organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

2,2'-(1,3,5,7-Tetraoxo-1,2,3,5,6,7-hexahydropyrrolo[3,4-f]isoindole-2,6-diyl)diacetic acid *N*,*N*-dimethylformamide disolvate

Chunhua Ge,* Xiangqian Li, Xiangdong Zhang, Yang Zhao and Rui Zhang

College of Chemistry, Liaoning University, Shenyang 110036, People's Republic of China

Correspondence e-mail: chhge@lnu.edu.cn

Received 25 August 2009; accepted 1 September 2009

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.002 Å; disorder in solvent or counterion; R factor = 0.039; wR factor = 0.111; data-to-parameter ratio = 13.5.

The asymmetric unit of the title compound, $C_{14}H_8N_2O_8\cdot 2C_3H_7NO$ or $L\cdot 2DMF$ (DMF = N,N-dimethylformamide), contains one half of the centrosymmetric molecule L and one solvent molecule, which is disordered between two orientations in a 0.555 (4):0.445 (4) ratio. Intermolecular $O-H\cdots O$ hydrogen bonds link one L and two DMF molecules into a centrosymmetric hydrogen-bonded cluster. The crystal packing is further stabilized by weak intermolecular $C-H\cdots O$ hydrogen bonds.

Related literature

For recent developments in the chemistry of naphthalene diimides, see Bhosale *et al.* (2008). For pyromellitic diimides, see: Gabriel & Iverson (2002); Ghosh & Ramakrishnan (2005); Kimizuka *et al.* (1995). For details of the synthesis, see Barooah *et al.* (2006).

Experimental

Crystal data C₁₄H₈N₂O₈·2C₃H₇NO

 $M_r = 478.42$

Monoclinic, $P2_1/c$ a = 7.7470 (15) Å b = 9.3100 (19) Å c = 16.334 (5) Å $\beta = 104.02$ (3)° V = 1143.0 (5) Å³

Data collection

Bruker SMART CCD area-detector	6227 measured reflections
diffractometer	2236 independent reflections
Absorption correction: multi-scan	1910 reflections with $I > 2\sigma(I)$
(SADABS; Sheldrick, 1996)	$R_{\rm int} = 0.030$
$T_{\rm min} = 0.958, \ T_{\rm max} = 0.973$	

Z = 2

Mo $K\alpha$ radiation

 $0.30 \times 0.25 \times 0.25 \text{ mm}$

 $\mu = 0.11 \text{ mm}^{-1}$

T = 2.93 K

Refinement

 $\begin{array}{ll} R[F^2 > 2\sigma(F^2)] = 0.039 & 166 \text{ parameters} \\ wR(F^2) = 0.111 & H\text{-atom parameters constrained} \\ S = 1.06 & \Delta\rho_{\max} = 0.18 \text{ e } \text{\AA}^{-3} \\ 2236 \text{ reflections} & \Delta\rho_{\min} = -0.15 \text{ e } \text{\AA}^{-3} \end{array}$

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdots A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$O3 - H3A \cdots O5A$	0.82	1.72	2.526 (2)	166
$O4 - H4B \cdots O5B$	0.82	1.70	2.496 (2)	162
$C2 - H2A \cdots O3^{i}$	0.97	2.41	3.230 (2)	142
$C6 - H6 \cdots O1^{ii}$	0.93	2.50	3.414 (2)	166
$C9 - H9A \cdots O2^{iii}$	0.96	2.57	3.432 (3)	149

Symmetry codes: (i) -x + 1, $y - \frac{1}{2}$, $-z + \frac{3}{2}$; (ii) x - 1, y, z; (iii) x, $-y + \frac{1}{2}$, $z - \frac{1}{2}$.

Data collection: *SMART* (Bruker, 2001); cell refinement: *SAINT* (Bruker, 2001); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXL97*.

This work was supported by the Project for Innovation Teams of Liaoning Province, China (No. 2007 T052), the Project for Provincial Key Laboratories of Liaoning Province, China (No. 2008S104) and the Doctoral Startup Project, Liaoning University.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CV2607).

References

Barooah, N., Sarma, R. J. & Baruah, J. B. (2006). CrystEngComm, 8, 608–615. Bhosale, S. V., Jani, C. H. & Langford, S. J. (2008). Chem. Soc. Rev. 37, 331–342. Bruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.

Gabriel, G. J. & Iverson, B. L. (2002). J. Am. Chem. Soc. 124, 15174-15175.

- Ghosh, S. & Ramakrishnan, S. (2005). Angew. Chem. Int. Ed. 44, 5441–5447.Kimizuka, N., Kawasaki, T., Hirata, K. & Kunitake, T. (1995). J. Am. Chem. Soc. 117, 6360–6361.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Göttingen, Germany.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

supporting information

Acta Cryst. (2009). E65, o2400 [doi:10.1107/S1600536809035107]

2,2'-(1,3,5,7-Tetraoxo-1,2,3,5,6,7-hexahydropyrrolo[3,4-*f*]isoindole-2,6-diyl)diacetic acid *N*,*N*-dimethylformamide disolvate

Chunhua Ge, Xiangqian Li, Xiangdong Zhang, Yang Zhao and Rui Zhang

S1. Comment

Interest in the derivatives of diimide such as pyromellitic diimides, naphthalene diimides, and perylene diimides has arisen because of their potential applications for supramolecular and new functional materials (Bhosale *et al.*, 2008). There have been a number of studies investigating the host–guest chemistry about pyromellitic diimide (Gabriel & Iverson, 2002; Ghosh & Ramakrishnan, 2005; Kimizuka *et al.*, 1995). Supramolecular host of *L* and inclusion compounds with aromatic guests have been described (Barooah *et al.*, 2006). In this paper, we report the crystal structure of the title compound, obtained by the recrystallization in DMF-MeOH.

In the molecule L (=2,2'-(1,3,5,7-tetraoxo-5,7-dihydropyrrolo[3,4-*f*]isoindole-2,6-diyl)diacetic acid), two acetic acid groups are placed on upper and lower sides of the rigid conjugate plane (Fig. 1). Intermolecular O—H···O hydrogen bonds (Table 1) link one L and two solvent molecules into centrosymmetric hydrogen-bonded cluster. The crystal packing is further stabilized by weak intermolecular C—H···O hydrogen bonds (Table 1).

S2. Experimental

2,2'-(1,3,5,7-Tetraoxo-5,7-dihydropyrrolo[3,4-*f*]isoindole-2,6-diyl)diacetic acid was synthesized according to the literature (Barooah *et al.*, 2006). *N*,*N*'-dimethylformamide (DMF) 5 ml was added into a solution of compound mentioned above 0.1 mmol in 20 ml MeOH. The resultant colourless solution was filtered. Crystals suitable for X-ray analysis were formed after three days at room temperature.

S3. Refinement

All H atoms were placed in calculated positions and included in a riding-model approximation, with C—H = 0.93 - 0.97 Å, O—H = 0.82 Å and U_{iso} (H)= 1.2-1.5 U_{eq} of the parent atom. The solvent molecule is disordered between two orientations with the occupancies refined to 0.555 (4) and 0.445 (4), respectively. The hydroxy H atom is also disordered between two positions - H3A and H4B - with the same occupancies, respectively.

Figure 1

A portion of the crystal structure of the title compound showing the hydrogen-bonded (dashed lines) claster, atomic numbering and 30% probability displacement ellipsoids. Unlabelled atoms are related to the labelled ones by symmetry element (1 - x, 2 - y, 1 - z). For the disordered atoms, only major parts are drawn.

F(000) = 500

 $\theta = 2.5 - 22.7^{\circ}$ $\mu = 0.11 \text{ mm}^{-1}$

Block, colourless

 $0.30 \times 0.25 \times 0.25$ mm

T = 293 K

 $D_{\rm x} = 1.390 {\rm Mg} {\rm m}^{-3}$

Mo *K* α radiation, $\lambda = 0.71073$ Å

Cell parameters from 541 reflections

2,2'-(1,3,5,7-Tetraoxo-1,2,3,5,6,7-hexahydropyrrolo[3,4-*f*]isoindole- 2,6-diyl)diacetic acid *N*,*N*-dimethylformamide disolvate

Crystal data

C₁₄H₈N₂O₈·2C₃H₇NO $M_r = 478.42$ Monoclinic, $P2_1/c$ Hall symbol: -P 2ybc a = 7.7470 (15) Å b = 9.3100 (19) Å c = 16.334 (5) Å $\beta = 104.02 (3)^{\circ}$ $V = 1143.0 (5) \text{ Å}^3$ Z = 2

Data collection

Bruker SMART CCD area-detector	6227 measured reflections
diffractometer	2236 independent reflections
Radiation source: fine-focus sealed tube	1910 reflections with $I > 2\sigma(I)$
Graphite monochromator	$R_{\rm int} = 0.030$
φ and ω scans	$\theta_{\rm max} = 26.0^{\circ}, \ \theta_{\rm min} = 2.5^{\circ}$
Absorption correction: multi-scan	$h = -9 \rightarrow 9$
(SADABS; Sheldrick, 1996)	$k = -11 \rightarrow 10$
$T_{\min} = 0.958, T_{\max} = 0.973$	$l = -20 \rightarrow 18$

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.039$ $wR(F^2) = 0.111$ S = 1.062236 reflections 166 parameters 0 restraints Primary atom site location: structure-invariant direct methods R_{int} = 0.030 $\theta_{max} = 26.0^{\circ}, \theta_{min} = 2.5^{\circ}$ $h = -9 \rightarrow 9$ $k = -11 \rightarrow 10$ $l = -20 \rightarrow 18$ Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites H atom perspectator constrained

H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.0528P)^2 + 0.2565P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{\text{max}} < 0.001$ $\Delta\rho_{\text{max}} = 0.18 \text{ e} \text{ Å}^{-3}$ $\Delta\rho_{\text{min}} = -0.15 \text{ e} \text{ Å}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	Occ. (<1)
03	0.46550 (18)	0.49571 (11)	0.66856 (7)	0.0615 (3)	
H3A	0.4139	0.5238	0.6214	0.061*	0.555 (4)
04	0.48981 (19)	0.29416 (13)	0.59801 (7)	0.0689 (4)	
H4B	0.4357	0.3423	0.5579	0.069*	0.445 (4)
01	0.86755 (14)	0.43154 (15)	0.88375 (8)	0.0638 (4)	
O2	0.27767 (14)	0.31116 (13)	0.79491 (7)	0.0573 (3)	
N1	0.58016 (15)	0.35733 (14)	0.82137 (7)	0.0451 (3)	
C1	0.51315 (19)	0.36686 (16)	0.66427 (9)	0.0457 (3)	
C2	0.6117 (2)	0.29280 (17)	0.74458 (10)	0.0504 (4)	
H2A	0.5759	0.1928	0.7422	0.060*	
H2B	0.7383	0.2956	0.7476	0.060*	
C3	0.71166 (19)	0.42013 (16)	0.88520 (9)	0.0447 (3)	
C4	0.41265 (18)	0.35918 (15)	0.84052 (9)	0.0429 (3)	
C5	0.43776 (17)	0.43160 (14)	0.92473 (8)	0.0388 (3)	
C6	0.31300 (17)	0.46298 (15)	0.97165 (9)	0.0410 (3)	
H6	0.1933	0.4390	0.9531	0.049*	
C7	0.61865 (17)	0.46738 (15)	0.95191 (8)	0.0390 (3)	
N2	0.09136 (18)	0.56664 (15)	0.40440 (9)	0.0545 (4)	
C10	0.2173 (2)	0.5240 (2)	0.46976 (11)	0.0592 (4)	
H10A	0.2662	0.4330	0.4691	0.071*	0.555 (4)
H10B	0.2583	0.5849	0.5155	0.071*	0.445 (4)
C9	0.0213 (3)	0.4691 (2)	0.33408 (13)	0.0726 (5)	
H9A	0.0839	0.3793	0.3439	0.109*	
H9B	0.0370	0.5110	0.2827	0.109*	
H9C	-0.1031	0.4529	0.3295	0.109*	
C8	0.0168 (3)	0.7115 (2)	0.40126 (13)	0.0707 (5)	
H8A	0.0662	0.7600	0.4536	0.106*	
H8B	-0.1101	0.7056	0.3925	0.106*	
H8C	0.0454	0.7640	0.3557	0.106*	
O5A	0.2757 (3)	0.6081 (2)	0.53640 (13)	0.0644 (8)	0.555 (4)
O5B	0.2835 (4)	0.3945 (3)	0.46915 (17)	0.0705 (11)	0.445 (4)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

supporting information

	<i>U</i> ¹¹	U ²²	U^{33}	U^{12}	U^{13}	U^{23}
03	0.0914 (9)	0.0416 (6)	0.0451 (6)	0.0103 (6)	0.0044 (6)	-0.0013 (5)
O4	0.0965 (10)	0.0517 (7)	0.0497 (7)	0.0094 (6)	0.0004 (6)	-0.0124 (5)
O1	0.0363 (6)	0.0933 (9)	0.0612 (7)	-0.0030 (6)	0.0105 (5)	-0.0050 (6)
O2	0.0464 (6)	0.0670 (7)	0.0513 (6)	-0.0117 (5)	-0.0021 (5)	-0.0040 (5)
N1	0.0416 (6)	0.0520 (7)	0.0393 (6)	-0.0001 (5)	0.0049 (5)	0.0040 (5)
C1	0.0469 (8)	0.0430 (8)	0.0452 (8)	-0.0043 (6)	0.0074 (6)	0.0013 (6)
C2	0.0553 (9)	0.0465 (8)	0.0478 (8)	0.0061 (7)	0.0096 (7)	0.0031 (6)
C3	0.0373 (7)	0.0499 (8)	0.0432 (7)	0.0010 (6)	0.0025 (6)	0.0091 (6)
C4	0.0407 (7)	0.0417 (7)	0.0413 (7)	-0.0020 (6)	0.0006 (6)	0.0092 (6)
C5	0.0345 (7)	0.0380 (7)	0.0391 (7)	-0.0020(5)	-0.0007 (5)	0.0102 (5)
C6	0.0291 (6)	0.0451 (7)	0.0439 (7)	-0.0036 (5)	-0.0010 (5)	0.0088 (6)
C7	0.0321 (7)	0.0408 (7)	0.0409 (7)	0.0004 (5)	0.0027 (5)	0.0108 (6)
N2	0.0486 (7)	0.0539 (8)	0.0562 (8)	0.0005 (6)	0.0033 (6)	0.0000 (6)
C10	0.0557 (10)	0.0610 (10)	0.0573 (10)	0.0013 (8)	0.0069 (8)	0.0063 (8)
C9	0.0696 (12)	0.0693 (12)	0.0691 (12)	0.0050 (10)	-0.0019 (9)	-0.0119 (9)
C8	0.0690 (12)	0.0566 (10)	0.0766 (12)	0.0060 (9)	-0.0016 (9)	-0.0009 (9)
O5A	0.0737 (15)	0.0581 (13)	0.0527 (13)	0.0055 (11)	-0.0016 (10)	0.0063 (10)
O5B	0.081 (2)	0.069 (2)	0.0497 (16)	0.0120 (15)	-0.0070 (13)	0.0009 (13)

Atomic displacement parameters $(Å^2)$

Geometric parameters (Å, °)

1.2621 (18)	C6—C7 ⁱ	1.393 (2)
0.8200	С6—Н6	0.9300
1.2519 (18)	C7—C6 ⁱ	1.393 (2)
0.8200	N2C10	1.321 (2)
1.2182 (18)	N2—C9	1.462 (2)
1.2128 (17)	N2—C8	1.463 (2)
1.3971 (19)	C10—O5B	1.311 (3)
1.4067 (19)	C10—O5A	1.328 (3)
1.464 (2)	C10—H10A	0.9300
1.515 (2)	C10—H10B	0.9300
0.9700	С9—Н9А	0.9600
0.9700	С9—Н9В	0.9600
1.510 (2)	С9—Н9С	0.9600
1.502 (2)	C8—H8A	0.9600
1.402 (2)	C8—H8B	0.9600
1.4037 (19)	С8—Н8С	0.9600
109.5	C6 ⁱ —C7—C5	121.85 (13)
109.5	C6 ⁱ —C7—C3	129.67 (12)
111.97 (12)	C5—C7—C3	108.48 (12)
124.62 (13)	C10—N2—C9	120.63 (15)
123.38 (13)	C8—N2—C10	120.88 (15)
125.38 (14)	C9—N2—C8	118.48 (14)
116.07 (13)	O5B—C10—N2	118.93 (19)
	$\begin{array}{c} 1.2621(18)\\ 0.8200\\ 1.2519(18)\\ 0.8200\\ 1.2182(18)\\ 1.2128(17)\\ 1.3971(19)\\ 1.4067(19)\\ 1.464(2)\\ 1.515(2)\\ 0.9700\\ 0.9700\\ 1.510(2)\\ 1.502(2)\\ 1.402(2)\\ 1.402(2)\\ 1.4037(19)\\ \end{array}$	$1.2621 (18)$ $C6-C7^i$ 0.8200 $C6-H6$ $1.2519 (18)$ $C7-C6^i$ 0.8200 $N2-C10$ $1.2182 (18)$ $N2-C9$ $1.2128 (17)$ $N2-C8$ $1.3971 (19)$ $C10-O5B$ $1.4067 (19)$ $C10-O5A$ $1.464 (2)$ $C10-H10A$ $1.515 (2)$ $C10-H10B$ 0.9700 $C9-H9A$ 0.9700 $C9-H9B$ $1.510 (2)$ $C9-H9C$ $1.502 (2)$ $C8-H8A$ $1.4037 (19)$ $C8-H8C$ 109.5 $C6^i-C7-C3$ $111.97 (12)$ $C5-C7-C3$ $123.38 (13)$ $C8-N2-C10$ $125.38 (14)$ $C9-N2-C8$ $116.07 (13)$ $O5B-C10-N2$

O3—C1—C2	118.53 (13)	O5B-C10-O5A	119.5 (2)
N1-C2-C1	113.67 (12)	N2-C10-O5A	121.58 (18)
N1—C2—H2A	108.8	N2-C10-H10A	119.2
C1—C2—H2A	108.8	O5A—C10—H10A	119.2
N1—C2—H2B	108.8	O5B-C10-H10B	120.5
C1—C2—H2B	108.8	N2-C10-H10B	120.5
H2A—C2—H2B	107.7	H10A-C10-H10B	120.2
O1—C3—N1	124.69 (14)	N2—C9—H9A	109.5
O1—C3—C7	129.57 (14)	N2—C9—H9B	109.5
N1—C3—C7	105.74 (12)	H9A—C9—H9B	109.5
O2—C4—N1	124.30 (14)	N2—C9—H9C	109.5
O2—C4—C5	128.99 (14)	Н9А—С9—Н9С	109.5
N1-C4-C5	106.70 (11)	H9B—C9—H9C	109.5
C6—C5—C7	123.04 (13)	N2—C8—H8A	109.5
C6—C5—C4	129.85 (12)	N2—C8—H8B	109.5
C7—C5—C4	107.11 (13)	H8A—C8—H8B	109.5
C7 ⁱ —C6—C5	115.11 (12)	N2—C8—H8C	109.5
C7 ⁱ —C6—H6	122.4	H8A—C8—H8C	109.5
С5—С6—Н6	122.4	H8B—C8—H8C	109.5
C3—N1—C2—C1	-117.78 (16)	N1—C4—C5—C7	-0.77 (14)
C4—N1—C2—C1	64.21 (19)	C7—C5—C6—C7 ⁱ	-0.1 (2)
O4—C1—C2—N1	-158.82 (14)	C4C5C7 ⁱ	-179.65 (13)
O3—C1—C2—N1	22.9 (2)	C6-C5-C7-C6 ⁱ	0.1 (2)
C4—N1—C3—O1	179.90 (15)	C4—C5—C7—C6 ⁱ	179.75 (12)
C2—N1—C3—O1	1.7 (2)	C6—C5—C7—C3	-178.94 (12)
C4—N1—C3—C7	-0.18 (16)	C4—C5—C7—C3	0.67 (14)
C2—N1—C3—C7	-178.38 (12)	O1—C3—C7—C6 ⁱ	0.6 (3)
C3—N1—C4—O2	179.89 (14)	$N1 - C3 - C7 - C6^{i}$	-179.32 (13)
C2—N1—C4—O2	-1.9 (2)	O1—C3—C7—C5	179.59 (15)
C3—N1—C4—C5	0.58 (15)	N1—C3—C7—C5	-0.33 (15)
C2—N1—C4—C5	178.81 (12)	C9—N2—C10—O5B	2.6 (3)
O2—C4—C5—C6	-0.5 (2)	C8—N2—C8—O5B	-178.4 (2)
N1-C4-C5-C6	178.80 (13)	C9—N2—C10—O5A	-176.1 (2)
O2—C4—C5—C7	179.96 (15)	C8—N2—C8—O5A	2.9 (3)

Symmetry code: (i) -x+1, -y+1, -z+2.

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	D···· A	D—H···A
O3—H3A···O5A	0.82	1.72	2.526 (2)	166
O4—H4 <i>B</i> ···O5 <i>B</i>	0.82	1.70	2.496 (2)	162
C2—H2 <i>A</i> ···O3 ⁱⁱ	0.97	2.41	3.230 (2)	142
C6—H6…O1 ⁱⁱⁱ	0.93	2.50	3.414 (2)	166
C9—H9 <i>A</i> ···O2 ^{iv}	0.96	2.57	3.432 (3)	149

Symmetry codes: (ii) -*x*+1, *y*-1/2, -*z*+3/2; (iii) *x*-1, *y*, *z*; (iv) *x*, -*y*+1/2, *z*-1/2.