C1-C5	1.383 (3)	C4-H4	0.9300
$\mathrm{I} 1 \cdots \mathrm{C} 1^{\text {i }}$	3.639 (3)	C1 $\cdots{ }^{\text {C }}{ }^{\text {i }}$	3.433 (4)
$\mathrm{I} 1 \cdots \mathrm{C} 2^{\text {ii }}$	3.818 (3)	C2 $\cdots \mathrm{Il}^{\text {x }}$	3.818 (3)
$\mathrm{I} 1 \cdots \mathrm{~N} 2$	3.694 (3)	$\mathrm{C} 2 \cdots \mathrm{I} 1^{\text {iv }}$	3.793 (3)
$\mathrm{I} 1 \cdots \mathrm{~N} 1^{\text {iii }}$	3.444 (2)	C3 \cdots C1 ${ }^{\text {ix }}$	3.433 (4)
$\mathrm{I} 1 \cdots \mathrm{C} 2^{\text {iv }}$	3.794 (3)	C4 ${ }^{\text {a }}$ S1 ${ }^{\text {vii }}$	3.564 (3)
I1 $\cdots \mathrm{H} 1$	3.1600	C1 \cdots H2A	2.5200
$\mathrm{I} 1 \cdots \mathrm{H} 2^{*}$	3.1900	H1 \cdots H2A	2.0800
I1 $\cdots{ }^{\text {H }} 2 \mathrm{~A}^{\text {i }}$	3.0400	H1 \cdots I1	3.1600
I1 \cdots H2A	3.1100	H1 \cdots N2	2.5800
$\mathrm{I} 1 \cdots \mathrm{H} 2^{\text {iv }}$	3.3800	HN1 $\cdots \mathrm{Il}^{\text {iii }}$	2.6200
$\mathrm{I} 1 \cdots \mathrm{HN} 1^{\text {iii }}$	2.6200	$\mathrm{H} 2 \cdots \mathrm{I} \mathrm{I}^{\text {xi }}$	3.1900
$\mathrm{S} 1 \cdots \mathrm{~N} 2^{\text {vi }}$	3.420 (3)	$\mathrm{H} 2 \cdots \mathrm{I} 1^{\text {iv }}$	3.3800
S1 \cdots C4 ${ }^{\text {vii }}$	3.564 (3)	H2A $\cdots \mathrm{H} 1$	2.0800
S1 $\cdots{ }^{\text {diii }}$	3.0100	H2A \cdots I1	3.1100
S1 \cdots H2B ${ }^{\text {vi }}$	2.5800	H2A \cdots I ${ }^{\text {ix }}$	3.0400
S1 \cdots H4	2.8000	H2A \cdots C1	2.5200
$\mathrm{N} 1 \cdots \mathrm{I} 1^{\text {iii }}$	3.444 (2)	H2B \cdots S $1^{\text {vi }}$	2.5800
$\mathrm{N} 2 \cdots \mathrm{~S} 1^{\text {vi }}$	3.420 (3)	H3 \cdots S $1^{\text {viii }}$	3.0100
N2 \cdots I1	3.694 (3)	H4*-S1	2.8000
N2 $\cdots \mathrm{H} 1$	2.5800	H4 $\cdots{ }^{\text {riii }}$	2.3800
$\mathrm{C} 1 \cdots \mathrm{I} 1^{\text {ix }}$	3.639 (3)		
$\mathrm{C} 1-\mathrm{N} 1-\mathrm{C} 2$	123.4 (2)	C4-C5-C6	121.6 (2)
$\mathrm{C} 1-\mathrm{N} 1-\mathrm{HN} 1$	118.00	S1-C6-C5	119.92 (18)
$\mathrm{C} 2-\mathrm{N} 1-\mathrm{HN} 1$	118.00	N2-C6-C5	116.3 (2)
C6-N2-H2A	120.00	S1-C6-N2	123.7 (2)
H2A-N2-H2B	120.00	$\mathrm{N} 1-\mathrm{C} 1-\mathrm{H} 1$	120.00
C6-N2-H2B	120.00	C5-C1-H1	120.00
N1-C1-C5	119.6 (2)	N1-C2-H2	120.00
N1-C2-C3	119.5 (2)	C3-C2-H2	120.00
C2-C3-C4	118.9 (2)	C2-C3-H3	121.00
C3-C4-C5	121.0 (2)	C4-C3-H3	121.00
C1-C5-C4	117.7 (2)	C3-C4-H4	120.00
C1-C5-C6	120.6 (2)	C5-C4-H4	119.00
C2-N1-C1-C5	0.7 (4)	C3-C4-C5-C1	-0.4 (4)
C1-N1-C2-C3	0.3 (4)	C3-C4-C5-C6	-177.8 (2)

$\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 5-\mathrm{C} 4$	$-0.6(4)$	$\mathrm{C} 1-\mathrm{C} 5-\mathrm{C} 6-\mathrm{S} 1$	$-147.9(2)$
$\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 5-\mathrm{C} 6$	$176.8(2)$	$\mathrm{C} 1-\mathrm{C} 5-\mathrm{C} 6-\mathrm{N} 2$	$29.5(4)$
$\mathrm{N} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$	$-1.2(4)$	$\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 6-\mathrm{S} 1$	$29.4(3)$
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5$	$1.3(4)$	$\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 6-\mathrm{N} 2$	$-153.1(3)$

Symmetry codes: (i) $x-1, y, z$; (ii) $x, y+1, z$; (iii) $-x,-y+1,-z+1$; (iv) $-x+1,-y+1,-z+1$; (v) $x-1, y+1, z$; (vi) $-x,-y+1,-z$; (vii) $-x,-y,-z$; (viii) $-x+1,-y$, $-z$; (ix) $x+1, y, z$; (x) $x, y-1, z$; (xi) $x+1, y-1, z$.

Hydrogen-bond geometry ($A,{ }^{\circ}$)

$D — \mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 1 — \mathrm{H} N 1^{\cdots} \mathrm{I} 1^{\text {iii }}$	0.86	2.62	$3.444(2)$	161
$\mathrm{~N} 2 — \mathrm{H} 2 A \cdots \mathrm{I}^{\text {ix }}$	0.86	3.04	$3.747(3)$	140
$\mathrm{~N} 2 — \mathrm{H} 2 B \cdots \mathrm{~S}^{\text {vi }}$	0.86	2.58	$3.420(3)$	164

Symmetry codes: (iii) $-x,-y+1,-z+1$; (vi) $-x,-y+1,-z$; (ix) $x+1, y, z$.

