Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

N^{\prime}-(4-Hydroxy-3-methoxybenzylidene)acetohydrazide monohydrate

Lu-Ping Lv, ${ }^{\text {a }}$ Wen-Bo Yu, ${ }^{\text {a }}$ Ying Tan, ${ }^{\text {b }}$ Yong-Zhao Zhang ${ }^{\text {a }}$ and Xian-Chao Hu ${ }^{\text {c* }}$
${ }^{\text {a }}$ Department of Chemical Engineering, Hangzhou Vocational and Technical College, Hangzhou 310018, People's Republic of China, ' ${ }^{\text {b }}$ Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou 310051, People's Republic of China, and ${ }^{\text {c }}$ Research Center of Analysis and Measurement, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
Correspondence e-mail: zgdhxc@126.com

Received 6 August 2009; accepted 16 September 2009
Key indicators: single-crystal X-ray study; $T=223 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.002 \AA$;
R factor $=0.041 ; w R$ factor $=0.115$; data-to-parameter ratio $=13.4$.

In the title compound, $\mathrm{C}_{10} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}_{3} \cdot \mathrm{H}_{2} \mathrm{O}$, the Schiff base molecule is approximately planar [within 0.189 (1) A]. The interplanar angle between the benzene and acetohydrazide planes is $8.50(10)^{\circ}$. In the crystal, molecules are linked into a three-dimensional network by strong and weak $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ and strong $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds. The hydroxy H atom deviates from the 4-hydroxy-3-methoxyphenyl mean plane by 0.319 (2) \AA, probably due to the involvement of this H atom in the $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bond. The weak $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bond is involved in a bifurcated hydrogen bond with $R_{1}^{2}(4)$ motif. A weak $\mathrm{C}-\mathrm{H} \cdots \pi$ interaction is also present.

Related literature

For general background to Schiff bases, see: Cimerman et al. (1997); Offe et al. (1952); Richardson et al. (1988). For related structures, see: Li \& Jian (2008); Tamboura et al. (2009). For hydrogen bonds, see: Desiraju \& Steiner (1999); Etter et al. (1990).

Experimental

Crystal data
$\mathrm{C}_{10} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}_{3} \cdot \mathrm{H}_{2} \mathrm{O}$
$M_{r}=226.23$
Orthorhombic, Pbca

$$
\begin{aligned}
& a=7.892(2) \AA \\
& b=16.374(5) \AA \\
& c=18.334(6) \AA
\end{aligned}
$$

$V=2369.3(13) \AA^{3}$	$\mu=0.10 \mathrm{~mm}^{-1}$
$Z=8$	$T=223 \mathrm{~K}$
Mo $K \alpha$ radiation	$0.24 \times 0.20 \times 0.18 \mathrm{~mm}$
Data collection	
Bruker SMART CCD area-detector	11089 measured reflections
\quad diffractometer	2138 independent reflections
Absorption correction: multi-scan	1484 reflections with $I>2 \sigma(I)$
$\quad(S A D A B S ;$ Bruker, 2002$)$	$R_{\text {int }}=0.045$
$T_{\min }=0.977, T_{\max }=0.979$	

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.041$
H atoms treated by a mixture of
$w R\left(F^{2}\right)=0.115$
$S=1.07$
2138 reflections
159 parameters
1 restraint
independent and constrained refinement
$\Delta \rho_{\max }=0.14 \mathrm{e}^{-3}{ }^{-3}$
$\Delta \rho_{\text {min }}=-0.19 \mathrm{e}^{-3}$

Table 1
Hydrogen-bond geometry $\left(\AA^{\circ},{ }^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 1-\mathrm{H} 1 \cdots \mathrm{O} 1 \mathrm{~W}$	0.93 (2)	1.69 (2)	2.614 (2)	170 (2)
$\mathrm{O} 1 W-\mathrm{H} 9 \mathrm{~B} \cdots \mathrm{O} 1^{\text {i }}$	0.87 (3)	2.19 (3)	2.899 (2)	139 (2)
$\mathrm{O} 1 W-\mathrm{H} 9 \mathrm{~B} \cdots \mathrm{O}^{\text {i }}$	0.87 (3)	2.27 (2)	3.0506 (19)	148 (2)
$\mathrm{N} 2-\mathrm{H} 2 \cdots \mathrm{O} 3^{\text {ii }}$	0.837 (15)	2.023 (15)	2.851 (2)	169.6 (18)
$\mathrm{O} 1 W-\mathrm{H} 9 A \cdots \mathrm{O} 3^{\text {iii }}$	0.87 (2)	1.91 (2)	2.768 (2)	167 (2)
$\mathrm{C} 10-\mathrm{H} 10 \mathrm{C} \cdots \mathrm{Cg} 1^{\text {iv }}$	0.96	2.91	3.581 (3)	128

Symmetry codes: (i) $-x+1,-y,-z+1$; (ii) $x+\frac{1}{2}, y,-z+\frac{3}{2}$; (iii) $x,-y+\frac{1}{2}, z-\frac{1}{2}$; (iv)
$-x+1, y-\frac{1}{2},-z+\frac{1}{2} . C g 1$ is the centroid of the C $2-\mathrm{C} 7$ ring.
Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

The authors thank the Science and Technology Project of Zhejiang Province (grant No. 2007 F70077) for financial support.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: FB2165).

References

Bruker (2002). SADABS, SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.
Cimerman, Z., Galic, N. \& Bosner, B. (1997). Anal. Chim. Acta, 343, 145-153.
Desiraju, G. R. \& Steiner, T. (1999). The Weak Hydrogen Bond In Structural Chemistry and Biology, p. 13. New York: International Union of Crystallography and Oxford University Press Inc.
Etter, M. C., MacDonald, J. C. \& Bernstein, J. (1990). Acta Cryst. B46, 256-262.
Li, Y.-F. \& Jian, F.-F. (2008). Acta Cryst. E64, o2409.
Offe, H. A., Siefen, W. \& Domagk, G. (1952). Z. Naturforsch. Teil B, 7, 446447.

Richardson, D., Baker, E., Ponka, P., Wilairat, P., Vitolo, M. L. \& Webb, J. (1988). Thalassemia: Pathophysiology and Management, Part B, p. 81. New York: Alan R. Liss Inc.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Tamboura, A. B., Gaye, M., Sall, A. S., Barry, A. H. \& Bash, Y. (2009). Acta Cryst. E65, m160-m161.

supporting information

Acta Cryst. (2009). E65, o2514 [doi:10.1107/S1600536809037489]

N^{\prime}-(4-Hydroxy-3-methoxybenzylidene)acetohydrazide monohydrate Lu-Ping Lv, Wen-Bo Yu, Ying Tan, Yong-Zhao Zhang and Xian-Chao Hu

S1. Comment

Schiff bases have attracted much attention due to possibility of their analytical applications (Cimerman et al., 1997). They are also important ligands, which have been reported to show mild bacteriostatic activity and to be potential oral ironchelating drugs for genetic disorders such as thalassemia (Offe et al., 1952; Richardson et al., 1988). Metal complexes based on Schiff bases have received considerable attention because they can be utilized as model compounds with active centres in various complexes (Tamboura et al., 2009). Here we report the crystal structure of the title compound (Fig. 1).
In the Schiff base molecule, the acetohydrazide group is planar and it contains a dihedral angle equal $8.50(10)^{\circ}$ to the benzene ring. The molecule adopts the trans configuration with respect to the $\mathrm{C}=\mathrm{N}$ bond. Bond lengths and angles are comparable to those observed for N^{\prime}-[1-(4-methoxyphenyl)ethylidene]acetohydrazide (Li et al., 2008).

In the crystal structure, the Schiff base and water molecules are linked into a three-dimensional network by strong and weak (Desiraju \& Steiner, 1999) O—H $\cdots \mathrm{O}$ and strong $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds (Tab. 1). The weak $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bond is involved in the bifurcated hydrogen bond with the motif $\mathrm{R}^{2}{ }_{1}(4)$ (Etter et al., 1990). Intermolecular $\mathrm{C}-\mathrm{H} \cdots \pi$ interactions are also present in the structure. It is of interest, that the atom H 1 of the hydroxyl group deviates significantly from the mean plane of 4-hydroxy-3-methoxyphenyl (the atoms C1-C7//O1//O2) by 0.319 (2) \AA. This feature can be explained by its involvement into the $\mathrm{O} 1-\mathrm{H} 1 \cdots \mathrm{O} 1 \mathrm{~W}$ hydrogen bond (Tab. 1).

S2. Experimental

4-Hydroxy-3-methoxybenzaldehyde ($1.50 \mathrm{~g}, 0.01 \mathrm{~mol}$) and acetohydrazide ($0.74 \mathrm{~g}, 0.01 \mathrm{~mol}$) were dissolved in methanol $(20 \mathrm{ml})$ and stirred for 1.5 h at room temperature. The resulting solid was filtered off and recrystallized from ethanol to give the title compound in 88% yield. Colourless single crystals $(0.8 \times 0.6 \times 0.5 \mathrm{~mm})$ suitable for X-ray analysis were obtained by slow evaporation from ethanol solution at room temperature (m. p. 492-494 K).

S3. Refinement

All the hydrogen atoms could have been discerned in the difference electron density map, nevertheless, all the hydrogens attached to the carbon atoms were constrained in a riding motion approximation: $\mathrm{C}_{\text {aryl }}-\mathrm{H}=0.93, \mathrm{C}_{\text {methyl }}-\mathrm{H}=0.96 \AA$; $\mathrm{U}_{\text {iso }} \mathrm{H}_{\text {aryl }}=1.2 \mathrm{U}_{\text {eq }} \mathrm{C}_{\text {aryl }}, \mathrm{U}_{\text {iso }} \mathrm{H}_{\text {methyl }}=1.5 \mathrm{U}_{\text {eq }} \mathrm{C}_{\text {methyl }}$. The coordinates of the water hydrogens were freely refined with $\mathrm{U}_{\mathrm{is} 0} \mathrm{H}_{\mathrm{Ow}}=1.5 \mathrm{U}_{\mathrm{eq}} \mathrm{Ow}$. The $\mathrm{N} 2-\mathrm{H} 2$ distance was restrained to $0.87(2) \AA, \mathrm{U}_{\mathrm{is} 0} \mathrm{H} 2=1.2 \mathrm{U}_{\mathrm{eq}} \mathrm{N} 2$.

Figure 1
The asymmetric unit of the title structure. The displacement ellipsoids are drawn at the 40% probability level. The dashed lines indicate the hydrogen bonds.

Figure 2
Molecular packing in the title compound. Hydrogen bonds are shown as dashed lines.

N^{\prime}-(4-Hydroxy-3-methoxybenzylidene)acetohydrazide monohydrate

Crystal data

$\mathrm{C}_{10} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}_{3} \cdot \mathrm{H}_{2} \mathrm{O}$
$M_{r}=226.23$
Orthorhombic, Pbca
Hall symbol: -P 2ac 2ab
$a=7.892(2) \AA$
$b=16.374$ (5) \AA
$c=18.334$ (6) \AA
$V=2369.3(13) \AA^{3}$
$Z=8$
$F(000)=960$

Data collection

Bruker SMART CCD area-detector diffractometer
Radiation source: fine-focus sealed tube
Graphite monochromator
φ and ω scans
Absorption correction: multi-scan
(SADABS; Bruker, 2002)
$T_{\min }=0.977, T_{\max }=0.979$
$D_{\mathrm{x}}=1.268 \mathrm{Mg} \mathrm{m}^{-3}$
Melting point $=492-494 \mathrm{~K}$
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 2085 reflections
$\theta=2.2-25.0^{\circ}$
$\mu=0.10 \mathrm{~mm}^{-1}$
$T=223 \mathrm{~K}$
Block, colourless
$0.24 \times 0.20 \times 0.18 \mathrm{~mm}$

11089 measured reflections
2138 independent reflections
1484 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.045$
$\theta_{\text {max }}=25.4^{\circ}, \theta_{\text {min }}=2.2^{\circ}$
$h=-9 \rightarrow 8$
$k=-19 \rightarrow 19$
$l=-21 \rightarrow 21$

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.041$
$w R\left(F^{2}\right)=0.115$
$S=1.07$
2138 reflections
159 parameters
1 restraint
41 constraints
Primary atom site location: structure-invariant direct methods

Secondary atom site location: difference Fourier map
Hydrogen site location: difference Fourier map
H atoms treated by a mixture of independent and constrained refinement
$w=1 /\left[\sigma^{2}\left(F_{0}^{2}\right)+(0.0602 P)^{2}+0.0171 P\right]$
where $P=\left(F_{0}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}<0.001$
$\Delta \rho_{\max }=0.14 \mathrm{e} \AA^{-3}$
$\Delta \rho_{\text {min }}=-0.19 \mathrm{e}^{-3}$

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F^{2} against ALL reflections. The weighted R -factor $w R$ and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>2 \operatorname{sigma}\left(\mathrm{~F}^{2}\right)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F , and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\AA^{2})

	x	y	z	$U_{\text {iso }} * / U_{\text {eq }}$
O2	$0.44998(15)$	$0.16677(8)$	$0.62044(7)$	$0.0551(4)$
O1	$0.58987(17)$	$0.08238(8)$	$0.51886(7)$	$0.0548(4)$
H1	$0.661(3)$	$0.0446(14)$	$0.4961(12)$	0.082^{*}
N2	$1.03345(18)$	$0.42155(9)$	$0.73839(8)$	$0.0446(4)$

H2	$1.131(2)$	$0.4257(11)$	$0.7207(10)$	0.053^{*}
O3	$0.85188(16)$	$0.45567(8)$	$0.82838(7)$	$0.0593(4)$
N1	$0.92032(17)$	$0.36650(8)$	$0.70786(7)$	$0.0414(4)$
C7	$0.8701(2)$	$0.26735(10)$	$0.61434(9)$	$0.0400(4)$
C3	$0.6871(2)$	$0.14216(10)$	$0.54766(9)$	$0.0404(4)$
C4	$0.7033(2)$	$0.25087(10)$	$0.63651(9)$	$0.0415(4)$
H4	0.6540	0.2817	0.6735	0.050^{*}
C2	$0.6124(2)$	$0.18899(10)$	$0.60350(9)$	$0.0399(4)$
C9	$0.9926(2)$	$0.46154(11)$	$0.79905(10)$	$0.0471(5)$
C8	$0.9721(2)$	$0.32982(10)$	$0.65066(9)$	$0.0427(5)$
H8	1.0776	0.3432	0.6315	0.051^{*}
C5	$0.8503(2)$	$0.15935(11)$	$0.52546(9)$	$0.0453(5)$
H5	0.8992	0.1293	0.4879	0.054^{*}
C6	$0.9417(2)$	$0.22132(10)$	$0.55890(9)$	$0.0452(5)$
H6	1.0521	0.2321	0.5440	0.054^{*}
C10	$1.1285(3)$	$0.51521(13)$	$0.83054(11)$	$0.0679(6)$
H10A	1.2178	0.5219	0.7955	0.102^{*}
H10B	1.1732	0.4904	0.8739	0.102^{*}
H10C	1.0815	0.5676	0.8423	0.102^{*}
C1	$0.3699(3)$	$0.20816(14)$	$0.67877(12)$	$0.0760(7)$
H1A	0.2576	0.1868	0.6854	0.114^{*}
H1B	0.3636	0.2654	0.6679	0.114^{*}
H1C	0.4342	0.2003	0.7227	$0.0579(4)$
O1W	$0.75904(19)$	$-0.03511(8)$	$0.45548(8)$	0.087^{*}
H9A	$0.791(3)$	$-0.0175(14)$	$0.4128(12)$	0.087^{*}
H9B	$0.676(3)$	$-0.0698(15)$	$0.4498(13)$	

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
O2	$0.0375(8)$	$0.0614(9)$	$0.0665(9)$	$-0.0106(6)$	$0.0067(7)$	$-0.0210(6)$
O1	$0.0473(9)$	$0.0537(8)$	$0.0635(8)$	$-0.0095(7)$	$0.0024(7)$	$-0.0189(6)$
N2	$0.0254(8)$	$0.0517(9)$	$0.0566(10)$	$-0.0096(7)$	$0.0013(7)$	$-0.0094(7)$
O3	$0.0361(8)$	$0.0803(10)$	$0.0615(9)$	$-0.0070(7)$	$0.0040(7)$	$-0.0184(7)$
N1	$0.0317(9)$	$0.0435(8)$	$0.0489(9)$	$-0.0073(6)$	$-0.0042(7)$	$-0.0020(7)$
C7	$0.0381(11)$	$0.0419(10)$	$0.0398(9)$	$-0.0054(8)$	$-0.0028(8)$	$0.0050(7)$
C3	$0.0413(11)$	$0.0396(9)$	$0.0402(9)$	$-0.0029(8)$	$-0.0045(8)$	$0.0004(8)$
C4	$0.0366(11)$	$0.0447(10)$	$0.0431(9)$	$-0.0001(8)$	$-0.0025(8)$	$-0.0032(7)$
C2	$0.0322(10)$	$0.0421(10)$	$0.0454(10)$	$-0.0015(8)$	$-0.0025(8)$	$0.0005(8)$
C9	$0.0324(11)$	$0.0516(11)$	$0.0571(12)$	$-0.0013(9)$	$-0.0033(9)$	$-0.0094(9)$
C8	$0.0339(10)$	$0.0473(10)$	$0.0469(11)$	$-0.0060(8)$	$0.0008(8)$	$0.0020(8)$
C5	$0.0478(12)$	$0.0494(11)$	$0.0387(10)$	$-0.0036(9)$	$0.0053(8)$	$-0.0012(8)$
C6	$0.0394(11)$	$0.0502(11)$	$0.0459(10)$	$-0.0095(8)$	$0.0068(8)$	$0.0046(8)$
C10	$0.0428(13)$	$0.0720(14)$	$0.0890(16)$	$-0.0084(11)$	$-0.0020(11)$	$-0.0344(12)$
C1	$0.0428(13)$	$0.0937(17)$	$0.0913(16)$	$-0.0117(12)$	$0.0174(12)$	$-0.0392(13)$
O1W	$0.0526(10)$	$0.0591(9)$	$0.0620(8)$	$-0.0126(7)$	$0.0080(7)$	$-0.0117(7)$

Geometric parameters (A, ${ }^{\circ}$)

O2-C2	$1.368(2)$	C4-H4	0.9300
O2-C1	$1.415(2)$	C9-C10	$1.502(3)$
O1-C3	$1.351(2)$	C8-H8	0.9300
O1-H1	$0.93(2)$	C5-C6	$1.388(2)$
N2-C9	$1.330(2)$	C5-H5	0.9300
N2-N1	$1.3868(19)$	C6-H6	0.9300
N2-H2	$0.837(15)$	C10-H10A	0.9600
O3-C9	$1.238(2)$	C10-H10B	0.9600
N1-C8	$1.276(2)$	C10-H10C	0.9600
C7-C6	$1.386(2)$	C1-H1A	0.9600
C7-C4	$1.403(2)$	C1-H1B	0.9600
C7-C8	$1.462(2)$	C1-H1C	0.9600
C3-C5	$1.380(3)$	O1W-H9A	$0.87(2)$
C3-C2	$1.408(2)$	O1W-H9B	$0.87(3)$
C4-C2	$1.381(2)$		
C2-O2-C1	$117.56(14)$	N1-C8-H8	119.1
C3-O1-H1	$108.4(15)$	C7-C8-H8	119.1
C9-N2-N1	$120.09(15)$	C3-C5-C6	$120.27(16)$
C9-N2-H2	$120.5(13)$	C3-C5-H5	119.9
N1-N2-H2	$119.1(13)$	C6-C5-H5	119.9
C8-N1-N2	$115.58(14)$	C7-C6-C5	$120.65(16)$
C6-C7-C4	$119.35(16)$	C7-C6-H6	119.7
C6-C7-C8	$119.34(16)$	C5-C6-H6	119.7
C4-C7-C8	$121.25(16)$	C9-C10-H10A	109.5
O1-C3-C5	$124.23(16)$	C9-C10-H10B	109.5
O1-C3-C2	$116.17(16)$	H10A-C10-H10B	109.5
C5-C3-C2	$119.60(16)$	C9-C10-H10C	109.5
C2-C4-C7	$120.09(16)$	H10A-C10-H10C	109.5
C2-C4-H4	120.0	H10B-C10-H10C	109.5
C7-C4-H4	120.0	O2-C1-H1A	109.5
O2-C2-C4	$125.62(15)$	O2-C1-H1B	109.5
O2-C2-C3	$114.35(14)$	H1A-C1-H1B	109.5
C4-C2-C3	$120.02(16)$	O2-C1-H1C	109.5
O3-C9-N2	$122.85(16)$	H1A-C1-H1C	109.5
O3-C9-C10	$121.28(17)$	H1B-C1-H1C	109.5
N2-C9-C10	$115.87(17)$	H9A-O1W-H9B	$109(2)$
N1-C8-C7	$121.84(16)$		

Hydrogen-bond geometry ($\hat{A},{ }^{\circ}$)

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 1-\mathrm{H} 1 \cdots \mathrm{O} 1 W$	$0.93(2)$	$1.69(2)$	$2.614(2)$	$170(2)$
$\mathrm{O} 1 W-\mathrm{H} 9 B \cdots \mathrm{O} 1^{\mathrm{i}}$	$0.87(3)$	$2.19(3)$	$2.899(2)$	$139(2)$
$\mathrm{O} 1 W-\mathrm{H} 9 B \cdots \mathrm{O} 2^{\mathrm{i}}$	$0.87(3)$	$2.27(2)$	$3.0506(19)$	$148(2)$
$\mathrm{N} 2-\mathrm{H} 2 \cdots \mathrm{O}^{3 i}$	$0.84(2)$	$2.02(2)$	$2.851(2)$	$170(2)$

supporting information

$\mathrm{O} 1 W — \mathrm{H} 9 A \cdots \mathrm{O} 3^{\text {iii }}$	$0.87(2)$	$1.91(2)$	$2.768(2)$	$167(2)$
$\mathrm{C} 10 — \mathrm{H} 10 C \cdots C g 1^{\mathrm{iv}}$	0.96	2.91	$3.581(3)$	128

Symmetry codes: (i) $-x+1,-y,-z+1$; (ii) $x+1 / 2, y,-z+3 / 2$; (iii) $x,-y+1 / 2, z-1 / 2$; (iv) $-x+1, y-1 / 2,-z+1 / 2$.

