organic compounds

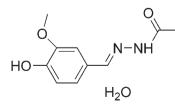
Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

N'-(4-Hydroxy-3-methoxybenzylidene)-acetohydrazide monohydrate

Lu-Ping Lv,^a Wen-Bo Yu,^a Ying Tan,^b Yong-Zhao Zhang^a and Xian-Chao Hu^c*

^aDepartment of Chemical Engineering, Hangzhou Vocational and Technical College, Hangzhou 310018, People's Republic of China, ^bZhejiang Provincial Center for Disease Control and Prevention, Hangzhou 310051, People's Republic of China, and ^cResearch Center of Analysis and Measurement, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China Correspondence e-mail: zgdhxc@126.com


Received 6 August 2009; accepted 16 September 2009

Key indicators: single-crystal X-ray study; T = 223 K; mean σ (C–C) = 0.002 Å; R factor = 0.041; wR factor = 0.115; data-to-parameter ratio = 13.4.

In the title compound, $C_{10}H_{12}N_2O_3 \cdot H_2O$, the Schiff base molecule is approximately planar [within 0.189 (1) Å]. The interplanar angle between the benzene and acetohydrazide planes is 8.50 (10)°. In the crystal, molecules are linked into a three-dimensional network by strong and weak $O-H\cdots O$ and strong $N-H\cdots O$ hydrogen bonds. The hydroxy H atom deviates from the 4-hydroxy-3-methoxyphenyl mean plane by 0.319 (2) Å, probably due to the involvement of this H atom in the $O-H\cdots O$ hydrogen bond. The weak $O-H\cdots O$ hydrogen bond is involved in a bifurcated hydrogen bond with $R_1^2(4)$ motif. A weak $C-H\cdots \pi$ interaction is also present.

Related literature

For general background to Schiff bases, see: Cimerman *et al.* (1997); Offe *et al.* (1952); Richardson *et al.* (1988). For related structures, see: Li & Jian (2008); Tamboura *et al.* (2009). For hydrogen bonds, see: Desiraju & Steiner (1999); Etter *et al.* (1990).

Experimental

Crystal data

a = 7.892 (2) Åb = 16.374 (5) Åc = 18.334 (6) Å $V = 2369.3 (13) \text{ Å}^3$ Z = 8Mo $K\alpha$ radiation

Data collection

Bruker SMART CCD area-detector	11089
diffractometer	2138
Absorption correction: multi-scan	1484
(SADABS; Bruker, 2002)	$R_{int} =$
$T_{\min} = 0.977, \ T_{\max} = 0.979$	

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.041$ $wR(F^2) = 0.115$ S = 1.072138 reflections 159 parameters 1 restraint $\mu = 0.10 \text{ mm}^{-1}$ T = 223 K $0.24 \times 0.20 \times 0.18 \text{ mm}$

11089 measured reflections 2138 independent reflections 1484 reflections with $I > 2\sigma(I)$ $R_{int} = 0.045$

H atoms treated by a mixture of independent and constrained refinement $\Delta \rho_{max} = 0.14 \text{ e } \text{ Å}^{-3}$ $\Delta \rho_{min} = -0.19 \text{ e } \text{ Å}^{-3}$

Table 1 Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdots A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
O1−H1···O1W	0.93 (2)	1.69 (2)	2.614 (2)	170 (2)
$O1W - H9B \cdot \cdot \cdot O1^{i}$	0.87 (3)	2.19 (3)	2.899 (2)	139 (2)
$O1W - H9B \cdot \cdot \cdot O2^{i}$	0.87 (3)	2.27 (2)	3.0506 (19)	148 (2)
$N2-H2\cdots O3^{ii}$	0.837 (15)	2.023 (15)	2.851 (2)	169.6 (18)
$O1W - H9A \cdot \cdot \cdot O3^{iii}$	0.87 (2)	1.91 (2)	2.768 (2)	167 (2)
$C10-H10C\cdots Cg1^{iv}$	0.96	2.91	3.581 (3)	128

Symmetry codes: (i) -x + 1, -y, -z + 1; (ii) $x + \frac{1}{2}, y, -z + \frac{3}{2}$; (iii) $x, -y + \frac{1}{2}, z - \frac{1}{2}$; (iv) $-x + 1, y - \frac{1}{2}, -z + \frac{1}{2}$. Cg1 is the centroid of the C2–C7 ring.

Data collection: *SMART* (Bruker, 2002); cell refinement: *SAINT* (Bruker, 2002); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXTL*.

The authors thank the Science and Technology Project of Zhejiang Province (grant No. 2007 F70077) for financial support.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: FB2165).

References

- Bruker (2002). SADABS, SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.
- Cimerman, Z., Galic, N. & Bosner, B. (1997). Anal. Chim. Acta, 343, 145–153. Desiraju, G. R. & Steiner, T. (1999). The Weak Hydrogen Bond In Structural
- Chemistry and Biology, p. 13. New York: International Union of Crystallography and Oxford University Press Inc.
- Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262. Li, Y.-F. & Jian, F.-F. (2008). Acta Cryst. E64, 02409.
- Offe, H. A., Siefen, W. & Domagk, G. (1952). Z. Naturforsch. Teil B, 7, 446–447.
- Richardson, D., Baker, E., Ponka, P., Wilairat, P., Vitolo, M. L. & Webb, J. (1988). *Thalassemia: Pathophysiology and Management*, Part B, p. 81. New York: Alan R. Liss Inc.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Tamboura, A. B., Gaye, M., Sall, A. S., Barry, A. H. & Bash, Y. (2009). Acta Cryst. E65, m160-m161.

supporting information

Acta Cryst. (2009). E65, o2514 [doi:10.1107/S1600536809037489]

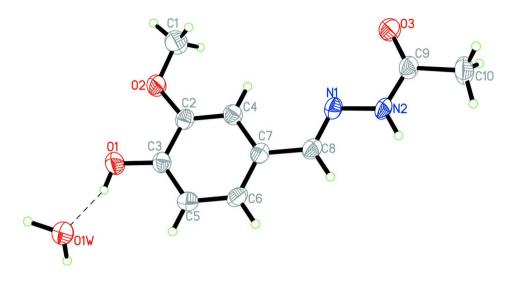
N'-(4-Hydroxy-3-methoxybenzylidene)acetohydrazide monohydrate

Lu-Ping Lv, Wen-Bo Yu, Ying Tan, Yong-Zhao Zhang and Xian-Chao Hu

S1. Comment

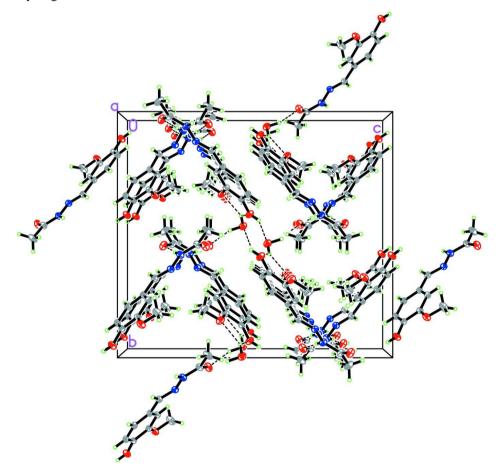
Schiff bases have attracted much attention due to possibility of their analytical applications (Cimerman *et al.*, 1997). They are also important ligands, which have been reported to show mild bacteriostatic activity and to be potential oral iron-chelating drugs for genetic disorders such as thalassemia (Offe *et al.*, 1952; Richardson *et al.*, 1988). Metal complexes based on Schiff bases have received considerable attention because they can be utilized as model compounds with active centres in various complexes (Tamboura *et al.*, 2009). Here we report the crystal structure of the title compound (Fig. 1).

In the Schiff base molecule, the acetohydrazide group is planar and it contains a dihedral angle equal $8.50 (10)^{\circ}$ to the benzene ring. The molecule adopts the *trans* configuration with respect to the C=N bond. Bond lengths and angles are comparable to those observed for N'-[1-(4-methoxyphenyl)ethylidene]acetohydrazide (Li *et al.*, 2008).


In the crystal structure, the Schiff base and water molecules are linked into a three-dimensional network by strong and weak (Desiraju & Steiner, 1999) O—H···O and strong N—H···O hydrogen bonds (Tab. 1). The weak O—H···O hydrogen bond is involved in the bifurcated hydrogen bond with the motif $R^2_1(4)$ (Etter *et al.*, 1990). Intermolecular C—H··· π interactions are also present in the structure. It is of interest, that the atom H1 of the hydroxyl group deviates significantly from the mean plane of 4-hydroxy-3-methoxyphenyl (the atoms C1-C7//O1//O2) by 0.319 (2)Å. This feature can be explained by its involvement into the O1—H1···O1W hydrogen bond (Tab. 1).

S2. Experimental

4-Hydroxy-3-methoxybenzaldehyde (1.50 g, 0.01 mol) and acetohydrazide (0.74 g, 0.01 mol) were dissolved in methanol (20 ml) and stirred for 1.5 h at room temperature. The resulting solid was filtered off and recrystallized from ethanol to give the title compound in 88% yield. Colourless single crystals ($0.8 \times 0.6 \times 0.5$ mm) suitable for X-ray analysis were obtained by slow evaporation from ethanol solution at room temperature (m. p. 492–494 K).


S3. Refinement

All the hydrogen atoms could have been discerned in the difference electron density map, nevertheless, all the hydrogens attached to the carbon atoms were constrained in a riding motion approximation: C_{aryl} -H = 0.93, C_{methyl} -H = 0.96Å; $U_{iso}H_{aryl} = 1.2U_{eq}C_{aryl}$, $U_{iso}H_{methyl}$ =1.5 $U_{eq}C_{methyl}$. The coordinates of the water hydrogens were freely refined with $U_{iso}H_{Ow}$ =1.5 $U_{eq}Ow$. The N2-H2 distance was restrained to 0.87 (2) Å, $U_{iso}H2 = 1.2U_{eq}N2$.

Figure 1

The asymmetric unit of the title structure. The displacement ellipsoids are drawn at the 40% probability level. The dashed lines indicate the hydrogen bonds.

Figure 2

Molecular packing in the title compound. Hydrogen bonds are shown as dashed lines.

N'-(4-Hydroxy-3-methoxybenzylidene)acetohydrazide monohydrate

Crystal data

 $C_{10}H_{12}N_{2}O_{3} \cdot H_{2}O$ $M_{r} = 226.23$ Orthorhombic, *Pbca*Hall symbol: -P 2ac 2ab a = 7.892 (2) Å b = 16.374 (5) Å c = 18.334 (6) Å $V = 2369.3 (13) \text{ Å}^{3}$ Z = 8 F(000) = 960

Data collection

Bruker SMART CCD area-detector
diffractometer
Radiation source: fine-focus sealed tube
Graphite monochromator
φ and ω scans
Absorption correction: multi-scan
(SADABS; Bruker, 2002)
$T_{\min} = 0.977, \ T_{\max} = 0.979$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.041$	Hydrogen site location: difference Fourier map
$wR(F^2) = 0.115$	H atoms treated by a mixture of independent
S = 1.07	and constrained refinement
2138 reflections	$w = 1/[\sigma^2(F_o^2) + (0.0602P)^2 + 0.0171P]$
159 parameters	where $P = (F_{o}^{2} + 2F_{c}^{2})/3$
1 restraint	$(\Delta/\sigma)_{\rm max} < 0.001$
41 constraints	$\Delta ho_{ m max} = 0.14 \ m e \ m \AA^{-3}$
Primary atom site location: structure-invariant	$\Delta \rho_{\rm min} = -0.19 \text{ e} \text{ Å}^{-3}$
direct methods	

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

 $D_{\rm x} = 1.268 {\rm Mg} {\rm m}^{-3}$

 $\theta = 2.2 - 25.0^{\circ}$ $\mu = 0.10 \text{ mm}^{-1}$

Block, colourless

 $0.24 \times 0.20 \times 0.18 \text{ mm}$

11089 measured reflections 2138 independent reflections 1484 reflections with $I > 2\sigma(I)$

 $\theta_{\text{max}} = 25.4^{\circ}, \ \theta_{\text{min}} = 2.2^{\circ}$

T = 223 K

 $R_{\rm int} = 0.045$

 $h = -9 \rightarrow 8$ $k = -19 \rightarrow 19$ $l = -21 \rightarrow 21$

Melting point = 492–494 K Mo $K\alpha$ radiation, $\lambda = 0.71073$ Å

Cell parameters from 2085 reflections

Refinement. Refinement of F^2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2 , conventional R-factors R are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2$ sigma(F^2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$	Fractional atomic coordinates and	d isotropic or equivalen	t isotropic displacemer	<i>it parameters</i> $(Å^2)$
---	-----------------------------------	--------------------------	-------------------------	------------------------------

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
02	0.44998 (15)	0.16677 (8)	0.62044 (7)	0.0551 (4)
01	0.58987 (17)	0.08238 (8)	0.51886 (7)	0.0548 (4)
H1	0.661 (3)	0.0446 (14)	0.4961 (12)	0.082*
N2	1.03345 (18)	0.42155 (9)	0.73839 (8)	0.0446 (4)

H2	1.131 (2)	0.4257 (11)	0.7207 (10)	0.053*
O3	0.85188 (16)	0.45567 (8)	0.82838 (7)	0.0593 (4)
N1	0.92032 (17)	0.36650 (8)	0.70786 (7)	0.0414 (4)
C7	0.8701 (2)	0.26735 (10)	0.61434 (9)	0.0400 (4)
C3	0.6871 (2)	0.14216 (10)	0.54766 (9)	0.0404 (4)
C4	0.7033 (2)	0.25087 (10)	0.63651 (9)	0.0415 (4)
H4	0.6540	0.2817	0.6735	0.050*
C2	0.6124 (2)	0.18899 (10)	0.60350 (9)	0.0399 (4)
C9	0.9926 (2)	0.46154 (11)	0.79905 (10)	0.0471 (5)
C8	0.9721 (2)	0.32982 (10)	0.65066 (9)	0.0427 (5)
H8	1.0776	0.3432	0.6315	0.051*
C5	0.8503 (2)	0.15935 (11)	0.52546 (9)	0.0453 (5)
Н5	0.8992	0.1293	0.4879	0.054*
C6	0.9417 (2)	0.22132 (10)	0.55890 (9)	0.0452 (5)
H6	1.0521	0.2321	0.5440	0.054*
C10	1.1285 (3)	0.51521 (13)	0.83054 (11)	0.0679 (6)
H10A	1.2178	0.5219	0.7955	0.102*
H10B	1.1732	0.4904	0.8739	0.102*
H10C	1.0815	0.5676	0.8423	0.102*
C1	0.3699 (3)	0.20816 (14)	0.67877 (12)	0.0760 (7)
H1A	0.2576	0.1868	0.6854	0.114*
H1B	0.3636	0.2654	0.6679	0.114*
H1C	0.4342	0.2003	0.7227	0.114*
O1W	0.75904 (19)	-0.03511 (8)	0.45548 (8)	0.0579 (4)
H9A	0.791 (3)	-0.0175 (14)	0.4128 (12)	0.087*
H9B	0.676 (3)	-0.0698 (15)	0.4498 (13)	0.087*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
02	0.0375 (8)	0.0614 (9)	0.0665 (9)	-0.0106 (6)	0.0067 (7)	-0.0210 (6)
01	0.0473 (9)	0.0537 (8)	0.0635 (8)	-0.0095 (7)	0.0024 (7)	-0.0189 (6)
N2	0.0254 (8)	0.0517 (9)	0.0566 (10)	-0.0096 (7)	0.0013 (7)	-0.0094 (7)
03	0.0361 (8)	0.0803 (10)	0.0615 (9)	-0.0070 (7)	0.0040 (7)	-0.0184 (7)
N1	0.0317 (9)	0.0435 (8)	0.0489 (9)	-0.0073 (6)	-0.0042 (7)	-0.0020 (7)
C7	0.0381 (11)	0.0419 (10)	0.0398 (9)	-0.0054 (8)	-0.0028 (8)	0.0050 (7)
С3	0.0413 (11)	0.0396 (9)	0.0402 (9)	-0.0029 (8)	-0.0045 (8)	0.0004 (8)
C4	0.0366 (11)	0.0447 (10)	0.0431 (9)	-0.0001 (8)	-0.0025 (8)	-0.0032 (7)
C2	0.0322 (10)	0.0421 (10)	0.0454 (10)	-0.0015 (8)	-0.0025 (8)	0.0005 (8)
С9	0.0324 (11)	0.0516 (11)	0.0571 (12)	-0.0013 (9)	-0.0033 (9)	-0.0094 (9)
C8	0.0339 (10)	0.0473 (10)	0.0469 (11)	-0.0060 (8)	0.0008 (8)	0.0020 (8)
C5	0.0478 (12)	0.0494 (11)	0.0387 (10)	-0.0036 (9)	0.0053 (8)	-0.0012 (8)
C6	0.0394 (11)	0.0502 (11)	0.0459 (10)	-0.0095 (8)	0.0068 (8)	0.0046 (8)
C10	0.0428 (13)	0.0720 (14)	0.0890 (16)	-0.0084 (11)	-0.0020 (11)	-0.0344 (12)
C1	0.0428 (13)	0.0937 (17)	0.0913 (16)	-0.0117 (12)	0.0174 (12)	-0.0392 (13)
O1W	0.0526 (10)	0.0591 (9)	0.0620 (8)	-0.0126 (7)	0.0080(7)	-0.0117 (7)

Geometric parameters (Å, °)

02—C2	1.368 (2)	C4—H4	0.9300
O2—C1	1.415 (2)	C9—C10	1.502 (3)
O1—C3	1.351 (2)	C8—H8	0.9300
01—H1	0.93 (2)	C5—C6	1.388 (2)
N2—C9	1.330 (2)	C5—H5	0.9300
N2—N1	1.3868 (19)	C6—H6	0.9300
N2—H2	0.837 (15)	C10—H10A	0.9600
О3—С9	1.238 (2)	C10—H10B	0.9600
N1—C8	1.276 (2)	C10—H10C	0.9600
С7—С6	1.386 (2)	C1—H1A	0.9600
C7—C4	1.403 (2)	C1—H1B	0.9600
С7—С8	1.462 (2)	C1—H1C	0.9600
C3—C5	1.380 (3)	O1W—H9A	0.87 (2)
С3—С2	1.408 (2)	O1W—H9B	0.87 (3)
C4—C2	1.381 (2)		
C2—O2—C1	117.56 (14)	N1—C8—H8	119.1
C3—O1—H1	108.4 (15)	C7—C8—H8	119.1
C9—N2—N1	120.09 (15)	C3—C5—C6	120.27 (16)
C9—N2—H2	120.5 (13)	C3—C5—H5	119.9
N1—N2—H2	119.1 (13)	C6—C5—H5	119.9
C8—N1—N2	115.58 (14)	C7—C6—C5	120.65 (16)
C6—C7—C4	119.35 (16)	С7—С6—Н6	119.7
С6—С7—С8	119.34 (16)	С5—С6—Н6	119.7
C4—C7—C8	121.25 (16)	C9—C10—H10A	109.5
O1—C3—C5	124.23 (16)	C9—C10—H10B	109.5
O1—C3—C2	116.17 (16)	H10A—C10—H10B	109.5
C5—C3—C2	119.60 (16)	C9—C10—H10C	109.5
C2—C4—C7	120.09 (16)	H10A—C10—H10C	109.5
С2—С4—Н4	120.0	H10B—C10—H10C	109.5
С7—С4—Н4	120.0	O2—C1—H1A	109.5
O2—C2—C4	125.62 (15)	O2—C1—H1B	109.5
O2—C2—C3	114.35 (14)	H1A—C1—H1B	109.5
C4—C2—C3	120.02 (16)	O2—C1—H1C	109.5
O3—C9—N2	122.85 (16)	H1A—C1—H1C	109.5
O3—C9—C10	121.28 (17)	H1B—C1—H1C	109.5
N2—C9—C10	115.87 (17)	H9A—O1W—H9B	109 (2)
N1	121.84 (16)		

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H···A
O1—H1…O1 <i>W</i>	0.93 (2)	1.69 (2)	2.614 (2)	170 (2)
O1 <i>W</i> —H9 <i>B</i> ···O1 ⁱ	0.87 (3)	2.19 (3)	2.899 (2)	139 (2)
O1 <i>W</i> —H9 <i>B</i> ···O2 ⁱ	0.87 (3)	2.27 (2)	3.0506 (19)	148 (2)
N2—H2···O3 ⁱⁱ	0.84 (2)	2.02 (2)	2.851 (2)	170 (2)

			supporting information	
O1 <i>W</i> —H9 <i>A</i> ···O3 ⁱⁱⁱ	0.87 (2)	1.91 (2)	2.768 (2)	167 (2)
C10—H10 <i>C</i> ··· <i>C</i> g1 ^{iv}	0.96	2.91	3.581 (3)	128

Symmetry codes: (i) -x+1, -y, -z+1; (ii) x+1/2, y, -z+3/2; (iii) x, -y+1/2, z-1/2; (iv) -x+1, y-1/2, -z+1/2.