

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

6,6'-Dimethoxy-2,2'-[(*E*,*E*')-(4-chloro-*m*-phenylene)bis(nitrilomethylidyne)]diphenol

Bohari M. Yamin,^a Siti Najihah A. Bakar,^b Karimah Kassim^b and Hadariah Bahron^b*

^aSchool of Chemical Sciences and Food Technology, Univeriti Kebangsaan Malaysia, UKM 43500 Bangi Selangor. Malaysia, and ^bDepartment of Chemistry, Faculty of Applied Sciences, Universiti Teknologi MARA, 40450 Shah Alam, Selangor, Malaysia

Correspondence e-mail: hadariah@salam.uitm.edu.my

Received 4 September 2009; accepted 15 September 2009

Key indicators: single-crystal X-ray study; T = 298 K; mean σ (C–C) = 0.003 Å; R factor = 0.055; wR factor = 0.131; data-to-parameter ratio = 14.9.

The title compound, $C_{22}H_{19}ClN_2O_4$, has the appearance of a warped butterfly. One 2-hydroxy-3-methoxybenzylideneamino fragment is planar [with a maximum deviation of 0.056 (3) Å] and forms a dihedral angle of 9.85 (9)° with the central benzene ring. The other fragment is not planar; however, the methoxyphenol group is planar [with the maximum deviation of 0.033 (2) Å] and makes a dihedral angle of 41.7 (3)° with the central benzene ring. The molecule is stabilized by intramolecular $O-H\cdots N$ hydrogen bonding. The crystal structure is stabilized by weak intermolecular $C-H\cdots O$ hydrogen bonding and $C-H\cdots \pi$ interactions.

Related literature

For the biological activity of Schiff bases, see: Aranha *et al.* (2007) and for the corrosion inhibition potential of Schiff bases, see: Chetouani *et al.* (2005). For related structures, see: Hernández-Molina *et al.* (1997); Torayama *et al.* (1997). For bond-length data, see: Allen *et al.* (1987).

Experimental

Crystal data	
$C_{22}H_{19}CIN_2O_4$	a = 9.900 (2) Å
$M_r = 410.84$	b = 6.8589 (12) Å
Monoclinic, $P2_1/n$	c = 28.830 (6) Å

$\beta = 94.659 \ (4)^{\circ}$
V = 1951.2 (7) Å ³
Z = 4
Mo $K\alpha$ radiation

Data collection

Bruker SMART APEX CCD areadetector diffractometer Absorption correction: multi-scan (*SADABS*; Bruker, 2000) $T_{min} = 0.912, T_{max} = 0.975$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.055$ $wR(F^2) = 0.131$ S = 1.064049 reflections 272 parameters 2 restraints

 $0.41 \times 0.40 \times 0.11 \ \mathrm{mm}$

 $\mu = 0.23 \text{ mm}^{-1}$ T = 298 K

12204 measured reflections 4049 independent reflections 2758 reflections with $I > 2\sigma(I)$ $R_{\text{int}} = 0.030$

H atoms treated by a mixture of independent and constrained refinement $\Delta \rho_{\rm max} = 0.21 \text{ e } \text{\AA}^{-3}$ $\Delta \rho_{\rm min} = -0.17 \text{ e } \text{\AA}^{-3}$

Table 1Hydrogen-bond geometry (Å, °).

 $D - H \cdot \cdot \cdot A$ D-H $H \cdot \cdot \cdot A$ $D \cdot \cdot \cdot A$ $D - H \cdot \cdot \cdot A$ 2.586 (3) $O2-H2 \cdot \cdot \cdot N1$ 155 (3) 0.83(3)1.81(3) $O4-H4\cdot\cdot\cdot N2$ 0.82 (3) 1.86 (3) 2.588 (3) 148 (3) $C11 - H11 \cdots O4^i$ 0.93 2.59 3.392 (3) 145 C3-H3···Cg3ⁱⁱ 0.93 2.89 3.635 (3) 138

Symmetry codes: (i) -x + 1, -y, -z + 2; (ii) x, y + 1, z. Cg3 is the centroid of the C16–C21 ring.

Data collection: *SMART* (Bruker, 2000); cell refinement: *SAINT* (Bruker, 2000); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXTL*, *PARST* (Nardelli, 1995) and *PLATON* (Spek, 2009).

The authors wish to thank both Universiti Teknologi MARA and Universiti Kebangsaan Malaysia for the facilities and the Malaysian Ministry of Higher Education for the research grant FRGS UiTM 5/3/FST/(12/2008).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: DN2481).

References

- Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
- Aranha, P. E., dos Santos, M. P., Romera, S. & Dockal, E. R. (2007). Polyhedron, 26, 1373–1382.
- Bruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Chetouani, A., Hammouti, B., Benhadda, T. & Daoudi, M. (2005). *Appl. Surface Sci.* 249, 375–385.
- Hernández-Molina, R., Mederos, A., Gili, P., Domínguez, S., Lloret, F., Cano, J., Julve, M., Ruiz-Pérez, C. & Solans, X. (1997). J. Chem. Soc. Dalton Trans. pp. 4327–4334.
- Nardelli, M. (1995). J. Appl. Cryst. 28, 659.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.
- Torayama, H., Nishide, T., Asada, H., Fujiwara, M. & Matsushita, T. (1997). Polyhedron, 16, 3787–3794.

supporting information

Acta Cryst. (2009). E65, o2573 [doi:10.1107/S1600536809037386]

6,6'-Dimethoxy-2,2'-[(*E*,*E*')-(4-chloro-*m*-phenylene)bis(nitrilomethyl-idyne)]diphenol

Bohari M. Yamin, Siti Najihah A. Bakar, Karimah Kassim and Hadariah Bahron

S1. Comment

Continous studies on Schiff bases are driven by their biological activities such as antimicrobial (Aranha *et al.*, 2007) and chemical properties such as corrosion inhibition (Chetouani *et al.*, 2005). Some *m*-phenylenediamine derived Schiff bases such as *N*,*N*'-disalicylidene-1,3-diiminobenzene and their complexes have been reported (Hernández-Molina *et al.*, 1997; Torayama *et al.*, 1997). The present compound is also a *m*-phenylenediamine derived Schiff base but with a chloro substituent at the *ortho* position. The Schiff base groups that attached to the 1,3-positions are 2-iminomethyl-6-methoxy-phenols (Fig.1).

The whole molecule appears like a warped butterfly. The 2-imino methyl-6-methoxyphenol right wing N1/C7—C14)/O1/O2 is planar with a maximum deviation of 0.056 (3)Å for C14 atom from the least square plane. However, the left wing is twisted with the C15—N2—C4—C3 torsion angle of 41.7 (3)° compared to 9.1 (3)°. for the C7—N1—C6—C5 torsion angle of the right wing. The methoxyphenol O3/O4/(C16—C22) fragment of the left wing is planar with the maximum deviation of 0.033 (2)Å for C20 atom. As a result, the methoxyphenol groups are in opposite orientation. The central (C1—C6) benzene ring makes dihedral angle of 9.85 (9)Å with the right N1/C7—C14)/O1/O1 wing and 44.25 (9)° with the O3/O4/(C16—C22) methoxyphenol fragment. The dihedral angle between the right wing and the methoxyphenol fragment is 53.17 (7)°. The bond lengths and angles are in normal ranges (Allen *et al.*, 1987).

There are two O—H…N intramolecular hydrogen bonds (Table 1). In the crystal structure, the molecule is stabilized by weak C—H…O intermolecular hydrogen bonds, C—H… π interaction (Tables 1) and van der Waal forces.

S2. Experimental

The compound was synthesized by refluxing 1,3-diamino-4-chlorobenzene (0.428 g, 3 mmol) with 3-methoxysalicylaldehyde (0.912 g, 6 mmol) in ethanol for 24 h. The precipitate obtained was filtered off, washed with ethanol and dried in-vacuo. It was recrystallized from a mixed solvent of chloroform and ethanol (1:1) to afford brownish yellow single crystals. Yield 92%. Melting point 468–470 K. Analytical calculation for C₂₂H₁₉ClN₂O₄ [Cl-mpd(*o*-van)₂]: C, 64.31; H, 4.66; N, 6.82. Found: C, 64.18; H, 4.65; N, 6.93. IR (cm⁻¹): v(C=N) 1611.7 (*m*), v(C—O—C) 1253.9 (*s*), v(C—OH) 1212.7 (*w*), v(C—Cl) 1099.8 (*w*). ¹H NMR (CDCl₃, 300 MHz, p.p.m.): δ = 13.5002 (1*H*, s, OH), 13.2536 (1*H*, s, OH), 8.737 (1*H*, s, HC=N), 8.684 (1*H*, s, HC=N), 7.220–6.935)(9*H*, m, H-aromatic), 3.977 (3*H*, s, OCH₃), 3.969 (3*H*, s, OCH₃).

S3. Refinement

H atoms on C were positioned geometrically with C—H 0.93, 0.96 Å, for aromatic and methyl H atoms respectively, and constrained to ride on their parent atoms with $U_{iso}(H) = xU_{eq}(C)$ where x=1.5 for methyl H and x=1.2 for aromatic H atoms. The H atom attached to oxygen atoms were located from the Fourier difference map and refined isotropically.

Figure 1

Molecular structure of compound, (1), with displacement ellipsoid drawn at the 50% probablity level. H atoms are represented as small sphere of arbitrary radii.

6,6'-Dimethoxy-2,2'-[(E,E')-(4-chloro-m- phenylene)bis(nitrilomethylidyne)]diphenol

Crystal data

C₂₂H₁₉ClN₂O₄ $M_r = 410.84$ Monoclinic, $P2_1/n$ Hall symbol: -P 2yn a = 9.900 (2) Å b = 6.8589 (12) Å c = 28.830 (6) Å $\beta = 94.659$ (4)° V = 1951.2 (7) Å³ Z = 4

Data collection

Bruker SMART APEX CCD area-detector diffractometer Radiation source: fine-focus sealed tube Graphite monochromator Detector resolution: 83.66 pixels mm⁻¹ ω scans Absorption correction: multi-scan (*SADABS*; Bruker, 2000) $T_{\min} = 0.912, T_{\max} = 0.975$

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.055$ $wR(F^2) = 0.131$ S = 1.064049 reflections 272 parameters 2 restraints F(000) = 856 $D_x = 1.399 \text{ Mg m}^{-3}$ Melting point = 468.0–470.0 K Mo K\alpha radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 2429 reflections $\theta = 1.4-26.5^{\circ}$ $\mu = 0.23 \text{ mm}^{-1}$ T = 298 KBlock, yellow $0.41 \times 0.40 \times 0.11 \text{ mm}$

12204 measured reflections 4049 independent reflections 2758 reflections with $I > 2\sigma(I)$ $R_{int} = 0.030$ $\theta_{max} = 26.5^\circ, \theta_{min} = 1.4^\circ$ $h = -12 \rightarrow 12$ $k = -8 \rightarrow 7$ $l = -29 \rightarrow 36$

Primary atom site location: structure-invariant direct methods Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites H atoms treated by a mixture of independent and constrained refinement $w = 1/[\sigma^{2}(F_{o}^{2}) + (0.0536P)^{2} + 0.4146P] \qquad \Delta \rho_{max} = 0.21 \text{ e } \text{\AA}^{-3}$ where $P = (F_{o}^{2} + 2F_{c}^{2})/3 \qquad \Delta \rho_{min} = -0.17 \text{ e } \text{\AA}^{-3}$ $(\Delta / \sigma)_{max} = 0.002$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates an	d isotropic or e	quivalent isotrop	ic displacement	parameters	$(Å^2)$)
----------------------------------	------------------	-------------------	-----------------	------------	---------	---

	x	v	7.	Uiro*/Uaa	
01	0 4334 (2)	0.6076 (3)	1 14002 (7)	0.0751 (5)	
0^{2}	0.4934(2) 0.5923(2)	0.6402(2)	1.14002(7) 1.07204(7)	0.0751(5) 0.0671(5)	
03	0.9923(2)	-0.3720(3)	0.77614(6)	0.0682(5)	
04	0.86271(17)	-0.0603(3)	0.82460(7)	0.0002(5)	
Cll	0.83872(7)	0.86091 (8)	1.00563(2)	0.0055(3)	
N2	0.9571(2)	0.2143(3)	0.87964 (6)	0.0000(2)	
N1	0.71450(19)	0.4773(2)	1.00623 (7)	0.0496 (5)	
C5	0.8366 (2)	0.3491(3)	0.94045 (8)	0.0523 (6)	
Н5	0.7886	0 2325	0.9402	0.063*	
C6	0.8069(2)	0.4937 (3)	0.97170 (8)	0.0470 (5)	
C1	0.8754(2)	0.6715 (3)	0.96890 (8)	0.0497 (6)	
C2	0.9714(3)	0.6982(3)	0.93761 (8)	0.0594(7)	
H2A	1.0153	0.8177	0.9363	0.071*	
C3	1.0032 (3)	0.5503 (4)	0.90814 (8)	0.0602 (7)	
H3	1.0695	0.5683	0.8874	0.072*	
C4	0.9347 (2)	0.3727 (3)	0.90976 (8)	0.0519 (6)	
C7	0.6600 (2)	0.3163 (3)	1.01624 (8)	0.0509 (6)	
H7	0.6779	0.2059	0.9990	0.061*	
C8	0.5717 (2)	0.2992 (3)	1.05322 (8)	0.0474 (5)	
C9	0.5173 (3)	0.1175 (3)	1.06386 (9)	0.0572 (6)	
H9	0.5382	0.0082	1.0468	0.069*	
C10	0.4341 (3)	0.0992 (3)	1.09897 (10)	0.0633 (7)	
H10	0.3987	-0.0222	1.1057	0.076*	
C11	0.4019 (2)	0.2612 (4)	1.12488 (9)	0.0590 (6)	
H11	0.3432	0.2482	1.1483	0.071*	
C12	0.4565 (2)	0.4408 (3)	1.11604 (8)	0.0542 (6)	
C13	0.5416 (2)	0.4621 (3)	1.08000 (8)	0.0491 (6)	
C15	1.0764 (3)	0.1673 (4)	0.86971 (8)	0.0591 (6)	
H15	1.1497	0.2411	0.8819	0.071*	
C16	1.1010 (2)	0.0026 (4)	0.84010 (8)	0.0549 (6)	
C17	1.2336 (3)	-0.0564 (5)	0.83404 (10)	0.0728 (8)	
H17	1.3061	0.0163	0.8473	0.087*	

C18	1.2577 (3)	-0.2191 (5)	0.80892 (10)	0.0788 (8)	
H18	1.3463	-0.2582	0.8056	0.095*	
C19	1.1499 (3)	-0.3269 (4)	0.78828 (9)	0.0687 (7)	
H19	1.1673	-0.4366	0.7708	0.082*	
C20	1.0186 (2)	-0.2735 (4)	0.79340 (8)	0.0549 (6)	
C21	0.9926 (2)	-0.1070 (4)	0.81969 (8)	0.0521 (6)	
C14	0.3549 (3)	0.5911 (5)	1.17851 (11)	0.0893 (9)	
H14A	0.2687	0.5341	1.1687	0.134*	
H14B	0.3412	0.7181	1.1913	0.134*	
H14C	0.4013	0.5098	1.2018	0.134*	
C22	0.9258 (3)	-0.5492 (4)	0.75161 (11)	0.0839 (9)	
H22A	0.9725	-0.5221	0.7244	0.126*	
H22B	0.8394	-0.6070	0.7425	0.126*	
H22C	0.9787	-0.6377	0.7714	0.126*	
H4	0.861 (3)	0.027 (4)	0.8438 (9)	0.102 (12)*	
H2	0.643 (3)	0.620 (5)	1.0511 (9)	0.110 (13)*	

Atomic displacement parameters (\mathring{A}^2)

	U^{11}	U ²²	U ³³	U^{12}	<i>U</i> ¹³	<i>U</i> ²³
01	0.0940 (14)	0.0583 (11)	0.0763 (12)	0.0002 (9)	0.0263 (11)	-0.0095 (9)
O2	0.0916 (14)	0.0332 (9)	0.0793 (13)	-0.0106 (9)	0.0236 (11)	-0.0061 (8)
O3	0.0633 (11)	0.0731 (12)	0.0684 (11)	-0.0013 (9)	0.0056 (9)	-0.0191 (9)
O4	0.0494 (11)	0.0733 (12)	0.0736 (12)	-0.0005 (9)	0.0040 (9)	-0.0192 (10)
Cl1	0.0819 (5)	0.0395 (3)	0.0753 (4)	-0.0074 (3)	0.0026 (3)	-0.0034 (3)
N2	0.0637 (14)	0.0580 (12)	0.0462 (11)	-0.0071 (10)	0.0044 (10)	-0.0001 (10)
N1	0.0562 (12)	0.0357 (10)	0.0563 (11)	-0.0062 (8)	0.0013 (10)	0.0008 (8)
C5	0.0593 (15)	0.0426 (12)	0.0538 (13)	-0.0104 (11)	-0.0028 (12)	0.0013 (11)
C6	0.0521 (14)	0.0405 (12)	0.0471 (13)	-0.0022 (10)	-0.0045 (11)	0.0041 (10)
C1	0.0610 (15)	0.0372 (12)	0.0490 (13)	-0.0042 (10)	-0.0064 (11)	0.0058 (10)
C2	0.0772 (17)	0.0457 (13)	0.0542 (14)	-0.0173 (12)	-0.0012 (13)	0.0103 (12)
C3	0.0732 (17)	0.0589 (15)	0.0488 (14)	-0.0128 (13)	0.0062 (12)	0.0096 (12)
C4	0.0626 (15)	0.0505 (13)	0.0419 (12)	-0.0081 (11)	-0.0005 (11)	0.0032 (11)
C7	0.0577 (14)	0.0345 (12)	0.0599 (14)	0.0004 (10)	0.0015 (12)	-0.0025 (10)
C8	0.0480 (13)	0.0359 (11)	0.0572 (14)	-0.0027 (9)	-0.0013 (11)	0.0029 (10)
C9	0.0669 (16)	0.0373 (12)	0.0669 (16)	-0.0074 (11)	0.0029 (13)	0.0001 (11)
C10	0.0705 (18)	0.0450 (14)	0.0734 (17)	-0.0167 (12)	-0.0005 (14)	0.0080 (12)
C11	0.0537 (15)	0.0626 (16)	0.0606 (15)	-0.0073 (12)	0.0044 (12)	0.0092 (13)
C12	0.0563 (15)	0.0475 (13)	0.0581 (15)	0.0012 (11)	0.0008 (12)	-0.0016 (12)
C13	0.0527 (14)	0.0352 (12)	0.0586 (14)	-0.0027 (10)	0.0001 (12)	0.0020 (10)
C15	0.0621 (17)	0.0682 (16)	0.0466 (13)	-0.0132 (13)	0.0011 (12)	0.0046 (12)
C16	0.0527 (15)	0.0685 (16)	0.0436 (13)	-0.0057 (12)	0.0045 (11)	0.0049 (12)
C17	0.0521 (17)	0.099 (2)	0.0667 (17)	-0.0091 (15)	0.0034 (14)	-0.0022 (17)
C18	0.0530 (17)	0.108 (2)	0.0767 (19)	0.0087 (16)	0.0120 (15)	-0.0070 (19)
C19	0.0680 (18)	0.0807 (19)	0.0584 (16)	0.0079 (15)	0.0111 (14)	-0.0029 (14)
C20	0.0537 (15)	0.0703 (16)	0.0409 (12)	0.0011 (13)	0.0057 (11)	0.0028 (12)
C21	0.0479 (14)	0.0653 (15)	0.0433 (12)	0.0004 (12)	0.0057 (11)	0.0039 (11)
C14	0.101 (2)	0.092 (2)	0.078 (2)	0.0127 (19)	0.0249 (18)	-0.0081 (17)

					• •	0
C22	0.089 (2)	0.080 (2)	0.082 (2)	0.0068 (17)	-0.0002 (17)	-0.0270 (17)
Geome	tric parameters ((Å, °)				
01-0	12	1.366 (3)	C8—C13	1	.403 (3)
01—C	14	1.410 (3)	C9—C10	1	.361 (4)
02—0	213	1.348 (3)	С9—Н9	(0.9300
02—Н	[2	0.83 (3)	,	C10—C11	1	.390 (4)
O3—C	20	1.361 (3)	C10—H10	(0.9300
03—0	22	1.427 (3)	C11—C12	1	.378 (3)
04—0	21	1.343 (3)	C11—H11	(0.9300
04—H	[4	0.82 (2)	, 	C12—C13	1	.397 (3)
Cl1—0	C1	1.733 (2)	C15—C16	1	.448 (3)
N2—C	15	1.279 (3)	C15—H15	(0.9300
N2—C	4	1.419 (3)	C16—C17	1	.398 (4)
N1—C	7	1.273 (3)	C16—C21	1	.401 (3)
N1—C	6	1.410 (3)	C17—C18	1	.362 (4)
С5—С	4	1.376 (3)	C17—H17	(0.9300
С5—С	6	1.388 (3)	C18—C19	1	.391 (4)
С5—Н	5	0.9300		C18—H18	(0.9300
С6—С	1	1.401 (3)	C19—C20	1	.370 (4)
C1—C	2	1.375 (3)	C19—H19	(0.9300
С2—С	3	1.377 (3)	C20—C21	1	.406 (3)
С2—Н	2A	0.9300		C14—H14A	(0.9600
С3—С	4	1.397 (3)	C14—H14B	(0.9600
С3—Н	3	0.9300		C14—H14C	(0.9600
С7—С	8	1.438 (3)	C22—H22A	(0.9600
С7—Н	7	0.9300		C22—H22B	(0.9600
C8—C	9	1.402 (3)	C22—H22C	(0.9600
C12—	01—C14	117.2 (2)	O1—C12—C11	1	24.8 (2)
C13—	O2—H2	103 (2)		O1—C12—C13	1	15.1 (2)
C20—	O3—C22	117.6 (2)	C11—C12—C13	1	20.0 (2)
C21—	O4—H4	109 (2)		O2—C13—C12	1	18.4 (2)
C15—	N2—C4	121.5 (2)	O2—C13—C8	1	22.0 (2)
C7—N	1—C6	122.7 (2)	C12—C13—C8	1	19.6 (2)
С4—С	5—C6	122.1 (2)	N2-C15-C16	1	22.1 (2)
С4—С	5—H5	119.0		N2—C15—H15	1	19.0
C6—C	5—H5	119.0		C16—C15—H15	1	19.0
С5—С	6—C1	117.1 (2)	C17—C16—C21	1	19.2 (2)
С5—С	6—N1	125.8 (2)	C17—C16—C15	1	20.3 (2)
C1—C	6—N1	117.1 (2)	C21—C16—C15	1	20.4 (2)
С2—С	1—C6	121.2 (2)	C18—C17—C16	1	20.7 (3)
С2—С	1—Cl1	119.44 (17)	C18—C17—H17	1	19.7
С6—С	1—Cl1	119.39 (19)	С16—С17—Н17	1	19.7
C1—C	2—С3	120.8 (2)	C17—C18—C19	1	20.1 (3)
C1—C	2—H2A	119.6		C17—C18—H18	1	20.0
С3—С	2—H2A	119.6		C19—C18—H18	1	20.0

supporting information

C^2 C^3 C^4	1101(2)	C20 C19 C18	120.0(3)
$C_2 = C_3 = C_4$	119.1 (2)	$C_{20} = C_{19} = C_{18}$	120.9 (5)
$C_2 = C_3 = H_3$	120.5	$C_{20} = C_{19} = 1119$	119.0
$C_{4} = C_{3} = 113$	120.5	$C_{10}^{2} = C_{10}^{2} = C_{10}^{2}$	119.0 125.7(2)
$C_5 = C_4 = C_5$	117.0(2)	03 - 020 - 021	123.7(2)
$C_3 = C_4 = N_2$	117.2(2)	03-020-021	114.8(2)
$C_3 - C_4 - N_2$	123.2(2)	C19 - C20 - C21	119.5(2)
NI = C7 = U7	122.2 (2)	04 - 021 - 010	122.3(2)
NI - C / - H /	118.9	04-021-020	118.0 (2)
$C_8 = C_1 = H_1$	118.9	C16 - C21 - C20	119.7 (2)
C9—C8—C13	119.0 (2)	OI—CI4—HI4A	109.5
C9—C8—C7	120.2 (2)	OI—CI4—HI4B	109.5
C13—C8—C7	120.8 (2)	H14A—C14—H14B	109.5
C10—C9—C8	120.7 (2)	O1—C14—H14C	109.5
С10—С9—Н9	119.6	H14A—C14—H14C	109.5
С8—С9—Н9	119.6	H14B—C14—H14C	109.5
C9—C10—C11	120.3 (2)	O3—C22—H22A	109.5
C9—C10—H10	119.8	O3—C22—H22B	109.5
C11—C10—H10	119.8	H22A—C22—H22B	109.5
C12—C11—C10	120.3 (2)	O3—C22—H22C	109.5
C12—C11—H11	119.8	H22A—C22—H22C	109.5
C10-C11-H11	119.8	H22B—C22—H22C	109.5
C4—C5—C6—C1	3.9 (3)	O1—C12—C13—O2	-0.1 (3)
C4—C5—C6—N1	-175.7 (2)	C11—C12—C13—O2	179.4 (2)
C7—N1—C6—C5	9.1 (3)	O1—C12—C13—C8	-179.99 (19)
C7—N1—C6—C1	-170.4 (2)	C11—C12—C13—C8	-0.5 (3)
C5-C6-C1-C2	-2.3 (3)	C9—C8—C13—O2	179.0 (2)
N1—C6—C1—C2	177.3 (2)	C7—C8—C13—O2	0.8 (3)
C5—C6—C1—Cl1	177.84 (16)	C9—C8—C13—C12	-1.1(3)
N1-C6-C1-Cl1	-2.5 (3)	C7—C8—C13—C12	-179.4(2)
C6—C1—C2—C3	-0.2 (4)	C4—N2—C15—C16	178.2 (2)
Cl1—C1—C2—C3	179.66 (18)	N2-C15-C16-C17	-173.3(2)
C1—C2—C3—C4	1.2 (4)	N2-C15-C16-C21	2.5 (4)
C6—C5—C4—C3	-3.0(3)	C21—C16—C17—C18	-0.5(4)
C6—C5—C4—N2	179.5 (2)	C15—C16—C17—C18	175.4 (3)
C2—C3—C4—C5	0.3 (4)	C16—C17—C18—C19	1.1 (4)
C2—C3—C4—N2	177.6 (2)	C17—C18—C19—C20	-1.0(4)
C15 - N2 - C4 - C5	-140.9(2)	$C_{22} = 0_{3} = C_{20} = C_{19}$	1.8 (4)
C15 - N2 - C4 - C3	41.7 (3)	$C_{22} = 0_{3} = C_{20} = C_{21}$	-176.1(2)
C6-N1-C7-C8	176 54 (19)	C18 - C19 - C20 - O3	-177.6(2)
N1-C7-C8-C9	-1781(2)	C_{18} C_{19} C_{20} C_{21}	03(4)
N1 - C7 - C8 - C13	01(3)	C17-C16-C21-O4	179 1 (2)
C13 - C8 - C9 - C10	14(3)	C15-C16-C21-O4	33(3)
C7 - C8 - C9 - C10	179.6 (2)	C17 - C16 - C21 - C20	-0.2(3)
C_{8} C_{9} C_{10} C_{11}	0.0(4)	C_{15} C_{16} C_{21} C_{20}	-1761(2)
$C_{0} = C_{10} = C_{11} = C_{12}$	-16(4)	03-020-021-020	-0.9(3)
$C_{14} = C_{10} = C_{11} = C_{12} = C_{11}$	1.0(7)	$C_{10} = C_{20} = C_{21} = C_{4}$	-1790(2)
$C_{14} = O_1 = C_{12} = C_{11}$	-1762(2)	$C_1 - C_2 - C_2 - C_4$ $C_2 - C_2 - C_4$	179.0(2)
C14-01-C12-C13	-1/0.2(2)	03 - 020 - 021 - 010	1/0.4 (2)

supporting information

C10—C11—C12—O1 C10—C11—C12—C13	-178.7 (2) 1.9 (4)	C19—C20—C21–	C16	0.3 (3)
Hydrogen-bond geometry (Å, °)				
D—H···A	<i>D</i> —Н	H···A	D··· A	D—H···A
02—H2…N1	0.83 (3)	1.81 (3)	2.586 (3)	155 (3)
O4—H4…N2	0.82 (3)	1.86 (3)	2.588 (3)	148 (3)
C11—H11····O4 ⁱ	0.93	2.59	3.392 (3)	145
С3—Н3…Сg3"	0.93	2.89	3.635 (3)	138

Symmetry codes: (i) -x+1, -y, -z+2; (ii) x, y+1, z.