

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

# *n*-Butyl 2-(2,4-dichloroanilino)-4,4dimethyl-6-oxocyclohex-1-enecarbodithioate

# El Sayed H. El Ashry,<sup>a</sup> Mohammed R. Amer,<sup>a</sup> Muhammad Raza Shah<sup>a</sup> and Seik Weng Ng<sup>b\*</sup>

<sup>a</sup>H. E. J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan, and <sup>b</sup>Department of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia Correspondence e-mail: seikweng@um.edu.my

Received 8 September 2009; accepted 8 September 2009

Key indicators: single-crystal X-ray study; T = 123 K; mean  $\sigma$ (C–C) = 0.002 Å; R factor = 0.025; wR factor = 0.070; data-to-parameter ratio = 19.8.

The cyclohexene ring in the title compound,  $C_{19}H_{23}Cl_2NOS_2$ , adopts an envelope conformation, with the C atom bearing the two methyl groups representing the flap. This atom deviates by 0.630 (2) Å from the plane passing through the other five atoms of the ring (r.m.s. deviation = 0.020 Å). The molecular conformation is stabilized by an intramolecular N-H···S hydrogen bond.

### **Related literature**

For the crystal structures of the *n*-undecanyl and 2-hydroxyethyl analogues, see: El Ashry et al. (2009a,b).



18747 measured reflections

 $R_{\rm int} = 0.016$ 

4554 independent reflections

4279 reflections with  $I > 2\sigma(I)$ 

# **Experimental**

### Crystal data

| C <sub>19</sub> H <sub>23</sub> Cl <sub>2</sub> NOS <sub>2</sub> | V = 1981.52 (3) Å <sup>3</sup>            |
|------------------------------------------------------------------|-------------------------------------------|
| $M_r = 416.40$                                                   | Z = 4                                     |
| Monoclinic, $P2_1/c$                                             | Mo $K\alpha$ radiation                    |
| a = 9.0321 (1)  Å                                                | $\mu = 0.55 \text{ mm}^{-1}$              |
| b = 19.4422 (2) Å                                                | T = 123  K                                |
| c = 11.4700 (1)  Å                                               | $0.30 \times 0.20 \times 0.10 \text{ mm}$ |
| $\beta = 100.331 \ (1)^{\circ}$                                  |                                           |
|                                                                  |                                           |

## Data collection

Bruker SMART APEX diffractometer Absorption correction: multi-scan (SADABS; Sheldrick, 1996)  $T_{\min} = 0.853, \ T_{\max} = 0.947$ 

### Refinement

| $R[F^2 > 2\sigma(F^2)] = 0.025$ | H atoms treated by a mixture of                            |
|---------------------------------|------------------------------------------------------------|
| $wR(F^2) = 0.070$               | independent and constrained                                |
| S = 1.00                        | refinement                                                 |
| 4554 reflections                | $\Delta \rho_{\rm max} = 0.41 \text{ e } \text{\AA}^{-3}$  |
| 230 parameters                  | $\Delta \rho_{\rm min} = -0.25 \text{ e } \text{\AA}^{-3}$ |

#### Table 1

Hydrogen-bond geometry (Å, °).

| D II (              | D II     | TT 4         | D (                     | D II (                               |
|---------------------|----------|--------------|-------------------------|--------------------------------------|
| $D - H \cdots A$    | D-H      | $H \cdots A$ | $D \cdot \cdot \cdot A$ | $D - \mathbf{H} \cdot \cdot \cdot A$ |
| $N1 - H1 \cdots S2$ | 0.91 (2) | 2.08 (2)     | 2.885 (1)               | 147 (2)                              |

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2009).

The authors thank the University of Karachi and the University of Malaya for supporting this study.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CI2904).

#### References

Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.

- Bruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- El Ashry, E. S. H., Amer, M. R., Shah, M. R. & Ng, S. W. (2009a). Acta Cryst. E65, o601
- El Ashry, E. S. H., Amer, M. R., Shah, M. R. & Ng, S. W. (2009b). Acta Cryst. E65, o602.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Westrip, S. P. (2009). publCIF. In preparation.

# supporting information

Acta Cryst. (2009). E65, o2459 [doi:10.1107/S1600536809036320]

# *n*-Butyl 2-(2,4-dichloroanilino)-4,4-dimethyl-6-oxocyclohex-1-enecarbodithioate

# El Sayed H. El Ashry, Mohammed R. Amer, Muhammad Raza Shah and Seik Weng Ng

# S1. Experimental

A cooled (283 K) solution of (2,4-dichloroanilino)-4,4-dimethyl-6-oxocyclohex-1-ene (0.2 mol) and sodium hydroxide (0.2 mol) in DMSO (30 ml) and water (2 ml), was treated with carbon disulfide (0.3 mol). After 40 min, *n*-bromobutane (0.15 mol) was added and the reaction mixture was left overnight. The mixture was then diluted with water (200 ml) and acidified with 10% hydrochloric acid. The product was purified on silica gel column chromatography to give yellow crystals when recrystallized from ethanol (m.p. 401 K).

# S2. Refinement

The N-bound H atom was located in a difference Fourier map and was refined freely. C-bound H atoms were placed in calculated positions (C—H = 0.95–0.99 Å) and were included in the refinement in the riding model approximation, with  $U_{iso}(H)$  set to 1.2 to  $1.5U_{eq}(C)$ .



# Figure 1

Displacement ellipsoid plot (Barbour, 2001) plot of  $C_{19}H_{23}Cl_2NOS_2$  at the 70% probability level; H atoms are drawn as spheres of arbitrary radius.

# n-Butyl 2-(2,4-dichloroanilino)-4,4-dimethyl-6-oxocyclohex-1-enecarbodithioate

### Crystal data

 $C_{19}H_{23}Cl_2NOS_2$   $M_r = 416.40$ Monoclinic,  $P2_1/c$ Hall symbol: -P 2ybc a = 9.0321 (1) Å b = 19.4422 (2) Å c = 11.4700 (1) Å  $\beta = 100.331$  (1)° V = 1981.52 (3) Å<sup>3</sup> Z = 4

### Data collection

| Bruker SMART APEX                        | 18747 measured reflections                                          |
|------------------------------------------|---------------------------------------------------------------------|
| diffractometer                           | 4554 independent reflections                                        |
| Radiation source: fine-focus sealed tube | 4279 reflections with $I > 2\sigma(I)$                              |
| Graphite monochromator                   | $R_{\rm int} = 0.016$                                               |
| ω scans                                  | $\theta_{\rm max} = 27.5^{\circ}, \ \theta_{\rm min} = 2.1^{\circ}$ |
| Absorption correction: multi-scan        | $h = -11 \rightarrow 11$                                            |
| (SADABS; Sheldrick, 1996)                | $k = -25 \rightarrow 25$                                            |
| $T_{\min} = 0.853, \ T_{\max} = 0.947$   | $l = -14 \rightarrow 14$                                            |
| Refinement                               |                                                                     |

F(000) = 872

 $\theta = 2.5 - 28.2^{\circ}$ 

 $\mu = 0.55 \text{ mm}^{-1}$ T = 123 K

Block, yellow

 $0.30 \times 0.20 \times 0.10 \text{ mm}$ 

 $D_{\rm x} = 1.396 {\rm Mg} {\rm m}^{-3}$ 

Mo *K* $\alpha$  radiation,  $\lambda = 0.71073$  Å

Cell parameters from 9957 reflections

| Refinement on $F^2$                             | Secondary atom site location: difference Fourier         |
|-------------------------------------------------|----------------------------------------------------------|
| Least-squares matrix: full                      | map                                                      |
| $R[F^2 > 2\sigma(F^2)] = 0.025$                 | Hydrogen site location: inferred from                    |
| $wR(F^2) = 0.070$                               | neighbouring sites                                       |
| S = 1.00                                        | H atoms treated by a mixture of independent              |
| 4554 reflections                                | and constrained refinement                               |
| 230 parameters                                  | $w = 1/[\sigma^2(F_o^2) + (0.0405P)^2 + 0.9836P]$        |
| 0 restraints                                    | where $P = (F_o^2 + 2F_c^2)/3$                           |
| Primary atom site location: structure-invariant | $(\Delta/\sigma)_{\rm max} = 0.001$                      |
| direct methods                                  | $\Delta  ho_{ m max} = 0.41 \  m e \  m \AA^{-3}$        |
|                                                 | $\Delta \rho_{\rm min} = -0.25 \text{ e} \text{ Å}^{-3}$ |

### Special details

**Geometry**. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters  $(Å^2)$ 

|            | x            | у             | Ζ            | $U_{ m iso}$ */ $U_{ m eq}$ |  |
|------------|--------------|---------------|--------------|-----------------------------|--|
| Cl1        | 0.66246 (3)  | 0.420713 (17) | 0.99199 (3)  | 0.02548 (8)                 |  |
| C12        | 1.25630 (3)  | 0.391875 (17) | 1.00782 (3)  | 0.02572 (8)                 |  |
| <b>S</b> 1 | 0.17044 (3)  | 0.547076 (14) | 0.56447 (2)  | 0.01521 (7)                 |  |
| S2         | 0.45310 (3)  | 0.595199 (14) | 0.71292 (3)  | 0.01818 (8)                 |  |
| 01         | 0.18119 (12) | 0.41970 (5)   | 0.52118 (12) | 0.0435 (3)                  |  |
| N1         | 0.65717 (11) | 0.47990 (5)   | 0.74995 (8)  | 0.01551 (19)                |  |
| H1         | 0.625 (2)    | 0.5237 (10)   | 0.7584 (16)  | 0.033 (4)*                  |  |

| C1   | 0.31311 (14)  | 0.40793 (6) | 0.56335 (11) | 0.0194 (2) |
|------|---------------|-------------|--------------|------------|
| C2   | 0.37252 (13)  | 0.33742 (6) | 0.54278 (10) | 0.0176 (2) |
| H2A  | 0.4118        | 0.3381      | 0.4676       | 0.021*     |
| H2B  | 0.2878        | 0.3044      | 0.5331       | 0.021*     |
| C3   | 0.49613 (12)  | 0.31158 (6) | 0.64090 (10) | 0.0150 (2) |
| C4   | 0.61567 (12)  | 0.36787 (6) | 0.66192 (10) | 0.0163 (2) |
| H4A  | 0.6925        | 0.3547      | 0.7312       | 0.020*     |
| H4B  | 0.6662        | 0.3698      | 0.5922       | 0.020*     |
| C5   | 0.55899 (12)  | 0.43880 (6) | 0.68327 (9)  | 0.0133 (2) |
| C6   | 0.41136 (12)  | 0.46044 (6) | 0.63000 (10) | 0.0141 (2) |
| C7   | 0.56586 (14)  | 0.24599 (6) | 0.60044 (11) | 0.0203 (2) |
| H7A  | 0.6051        | 0.2554      | 0.5277       | 0.030*     |
| H7B  | 0.4890        | 0.2100      | 0.5851       | 0.030*     |
| H7C  | 0.6482        | 0.2306      | 0.6626       | 0.030*     |
| C8   | 0.43521 (15)  | 0.29707 (7) | 0.75460 (11) | 0.0246 (3) |
| H8A  | 0.3590        | 0.2607      | 0.7397       | 0.037*     |
| H8B  | 0.3898        | 0.3390      | 0.7800       | 0.037*     |
| H8C  | 0.5178        | 0.2822      | 0.8170       | 0.037*     |
| C9   | 0.80208 (12)  | 0.45912 (6) | 0.81146 (10) | 0.0144 (2) |
| C10  | 0.81793 (13)  | 0.43077 (6) | 0.92496 (10) | 0.0160 (2) |
| C11  | 0.95775 (13)  | 0.40992 (6) | 0.98561 (10) | 0.0171 (2) |
| H11  | 0.9681        | 0.3902      | 1.0624       | 0.021*     |
| C12  | 1.08177 (13)  | 0.41848 (6) | 0.93158 (10) | 0.0171 (2) |
| C13  | 1.07029 (13)  | 0.44805 (6) | 0.82040 (10) | 0.0187 (2) |
| H13  | 1.1572        | 0.4543      | 0.7856       | 0.022*     |
| C14  | 0.92928 (13)  | 0.46846 (6) | 0.76063 (10) | 0.0169 (2) |
| H14  | 0.9198        | 0.4889      | 0.6845       | 0.020*     |
| C15  | 0.35496 (12)  | 0.53004 (6) | 0.63903 (9)  | 0.0140 (2) |
| C16  | 0.14330 (13)  | 0.63819 (6) | 0.58501 (10) | 0.0162 (2) |
| H16A | 0.2411        | 0.6618      | 0.5885       | 0.019*     |
| H16B | 0.0737        | 0.6561      | 0.5150       | 0.019*     |
| C17  | 0.08095 (13)  | 0.65650 (6) | 0.69585 (10) | 0.0169 (2) |
| H17A | 0.1575        | 0.6462      | 0.7669       | 0.020*     |
| H17B | -0.0089       | 0.6280      | 0.6994       | 0.020*     |
| C18  | 0.03800 (14)  | 0.73269 (6) | 0.69634 (11) | 0.0226 (2) |
| H18A | 0.1254        | 0.7609      | 0.6846       | 0.027*     |
| H18B | -0.0451       | 0.7418      | 0.6292       | 0.027*     |
| C19  | -0.01100 (17) | 0.75431 (7) | 0.81137 (13) | 0.0308 (3) |
| H19A | -0.0374       | 0.8033      | 0.8074       | 0.046*     |
| H19B | 0.0716        | 0.7464      | 0.8780       | 0.046*     |
| H19C | -0.0988       | 0.7272      | 0.8227       | 0.046*     |

Atomic displacement parameters  $(Å^2)$ 

|            | $U^{11}$     | $U^{22}$     | $U^{33}$     | $U^{12}$      | $U^{13}$      | U <sup>23</sup> |
|------------|--------------|--------------|--------------|---------------|---------------|-----------------|
| Cl1        | 0.01664 (14) | 0.03539 (18) | 0.02576 (15) | -0.00287 (11) | 0.00749 (11)  | 0.00779 (12)    |
| Cl2        | 0.01535 (14) | 0.03229 (17) | 0.02687 (16) | 0.00715 (11)  | -0.00338 (11) | 0.00089 (12)    |
| <b>S</b> 1 | 0.01301 (13) | 0.01582 (14) | 0.01536 (13) | 0.00136 (9)   | -0.00128 (10) | -0.00127 (9)    |

Acta Cryst. (2009). E65, o2459

| S2  | 0.01510 (14) | 0.01493 (14) | 0.02250 (15) | -0.00004 (10) | -0.00210 (11) | -0.00381 (10) |
|-----|--------------|--------------|--------------|---------------|---------------|---------------|
| 01  | 0.0189 (5)   | 0.0256 (5)   | 0.0756 (8)   | 0.0054 (4)    | -0.0192 (5)   | -0.0213 (5)   |
| N1  | 0.0130 (4)   | 0.0142 (5)   | 0.0177 (5)   | -0.0003 (3)   | -0.0015 (3)   | -0.0014 (4)   |
| C1  | 0.0162 (5)   | 0.0169 (5)   | 0.0229 (6)   | 0.0000 (4)    | -0.0023 (4)   | -0.0034 (4)   |
| C2  | 0.0170 (5)   | 0.0148 (5)   | 0.0188 (5)   | -0.0003 (4)   | -0.0028 (4)   | -0.0027 (4)   |
| C3  | 0.0135 (5)   | 0.0141 (5)   | 0.0162 (5)   | -0.0014 (4)   | 0.0000 (4)    | 0.0001 (4)    |
| C4  | 0.0123 (5)   | 0.0148 (5)   | 0.0210 (5)   | -0.0003 (4)   | 0.0012 (4)    | -0.0022 (4)   |
| C5  | 0.0128 (5)   | 0.0150 (5)   | 0.0125 (5)   | -0.0017 (4)   | 0.0028 (4)    | 0.0006 (4)    |
| C6  | 0.0122 (5)   | 0.0145 (5)   | 0.0150 (5)   | -0.0011 (4)   | 0.0008 (4)    | -0.0008 (4)   |
| C7  | 0.0188 (5)   | 0.0145 (5)   | 0.0259 (6)   | -0.0003 (4)   | -0.0010 (4)   | -0.0021 (4)   |
| C8  | 0.0264 (6)   | 0.0257 (6)   | 0.0225 (6)   | -0.0027 (5)   | 0.0066 (5)    | 0.0050 (5)    |
| C9  | 0.0124 (5)   | 0.0139 (5)   | 0.0156 (5)   | -0.0009 (4)   | -0.0009 (4)   | -0.0023 (4)   |
| C10 | 0.0138 (5)   | 0.0169 (5)   | 0.0175 (5)   | -0.0024 (4)   | 0.0035 (4)    | -0.0003 (4)   |
| C11 | 0.0181 (6)   | 0.0169 (5)   | 0.0153 (5)   | -0.0003 (4)   | 0.0002 (4)    | 0.0009 (4)    |
| C12 | 0.0128 (5)   | 0.0178 (5)   | 0.0186 (5)   | 0.0025 (4)    | -0.0028 (4)   | -0.0027 (4)   |
| C13 | 0.0142 (5)   | 0.0239 (6)   | 0.0183 (5)   | -0.0002 (4)   | 0.0037 (4)    | -0.0027 (4)   |
| C14 | 0.0169 (5)   | 0.0197 (5)   | 0.0137 (5)   | -0.0016 (4)   | 0.0010 (4)    | -0.0012 (4)   |
| C15 | 0.0126 (5)   | 0.0166 (5)   | 0.0125 (5)   | -0.0006 (4)   | 0.0013 (4)    | 0.0003 (4)    |
| C16 | 0.0176 (5)   | 0.0144 (5)   | 0.0158 (5)   | 0.0018 (4)    | 0.0007 (4)    | 0.0019 (4)    |
| C17 | 0.0156 (5)   | 0.0163 (5)   | 0.0184 (5)   | 0.0011 (4)    | 0.0020 (4)    | -0.0009 (4)   |
| C18 | 0.0224 (6)   | 0.0180 (6)   | 0.0251 (6)   | 0.0033 (4)    | -0.0016 (5)   | -0.0030 (4)   |
| C19 | 0.0309 (7)   | 0.0264 (7)   | 0.0340 (7)   | 0.0087 (5)    | 0.0030 (6)    | -0.0091 (6)   |
|     |              |              |              |               |               |               |

# Geometric parameters (Å, °)

| Cl1—C10 | 1.7287 (11) | C8—H8A   | 0.98        |
|---------|-------------|----------|-------------|
| Cl2—C12 | 1.7387 (12) | C8—H8B   | 0.98        |
| S1—C15  | 1.7628 (11) | C8—H8C   | 0.98        |
| S1-C16  | 1.8094 (12) | C9—C14   | 1.3903 (16) |
| S2—C15  | 1.6851 (11) | C9—C10   | 1.3973 (16) |
| 01—C1   | 1.2244 (16) | C10-C11  | 1.3885 (16) |
| N1—C5   | 1.3291 (14) | C11—C12  | 1.3840 (17) |
| N1—C9   | 1.4293 (14) | C11—H11  | 0.95        |
| N1—H1   | 0.911 (18)  | C12—C13  | 1.3856 (17) |
| C1—C6   | 1.4733 (15) | C13—C14  | 1.3916 (16) |
| C1—C2   | 1.5061 (16) | C13—H13  | 0.95        |
| С2—С3   | 1.5214 (15) | C14—H14  | 0.95        |
| C2—H2A  | 0.99        | C16—C17  | 1.5222 (16) |
| C2—H2B  | 0.99        | C16—H16A | 0.99        |
| С3—С4   | 1.5258 (15) | C16—H16B | 0.99        |
| С3—С8   | 1.5300 (16) | C17—C18  | 1.5315 (16) |
| С3—С7   | 1.5307 (16) | C17—H17A | 0.99        |
| C4—C5   | 1.5063 (15) | C17—H17B | 0.99        |
| C4—H4A  | 0.99        | C18—C19  | 1.5240 (19) |
| C4—H4B  | 0.99        | C18—H18A | 0.99        |
| С5—С6   | 1.4269 (15) | C18—H18B | 0.99        |
| C6—C15  | 1.4562 (15) | C19—H19A | 0.98        |
| С7—Н7А  | 0.98        | C19—H19B | 0.98        |
|         |             |          |             |

| С7—Н7В     | 0.98        | С19—Н19С      | 0.98        |
|------------|-------------|---------------|-------------|
| C7—H7C     | 0.98        |               |             |
|            |             |               |             |
| C15—S1—C16 | 105.02 (5)  | C14—C9—N1     | 120.57 (10) |
| C5—N1—C9   | 124.86 (10) | C10—C9—N1     | 120.21 (10) |
| C5—N1—H1   | 115.5 (11)  | C11—C10—C9    | 120.93 (10) |
| C9—N1—H1   | 119.6 (11)  | C11—C10—C11   | 118.85 (9)  |
| O1—C1—C6   | 121.90 (11) | C9—C10—Cl1    | 120.22 (9)  |
| O1—C1—C2   | 117.19 (11) | C12—C11—C10   | 118.49 (10) |
| C6—C1—C2   | 120.90 (10) | C12—C11—H11   | 120.8       |
| C1—C2—C3   | 114.80 (9)  | C10—C11—H11   | 120.8       |
| C1—C2—H2A  | 108.6       | C11—C12—C13   | 121.94 (11) |
| C3—C2—H2A  | 108.6       | C11—C12—Cl2   | 118.20 (9)  |
| C1—C2—H2B  | 108.6       | C13—C12—Cl2   | 119.85 (9)  |
| С3—С2—Н2В  | 108.6       | C12—C13—C14   | 118.85 (11) |
| H2A—C2—H2B | 107.5       | С12—С13—Н13   | 120.6       |
| C2—C3—C4   | 106.54 (9)  | C14—C13—H13   | 120.6       |
| C2—C3—C8   | 111.29 (10) | C9—C14—C13    | 120.55 (11) |
| C4—C3—C8   | 110.49 (10) | C9—C14—H14    | 119.7       |
| C2—C3—C7   | 109.76 (9)  | C13—C14—H14   | 119.7       |
| C4—C3—C7   | 109.11 (9)  | C6—C15—S2     | 125.12 (8)  |
| C8—C3—C7   | 109.58 (10) | C6—C15—S1     | 116.90 (8)  |
| C5—C4—C3   | 115.52 (9)  | S2—C15—S1     | 117.97 (6)  |
| C5—C4—H4A  | 108.4       | C17—C16—S1    | 114.63 (8)  |
| C3—C4—H4A  | 108.4       | C17—C16—H16A  | 108.6       |
| C5—C4—H4B  | 108.4       | S1—C16—H16A   | 108.6       |
| C3—C4—H4B  | 108.4       | C17—C16—H16B  | 108.6       |
| H4A—C4—H4B | 107.5       | S1—C16—H16B   | 108.6       |
| N1—C5—C6   | 123.03 (10) | H16A—C16—H16B | 107.6       |
| N1—C5—C4   | 115.65 (10) | C16—C17—C18   | 111.18 (10) |
| C6—C5—C4   | 121.26 (10) | С16—С17—Н17А  | 109.4       |
| C5—C6—C15  | 123.74 (10) | С18—С17—Н17А  | 109.4       |
| C5—C6—C1   | 116.59 (10) | С16—С17—Н17В  | 109.4       |
| C15—C6—C1  | 119.67 (10) | C18—C17—H17B  | 109.4       |
| С3—С7—Н7А  | 109.5       | H17A—C17—H17B | 108.0       |
| C3—C7—H7B  | 109.5       | C19—C18—C17   | 112.52 (11) |
| H7A—C7—H7B | 109.5       | C19—C18—H18A  | 109.1       |
| C3—C7—H7C  | 109.5       | C17—C18—H18A  | 109.1       |
| H7A—C7—H7C | 109.5       | C19—C18—H18B  | 109.1       |
| H7B—C7—H7C | 109.5       | C17—C18—H18B  | 109.1       |
| С3—С8—Н8А  | 109.5       | H18A—C18—H18B | 107.8       |
| C3—C8—H8B  | 109.5       | С18—С19—Н19А  | 109.5       |
| H8A—C8—H8B | 109.5       | C18—C19—H19B  | 109.5       |
| С3—С8—Н8С  | 109.5       | H19A—C19—H19B | 109.5       |
| H8A—C8—H8C | 109.5       | C18—C19—H19C  | 109.5       |
| H8B—C8—H8C | 109.5       | H19A—C19—H19C | 109.5       |
| C14—C9—C10 | 119.20 (10) | H19B—C19—H19C | 109.5       |

| O1—C1—C2—C3  | -149.43 (13) | C14—C9—C10—C11  | -2.07 (17)   |
|--------------|--------------|-----------------|--------------|
| C6—C1—C2—C3  | 31.47 (16)   | N1-C9-C10-C11   | 179.58 (10)  |
| C1—C2—C3—C4  | -52.05 (13)  | C14—C9—C10—Cl1  | 178.25 (9)   |
| C1—C2—C3—C8  | 68.46 (13)   | N1-C9-C10-Cl1   | -0.10 (15)   |
| C1—C2—C3—C7  | -170.06 (10) | C9-C10-C11-C12  | 0.65 (17)    |
| C2—C3—C4—C5  | 52.18 (12)   | Cl1—C10—C11—C12 | -179.66 (9)  |
| C8—C3—C4—C5  | -68.83 (13)  | C10-C11-C12-C13 | 1.04 (17)    |
| C7—C3—C4—C5  | 170.62 (9)   | C10-C11-C12-Cl2 | -179.71 (9)  |
| C9—N1—C5—C6  | 175.52 (10)  | C11—C12—C13—C14 | -1.26 (18)   |
| C9—N1—C5—C4  | -7.29 (16)   | Cl2—C12—C13—C14 | 179.50 (9)   |
| C3—C4—C5—N1  | 151.63 (10)  | C10-C9-C14-C13  | 1.84 (17)    |
| C3—C4—C5—C6  | -31.13 (15)  | N1-C9-C14-C13   | -179.82 (10) |
| N1-C5-C6-C15 | 2.50 (17)    | C12—C13—C14—C9  | -0.21 (17)   |
| C4—C5—C6—C15 | -174.53 (10) | C5—C6—C15—S2    | -0.17 (16)   |
| N1C5C6C1     | -177.12 (10) | C1—C6—C15—S2    | 179.44 (9)   |
| C4—C5—C6—C1  | 5.84 (15)    | C5—C6—C15—S1    | 178.79 (8)   |
| O1-C1-C6-C5  | 174.85 (13)  | C1—C6—C15—S1    | -1.60 (14)   |
| C2-C1-C6-C5  | -6.09 (16)   | C16—S1—C15—C6   | -175.86 (8)  |
| O1-C1-C6-C15 | -4.79 (19)   | C16—S1—C15—S2   | 3.18 (8)     |
| C2-C1-C6-C15 | 174.27 (10)  | C15—S1—C16—C17  | -89.34 (9)   |
| C5—N1—C9—C14 | 95.10 (14)   | S1-C16-C17-C18  | -170.96 (8)  |
| C5—N1—C9—C10 | -86.58 (14)  | C16—C17—C18—C19 | -174.62 (10) |
|              |              |                 |              |

Hydrogen-bond geometry (Å, °)

| D—H···A  | <i>D</i> —Н | H···A    | D····A    | <i>D</i> —H··· <i>A</i> |
|----------|-------------|----------|-----------|-------------------------|
| N1—H1…S2 | 0.91 (2)    | 2.08 (2) | 2.885 (1) | 147 (2)                 |