

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

Diaguabis[2-(4-bromophenyl)acetato] $bis(N^4, N^4$ -dimethylpyridin-4-amine)copper(II)

Yong-Ming Cui, Xi-Bin Dai, Ru-Hua Zha and Qing-Fu Zeng*

Engineering Research Center for Clean Production of Textile Dyeing and Printing, Ministry of Education, Wuhan 430073, People's Republic of China Correspondence e-mail: qfzeng@wuse.edu.cn

Received 24 August 2009; accepted 28 August 2009

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.004 Å; R factor = 0.035; wR factor = 0.099; data-to-parameter ratio = 14.2.

In the title compound, $[Cu(C_8H_6BrO_2)_2(C_7H_{10}N_2)_2(H_2O)_2]$, the Cu^{II} atom (site symmetry $\overline{1}$) adopts a Jahn–Teller-distorted trans-CuN₂O₄ octahedral coordination, with the agua O atoms in axially extended sites. An intramolecular $O-H \cdots O$ hydrogen bond helps to establish the conformation and an intermolecular $O-H \cdots O$ hydrogen bond is seen in the crystal packing.

Related literature

For background to coordination networks, see: Liu & Zhu (2004); Yang et al. (2004); You et al. (2004). For reference structural data, see: Allen et al. (1987).

Experimental

Crystal data $[Cu(C_8H_6BrO_2)_2(C_7H_{10}N_2)_2(H_2O)_2]$ $M_{\rm w} = 771.99$ Monoclinic, $P2_1/c$ a = 10.4792 (10) Åb = 6.1059 (6) Å

c = 25.450 (2) Å $\beta = 100.958 \ (4)^{\circ}$ V = 1598.7 (3) Å³ Z = 2Mo $K\alpha$ radiation

a 1	•	
metal	-organic	compounds
incua	0.94	compoundo

 $0.25 \times 0.20 \times 0.20$ mm

 $\Delta \rho_{\rm max} = 0.60 \ {\rm e} \ {\rm \AA}^2$ $\Delta \rho_{\rm min} = -0.71$ e Å⁻³

 $\mu = 3.23 \text{ mm}^{-1}$ T = 293 K

Data collection

2815 independent reflections 2189 reflections with $I > 2\sigma(I)$ $R_{\text{int}} = 0.026$ 200 standard reflections every 3 reflections		
intensity decay: 1%		
198 parameters H-atom parameters constrained		

S = 1.012815 reflections

Table 1 Selected bond lengths (Å).

Cu1-O2	2.0006 (17)	Cu1-O3	2.5052 (19)
Cu1-N2	2.004 (2)		

Table 2 Hydrogen-bond geometry (Å, °).

$D-\mathrm{H}\cdots A$	<i>D</i> -H	Н∙∙∙А	$D \cdots A$	$D - \mathbf{H} \cdots \mathbf{A}$
$\begin{array}{c} O3 - H3B \cdots O2^{i} \\ O3 - H3A \cdots O1 \end{array}$	0.90 0.92	2.03 1.79	2.901 (3) 2.688 (3)	161 163
S	1			

Symmetry code: (i) x, y - 1, z.

Data collection: CAD-4 Software (Enraf-Nonius, 1989); cell refinement: CAD-4 Software; data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

The project was supported by the Scientific Research Foundation for Returned Overseas Chinese Scholars, State Education Ministry, Educational Commission of Hubei Province (D20091703) and the Natural Science Foundation of Hubei Province (2008CDB038).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB5065).

References

Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.

Enraf-Nonius (1989). CAD-4 Software. Enraf-Nonius, Delft, The Netherlands.

Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany. Liu, Z.-D. & Zhu, H.-L. (2004). Acta Cryst. E60, m1866-m1868.

North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Yang, H.-L., You, Z.-L. & Zhu, H.-L. (2004). Acta Cryst. E60, m1213-m1214. You, Z.-L., Zhu, H.-L. & Liu, W.-S. (2004). Acta Cryst. E60, m1863-m1865.

supporting information

Acta Cryst. (2009). E65, m1163 [doi:10.1107/S1600536809034461]

Diaquabis[2-(4-bromophenyl)acetato]bis(N^4 , N^4 -dimethylpyridin-4-amine)-copper(II)

Yong-Ming Cui, Xi-Bin Dai, Ru-Hua Zha and Qing-Fu Zeng

S1. Comment

There has been much research interest in the acid and amine metal complexes due to their molecular architectures (Liu *et al.*, 2004; Yang *et al.*, 2004; You *et al.*, 2004). In this work, we report here the crystal structure of the title compound, (I). In (I), all bond lengths are within normal ranges (Allen *et al.*, 1987) (Fig. 1). The Cu^{II} atom is six-coordinated by two N atoms from *N*,*N*-dimethylpyridin-4-amine, two O atoms from 2-(4-bromophenyl)acetic acid and two O atoms from the water molecules, forming a distorted octahedral coordination.

S2. Experimental

A mixture of *N*,*N*-dimethylpyridin-4-amine (244 mg, 2 mmol), 2-(4-bromophenyl)acetic acid (428 mg, 2 mmol) and CuCl₂.2H₂O (169 mg, 1 mmol) in methanol (10 ml) was stirred for 3 h. After keeping the filtrate in air for 7 d, green blocks of (I) were formed.

S3. Refinement

All H atoms were positioned geometrically (C—H = 0.93 Å for the aromatic H atoms and C—H = 0.96 Å for the aliphatic H atoms) and were refined as riding, with $U_{iso}(H) = 1.2U_{eq}(C)$ and $U_{iso}(H) = 1.2U_{eq}(N)$.

Figure 1

The molecular structure of (I) showing 30% probability displacement ellipsoids. Atoms with the suffix A are generated by the symmetry operation (1-x, 1-y, -z).

Diaquabis[2-(4-bromophenyl)acetato]bis(N⁴,N⁴- dimethylpyridin-4-amine)copper(II)

Crystal data	
$[Cu(C_8H_6BrO_2)_2(C_7H_{10}N_2)_2(H_2O)_2]$	F(000) = 782
$M_r = 771.99$	$D_{\rm x} = 1.604 {\rm Mg} {\rm m}^{-3}$
Monoclinic, $P2_1/c$	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
Hall symbol: -P 2ybc	Cell parameters from 25 reflections
a = 10.4792 (10) Å	$\theta = 9 - 12^{\circ}$
b = 6.1059 (6) Å	$\mu = 3.23 \text{ mm}^{-1}$
c = 25.450 (2) Å	T = 293 K
$\beta = 100.958 \ (4)^{\circ}$	Block, green
$V = 1598.7 (3) Å^3$	$0.25 \times 0.20 \times 0.20$ mm
Z = 2	

Data collection

Enraf–Nonius CAD-4	2815 independent reflections
diffractometer	2189 reflections with $I > 2\sigma(I)$
Radiation source: fine-focus sealed tube	$R_{\rm int} = 0.026$
Graphite monochromator	$\theta_{\text{max}} = 25.0^{\circ}, \ \theta_{\text{min}} = 1.6^{\circ}$
$\omega/2\theta$ scans	$h = -10 \rightarrow 12$
Absorption correction: ψ scan	$k = -7 \rightarrow 7$
(North <i>et al.</i> , 1968)	$l = -30 \rightarrow 28$
$T_{\min} = 0.499, T_{\max} = 0.564$	200 standard reflections every 3 reflections
8029 measured reflections	intensity decay: 1%
Refinement	
Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.035$	Hydrogen site location: inferred from
$wR(F^2) = 0.099$	neighbouring sites
S = 1.01	H-atom parameters constrained
2815 reflections	$w = 1/[\sigma^2(F_o^2) + (0.0539P)^2 + 0.7463P]$
198 parameters	where $P = (F_o^2 + 2F_c^2)/3$
0 restraints	$(\Delta/\sigma)_{\rm max} < 0.001$

Special details

direct methods

Primary atom site location: structure-invariant

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

 $\Delta \rho_{\text{max}} = 0.60 \text{ e Å}^{-3}$ $\Delta \rho_{\text{min}} = -0.71 \text{ e Å}^{-3}$

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
Brl	0.10163 (4)	0.98365 (8)	0.229572 (18)	0.0870 (2)	
C1	0.4910 (3)	0.8264 (4)	0.17361 (10)	0.0366 (6)	
C2	0.3209 (3)	0.7210 (6)	0.21980 (12)	0.0567 (9)	
H2	0.2854	0.6195	0.2402	0.068*	
C3	0.4355 (3)	0.6766 (5)	0.20345 (11)	0.0479 (8)	
H3	0.4767	0.5433	0.2126	0.058*	
C4	0.3099 (3)	1.0674 (6)	0.17612 (13)	0.0525 (8)	
H4	0.2669	1.1991	0.1668	0.063*	
C5	0.4259 (3)	1.0225 (5)	0.15993 (13)	0.0462 (8)	
Н5	0.4608	1.1250	0.1396	0.055*	
C6	0.2591 (3)	0.9156 (6)	0.20593 (12)	0.0492 (8)	
C7	0.6186 (3)	0.7783 (5)	0.15678 (10)	0.0411 (7)	
H7A	0.6807	0.7252	0.1873	0.049*	
H7B	0.6529	0.9121	0.1443	0.049*	
C10	0.6013 (3)	0.6071 (5)	0.11224 (10)	0.0354 (6)	

C12	0.1011 (3)	0.4106 (5)	0.06736 (10)	0.0354 (6)
C13	0.1512 (3)	0.2454 (5)	0.03830 (11)	0.0410 (7)
H13	0.1083	0.1117	0.0324	0.049*
C14	0.2815 (3)	0.6273 (4)	0.05081 (11)	0.0373 (6)
H14	0.3254	0.7605	0.0548	0.045*
C15	0.2618 (3)	0.2798 (5)	0.01872 (11)	0.0392 (7)
H15	0.2918	0.1658	0.0001	0.047*
C16	0.1726 (3)	0.6080 (5)	0.07202 (11)	0.0393 (7)
H16	0.1447	0.7264	0.0899	0.047*
C17	-0.0511 (4)	0.5523 (6)	0.12039 (17)	0.0694 (11)
H17A	0.0206	0.6143	0.1450	0.104*
H17B	-0.1126	0.4918	0.1399	0.104*
H17C	-0.0924	0.6644	0.0966	0.104*
C19	-0.0777 (3)	0.1795 (6)	0.08259 (15)	0.0640 (10)
H19A	-0.1167	0.1622	0.0455	0.096*
H19B	-0.1445	0.1841	0.1037	0.096*
H19C	-0.0207	0.0583	0.0939	0.096*
Cu1	0.5000	0.5000	0.0000	0.03234 (15)
N1	-0.0042 (2)	0.3814 (4)	0.08968 (10)	0.0462 (6)
N2	0.3302 (2)	0.4658 (3)	0.02439 (9)	0.0331 (5)
01	0.6222 (2)	0.4143 (4)	0.12444 (8)	0.0570 (6)
O2	0.56545 (17)	0.6809 (3)	0.06509(7)	0.0372 (4)
03	0.58520 (19)	0.1416 (3)	0.03998 (7)	0.0469 (5)
H3B	0.5591	0.0050	0.0463	0.056*
H3A	0.6011	0.2105	0.0727	0.056*

Atomic displacement parameters (\mathring{A}^2)

	U^{11}	U ²²	U ³³	U^{12}	U^{13}	U ²³
Br1	0.0564 (3)	0.1343 (5)	0.0770 (3)	-0.0039 (2)	0.0294 (2)	-0.0350 (3)
C1	0.0497 (17)	0.0354 (15)	0.0256 (13)	-0.0051 (13)	0.0092 (12)	-0.0073 (11)
C2	0.069 (2)	0.065 (2)	0.0416 (17)	-0.0128 (19)	0.0260 (16)	0.0034 (15)
C3	0.065 (2)	0.0413 (17)	0.0386 (15)	0.0014 (16)	0.0123 (15)	0.0054 (13)
C4	0.061 (2)	0.0482 (18)	0.0505 (18)	0.0102 (17)	0.0149 (16)	-0.0055 (15)
C5	0.060 (2)	0.0394 (18)	0.0421 (16)	-0.0025 (15)	0.0167 (15)	-0.0010 (13)
C6	0.0488 (18)	0.064 (2)	0.0388 (16)	-0.0027 (17)	0.0171 (14)	-0.0152 (15)
C7	0.0470 (17)	0.0440 (17)	0.0323 (14)	-0.0046 (14)	0.0080 (12)	-0.0083 (12)
C10	0.0345 (15)	0.0392 (17)	0.0358 (15)	-0.0073 (13)	0.0155 (12)	-0.0071 (12)
C12	0.0330 (14)	0.0396 (15)	0.0348 (14)	-0.0011 (13)	0.0093 (12)	0.0013 (12)
C13	0.0413 (16)	0.0349 (15)	0.0505 (16)	-0.0085 (13)	0.0177 (13)	-0.0096 (13)
C14	0.0407 (15)	0.0298 (15)	0.0447 (16)	-0.0029 (12)	0.0164 (13)	-0.0063 (12)
C15	0.0437 (16)	0.0334 (15)	0.0452 (16)	-0.0045 (13)	0.0199 (13)	-0.0103 (12)
C16	0.0405 (16)	0.0337 (16)	0.0477 (16)	0.0018 (13)	0.0188 (13)	-0.0063 (13)
C17	0.062 (2)	0.073 (2)	0.087 (3)	-0.0086 (19)	0.048 (2)	-0.017 (2)
C19	0.054 (2)	0.067 (2)	0.079 (2)	-0.0204 (18)	0.0334 (18)	-0.0083 (19)
Cu1	0.0321 (3)	0.0372 (3)	0.0304 (3)	-0.0056 (2)	0.01259 (19)	-0.00735 (18)
N1	0.0408 (14)	0.0468 (15)	0.0572 (15)	-0.0077 (12)	0.0249 (12)	-0.0071 (12)
N2	0.0355 (12)	0.0318 (13)	0.0351 (12)	-0.0014 (10)	0.0143 (10)	-0.0048 (9)

supporting information

01	0.0861 (18)	0.0371 (12)	0.0473 (12)	-0.0003 (12)	0.0116 (11)	-0.0025 (10)
O2	0.0436 (11)	0.0381 (11)	0.0317 (10)	-0.0060 (9)	0.0114 (8)	-0.0075 (8)
03	0.0602 (13)	0.0386 (11)	0.0438 (11)	-0.0036 (10)	0.0146 (9)	-0.0017 (9)
Geom	etric parameters (A	Å, ?)				
Br1—	C6	1.906	(3)	C14—N2		1.347 (3)
C1-C	23	1.386	(4)	C14—C16		1.357 (4)
C1-C	25	1.389	(4)	C14—H14		0.9300
C1-C	27	1.508	(4)	C15—N2		1.336 (3)
C2—C	26	1.367	(5)	С15—Н15		0.9300
C2—C	23	1.371	(4)	C16—H16		0.9300
C2—H	12	0.930	0	C17—N1		1.445 (4)
С3—Н	13	0.930	0	C17—H17A		0.9600
C4—C	C6	1.368	(5)	C17—H17B		0.9600
C4—C	C5	1.384	(5)	C17—H17C		0.9600
C4—H	I4	0.930	0	C19—N1		1.447 (4)
С5—Н	15	0.930	0	C19—H19A		0.9600
С7—С	C10	1.527	(4)	C19—H19B		0.9600
С7—Н	H7A	0.970	0	C19—H19C		0.9600
С7—Н	H7B	0.970	0	Cu1—O2 ⁱ		2.0006 (17)
C10—	-01	1.226	(4)	Cu1—O2		2.0006 (17)
C10—	-02	1.270	(3)	Cu1—N2		2.004 (2)
C12—	-N1	1.345	(3)	Cu1—N2 ⁱ		2.004 (2)
C12—	-C13	1.410	(4)	Cu1—O3		2.5052 (19)
C12—	C16	1.412	(4)	Cu1—O3 ⁱ		2.5052 (19)
C13—	C15	1.362	(4)	O3—H3B		0.9018
C13—	H13	0.930	0	O3—H3A		0.9200
C3—(C1—C5	117 9	(3)	C14—C16—C12		120.9 (3)
C_3	$\Gamma_1 = \Gamma_7$	121.0	(3)	C14—C16—H16		119.6
C5-(1 - C7	121.0	(3)	C12—C16—H16		119.6
C6—(22-C3	119.5	(3)	N1-C17-H17A		109.5
C6—(С2—Н2	120.2	(5)	N1-C17-H17B		109.5
C3—(С2—Н2	120.2		H17A—C17—H1	7B	109.5
C2—(C3—C1	121.3	(3)	N1—C17—H17C		109.5
C2—0	С3—Н3	119.4		H17A—C17—H1	7C	109.5
C1-C	С3—Н3	119.4		H17B—C17—H1	7C	109.5
C6—0	C4—C5	119.2	(3)	N1—C19—H19A		109.5
C6—0	C4—H4	120.4		N1—C19—H19B		109.5
С5—С	С4—Н4	120.4		H19A—C19—H1	9B	109.5
C4—C	C5—C1	120.9	(3)	N1—C19—H19C		109.5
C4—C	С5—Н5	119.5		H19A—C19—H1	9C	109.5
C1—C	С5—Н5	119.5		H19B—C19—H1	9C	109.5
C2—C	C6—C4	121.1	(3)	O2 ⁱ —Cu1—O2		180.00 (6)
C2—C	C6—Br1	120.3	(3)	O2 ⁱ —Cu1—N2		90.81 (8)
C4—C	C6—Br1	118.6	(3)	O2—Cu1—N2		89.19 (8)
C1-C	C7—C10	111.0	(2)	$O2^{i}$ —Cu1—N2 ⁱ		89.19 (8)

C1—C7—H7A	109.4	O2—Cu1—N2 ⁱ	90.81 (8)
С10—С7—Н7А	109.4	N2—Cu1—N2 ⁱ	180.00 (11)
C1—C7—H7B	109.4	O2—Cu1—O3	96.11 (7)
С10—С7—Н7В	109.4	O2—Cu1—O3 ⁱ	83.89 (7)
H7A—C7—H7B	108.0	O3—Cu1—N2	92.98 (7)
O1—C10—O2	125.9 (2)	O3—Cu1—O2 ⁱ	83.89 (7)
O1—C10—C7	118.6 (2)	O3—Cu1—O3 ⁱ	180.00 (7)
O2—C10—C7	115.5 (2)	O3—Cu1—N2 ⁱ	87.02 (7)
N1—C12—C13	122.9 (3)	N2—Cu1—O3 ⁱ	87.02 (7)
N1-C12-C16	122.8 (3)	$O2^{i}$ —Cu1—O3 ⁱ	96.11 (7)
C13—C12—C16	114.2 (2)	O3 ⁱ —Cu1—N2 ⁱ	92.98 (7)
C15—C13—C12	120.6 (3)	C12—N1—C17	121.5 (3)
C15—C13—H13	119.7	C12—N1—C19	121.4 (3)
C12—C13—H13	119.7	C17—N1—C19	117.1 (3)
N2-C14-C16	124.2 (3)	C15—N2—C14	115.4 (2)
N2—C14—H14	117.9	C15—N2—Cu1	123.04 (18)
C16—C14—H14	117.9	C14—N2—Cu1	121.40 (18)
N2—C15—C13	124.6 (2)	C10—O2—Cu1	125.44 (18)
N2—C15—H15	117.7	НЗВ—ОЗ—НЗА	105.6
C13—C15—H15	117.7		

Symmetry code: (i) -x+1, -y+1, -z.

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	D···A	<i>D</i> —H··· <i>A</i>
O3—H3 <i>B</i> ···O2 ⁱⁱ	0.90	2.03	2.901 (3)	161
O3—H3 <i>A</i> …O1	0.92	1.79	2.688 (3)	163

Symmetry code: (ii) x, y-1, z.