

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

# A chiral photochromic Schiff base: (*R*)-4methoxy-2-[(1-phenylethyl)iminomethyl]phenol

#### Yukie Miura, Yoshikazu Aritake and Takashiro Akitsu\*

Department of Chemistry, Faculty of Science, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan Correspondence e-mail: akitsu@rs.kagu.tus.ac.jp

Received 28 August 2009; accepted 3 September 2009

Key indicators: single-crystal X-ray study; T = 100 K; mean  $\sigma$ (C–C) = 0.003 Å; *R* factor = 0.042; *wR* factor = 0.088; data-to-parameter ratio = 7.0.

The title chiral photochromic Schiff base compound,  $C_{16}H_{17}NO_2$ , was synthesized from (*R*)-1-phenylethylamine and 5-methoxysalicylaldehyde. The molecule of the title compound exists in the phenol–imine tautomeric form. The dihedral angle between the two aromatic rings is 62.61 (11)°. An intramolecular O-H···N hydrogen bond with an O···N distance of 2.589 (2) Å is observed. The crystal packing is stabilized by C-H··· $\pi$  interactions involving the aromatic ring.

#### **Related literature**

For chiral metal complexes and their hybrid materials, see: Akitsu (2007); Akitsu & Einaga (2004, 2005*a*,*b*, 2006*a*); Akitsu *et al.* (2009); Yamada (1999). For structral comparison of the 1phenylethylamine moiety, see: Antonov *et al.* (1995); Liu *et al.* (1997). For related Schiff base ligands and their functions, see: Akitsu *et al.* (2004); Akitsu & Einaga (2006*b*); Hadjoudis *et al.* (1987, 2004); Santoni & Rehder (2004); Sliwa *et al.* (2005).



### Experimental

Crystal data

| $C_{16}H_{17}NO_2$          | c = 13.920 (7) Å               |
|-----------------------------|--------------------------------|
| $M_r = 255.31$              | $\beta = 93.254 \ (7)^{\circ}$ |
| Monoclinic, P2 <sub>1</sub> | $V = 676.4 (6) \text{ Å}^3$    |
| a = 8.270 (4)  Å            | Z = 2                          |
| b = 5.886 (3)  Å            | Mo $K\alpha$ radiation         |
|                             |                                |

 $0.21 \times 0.19 \times 0.07 \text{ mm}$ 

 $\mu = 0.08 \text{ mm}^{-1}$ T = 100 K

#### Data collection

Bruker SMART CCD area-detector diffractometer Absorption correction: multi-scan (*SADABS*; Bruker, 1998)  $T_{\rm min} = 0.983, T_{\rm max} = 0.994$ 

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.042$   $wR(F^2) = 0.088$  S = 0.991677 reflections 240 parameters 1454 reflections with  $I > 2\sigma(I)$  $R_{\text{int}} = 0.074$ 

3805 measured reflections

1677 independent reflections

 $\begin{array}{l} 1 \mbox{ restraint} \\ \mbox{All H-atom parameters refined} \\ \Delta \rho_{max} = 0.31 \mbox{ e } \mbox{A}^{-3} \\ \Delta \rho_{min} = -0.18 \mbox{ e } \mbox{A}^{-3} \end{array}$ 

 Table 1

 Hydrogen-bond geometry (Å, °).

| $D-\mathrm{H}\cdots A$                                             | <i>D</i> -H | H···A    | $D \cdots A$ | $D - \mathbf{H} \cdots A$ |
|--------------------------------------------------------------------|-------------|----------|--------------|---------------------------|
| $01-H1\cdots N1$ $C12-H12\cdots Cg1^{i}$ $C16-H16C\cdots Cg1^{ii}$ | 0.97 (3)    | 1.72 (5) | 2.589 (2)    | 151 (3)                   |
|                                                                    | 1.03 (4)    | 2.72 (3) | 3.536 (3)    | 137 (3)                   |
|                                                                    | 0.98 (4)    | 2.71 (3) | 3.563 (3)    | 149 (3)                   |

Symmetry codes: (i) -x + 1,  $y + \frac{1}{2}$ , -z + 1; (ii) -x,  $y - \frac{1}{2}$ , -z. Cg 1 is the centroid of the C10–C15 ring.

Data collection: *SMART* (Bruker, 1998); cell refinement: *SAINT* (Bruker, 1998); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXL97*.

This work was supported by the Kato Foundation for the Promotion of Science.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CI2897).

#### References

- Akitsu, T. (2007). Polyhedron, 26, 2527-2535.
- Akitsu, T. & Einaga, Y. (2004). Acta Cryst. C60, m640-m642.
- Akitsu, T. & Einaga, Y. (2005a). Polyhedron, 24, 1869-1877.
- Akitsu, T. & Einaga, Y. (2005b). Polyhedron, 24, 2933-2943.
- Akitsu, T. & Einaga, Y. (2006a). Polyhedron, 25, 1089-1095.
- Akitsu, T. & Einaga, Y. (2006b). Acta Cryst. E62, 04315-04317.
- Akitsu, T., Takeuchi, Y. & Einaga, Y. (2004). Acta Cryst. C60, o801-o802.
- Akitsu, T., Yamaguchi, J., Uchida, N. & Aritake, Y. (2009). Res. Lett. Mater. Sci. 484172 (4 pages).
- Antonov, D. Y., Belokon, Y. N., Ikonnikov, N. S., Orlova, S. A., Pisarevsky, A. P., Raevski, N. I., Rozenberg, V. I., Sergeeva, E. V., Struchkov, Y. T., Tararov,
- V. I. & Vorontsov, E. V. (1995). J. Chem. Soc. Perkin Trans. 1, pp. 1873–1879. Bruker (1998). SMART, SAINT and SADABS. Bruker AXS Inc., Madison,

Wisconsin, USA. Hadjoudis, E., Rontoyianni, A., Ambroziak, K., Dziembowska, T. & Mavridis,

- I. M. (2004). J. Photochem. Photobiol. A, **162**, 521–530.
- Hadjoudis, E., Vitterakis, M. & Mavridis, I. M. (1987). *Tetrahedron*, **43**, 1345–1360.

Liu, Q., Ding, M., Lin, Y. & Xing, Y. (1997). J. Organomet. Chem. 548, 139–142. Santoni, G. & Rehder, D. (2004). J. Inorg. Biochem. 98, 758–764.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Sliwa, M., Letrard, S., Malfant, I., Nierlich, M., Lacroix, P. G., Asahi, T., Masuhara, H., Yu, P. & Nakatani, K. (2005). *Chem. Mater.* **17**, 4727–4735. Yamada, S. (1999). *Coord. Chem. Rev.* **190–192**, 537–555.

# supporting information

Acta Cryst. (2009). E65, o2381 [doi:10.1107/S1600536809035557]

# A chiral photochromic Schiff base: (*R*)-4-methoxy-2-[(1-phenylethyl)iminomethyl]phenol

# Yukie Miura, Yoshikazu Aritake and Takashiro Akitsu

# S1. Comment

Because of structural flexibility and their application for switching materials and so on, Schiff base compounds are one of the most extensively used ligands in the field of coordination chemistry (Yamada, 1999). Especially, aiming at multifunctional chiral materials, we have investigated Schiff base  $Cu^{II}$ , Ni<sup>II</sup>, or Zn<sup>II</sup> complexes in view of thermally induced structural phase transition in the solid state (Akitsu & Einaga, 2004), structural change by occlusion of solvents (Akitsu & Einaga, 2005*a*), chiral conformational change in a solution induced by a photochromic solute (Akitsu & Einaga, 2005*b*,2006*a*; Akitsu, 2007), and novel induced CD to achiral metallodendrimers (Akitsu *et al.*, 2009). On the other hand, free Schiff base ligands (Akitsu *et al.*, 2004, Akitsu & Einaga, 2006*b*) have been also studied as multifunctional components, for example photochromic and thermochromic or fluorescence materials (Hadjoudis *et al.*, 2004) and nonlinear optical materials (Sliwa *et al.*, 2005) and so on. In order to clarify the role of electron-donating methoxy group, as free ligands for tautomerism and photochromism (Hadjoudis *et al.*, 1987), crystal structure of the title compound, (I), has been determined.

Crystal structure of (I) is similar to those of the analogous derivatives (Santoni & Rehder, 2004; Akitsu & Einaga, 2006*b*). Molecule of (I) (Fig. 1) adopts an E configuration with respect to the imine C=N double bond with a C6—C7— N1—C8 torsion angle of -179.40 (18)°. Thus, the  $\pi$ -conjugate system around the imine group is essentially planar. The C1—O1 bond distance of 1.361 (3) Å suggests that it is in the phenol-imine tautomer. The contraction of the C7=N1 bond [1.283 (3) Å] is also in agreement with the phenol-imine tautomer. As for the methoxy group, the O2—C4 and O2 —C16 bond distaces are 1.374 (3) and 1.422 (3) Å, respectively, and the C4—O2—C16 bond angle is 116.9 (2)°. Beside them, geometric parameters reported here agree with corresponding values reported for analogous Schiff base compounds containing the 1-phenylethylamine group (Antonov *et al.*, 1995; Liu *et al.*, 1997). The planarity of (I) is stabilized by an intramolecular O—H…N hydrogen bond (Table 1). However, there is no intermolecular hydrogen bonds associated with the methoxy group. The crystal packing is stabilized by C—H… $\pi$  interactions involving the C10-C15 ring.

# **S2. Experimental**

Treatment of equimolar *R*-1-phenylethylamine and 5-methoxysalicylaldehyde in methanol at 298 K overnight gave rise to a yellow-green compound (I). Prismatic crystals of (I) were grown from the resulting solution over a period of several days (yield 39.0%). Analysis found: C 73.98, H 6.49, N 5.37%; calculated for  $C_{16}H_{17}NO_2$ : C 75.27, H 6.71, N, 5.49%. (precipitates containing non-stoichiometric cystalline water) m.p. 371 K. IR (Nujol, *v*, cm<sup>-1</sup>): 1632 (imine band). UV-VIS (diffuse reflectance, nm): 255, 329, 470s h.

### **S3. Refinement**

All H atoms were located in a difference map and refined freely [O-H = 0.98 (3) Å and C-H = 0.91 (3)-1.02 (3) Å]. Friedel pairs were merged.



#### Figure 1

The molecular structure of (I), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level.

### (R)-4-methoxy-2-[(1-phenylethyl)iminomethyl]phenol

Crystal data

C<sub>16</sub>H<sub>17</sub>NO<sub>2</sub>  $M_r = 255.31$ Monoclinic, P2<sub>1</sub> Hall symbol: P 2yb a = 8.270 (4) Å b = 5.886 (3) Å c = 13.920 (7) Å  $\beta = 93.254$  (7)° V = 676.4 (6) Å<sup>3</sup> Z = 2

Data collection

Brruker SMART CCD area-detector diffractometer Radiation source: fine-focus sealed tube Graphite monochromator Detector resolution: 8.333 pixels mm<sup>-1</sup>  $\varphi$  and  $\omega$  scans Absorption correction: multi-scan (*SADABS*; Bruker, 1998)  $T_{\min} = 0.983$ ,  $T_{\max} = 0.994$ 

### Refinement

Refinement on  $F^2$ Least-squares matrix: full  $R[F^2 > 2\sigma(F^2)] = 0.042$  $wR(F^2) = 0.088$  F(000) = 272  $D_x = 1.253 \text{ Mg m}^{-3}$ Mo K\alpha radiation,  $\lambda = 0.71073 \text{ Å}$ Cell parameters from 1657 reflections  $\theta = 2.5-27.5^{\circ}$   $\mu = 0.08 \text{ mm}^{-1}$  T = 100 KPlate, yellow  $0.21 \times 0.19 \times 0.07 \text{ mm}$ 

3805 measured reflections 1677 independent reflections 1454 reflections with  $I > 2\sigma(I)$   $R_{int} = 0.074$   $\theta_{max} = 27.5^{\circ}, \ \theta_{min} = 1.5^{\circ}$   $h = -10 \rightarrow 8$   $k = -7 \rightarrow 7$  $l = -17 \rightarrow 16$ 

S = 0.991677 reflections 240 parameters 1 restraint

| Primary atom site location: structure-invariant             | All H-atom parameters refined                                                                                              |
|-------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|
| direct methods                                              | $w = 1/[\sigma^2(F_o^2) + (0.038P)^2]$                                                                                     |
| Secondary atom site location: difference Fourier            | where $P = (F_0^2 + 2F_c^2)/3$                                                                                             |
| map                                                         | $(\Delta/\sigma)_{\text{max}} = 0.001$                                                                                     |
| Hydrogen site location: inferred from<br>neighbouring sites | $\Delta \rho_{\text{max}} = 0.31 \text{ e } \text{\AA}^{-3}$ $\Delta \rho_{\text{min}} = -0.18 \text{ e } \text{\AA}^{-3}$ |

#### Special details

**Experimental**. Refinement of  $F^2$  against ALL reflections. The weighted *R*-factor *wR* and goodness of fit S are based on  $F^2$ , conventional *R*-factors *R* are based on F, with F set to zero for negative  $F^2$ . The threshold expression of  $F^2 > 2$ sigma( $F^2$ ) is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on  $F^2$  are statistically about twice as large as those based on F, and R– factors based on ALL data will be even larger.

**Geometry**. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

| Fractional atomic coordinates and isoa | tropic or equ | ivalent isotropic di | isplacement parameters ( | $(A^2)$ | ) |
|----------------------------------------|---------------|----------------------|--------------------------|---------|---|
|----------------------------------------|---------------|----------------------|--------------------------|---------|---|

|     | x             | У           | Ζ             | $U_{ m iso}$ */ $U_{ m eq}$ |
|-----|---------------|-------------|---------------|-----------------------------|
| 01  | -0.10235 (18) | 0.3421 (3)  | 0.24677 (11)  | 0.0246 (4)                  |
| O2  | -0.34502 (18) | 0.0560 (3)  | -0.11019 (11) | 0.0236 (4)                  |
| N1  | 0.0495 (2)    | -0.0409 (3) | 0.26781 (13)  | 0.0209 (4)                  |
| C1  | -0.1599 (2)   | 0.2610 (4)  | 0.15989 (16)  | 0.0204 (5)                  |
| C2  | -0.2717 (3)   | 0.3907 (4)  | 0.10592 (17)  | 0.0235 (5)                  |
| C3  | -0.3316 (2)   | 0.3147 (4)  | 0.01743 (17)  | 0.0214 (5)                  |
| C4  | -0.2782 (2)   | 0.1095 (4)  | -0.02039 (15) | 0.0202 (5)                  |
| C5  | -0.1684 (3)   | -0.0231 (4) | 0.03255 (16)  | 0.0200 (5)                  |
| C6  | -0.1087 (2)   | 0.0500 (4)  | 0.12470 (15)  | 0.0190 (5)                  |
| C7  | 0.0002 (2)    | -0.0964 (4) | 0.18197 (16)  | 0.0198 (5)                  |
| C8  | 0.1607 (3)    | -0.1916 (4) | 0.32334 (16)  | 0.0204 (5)                  |
| C9  | 0.0764 (3)    | -0.2731 (5) | 0.41192 (19)  | 0.0253 (6)                  |
| C10 | 0.3138 (2)    | -0.0565 (4) | 0.34822 (15)  | 0.0200 (5)                  |
| C15 | 0.4606 (3)    | -0.1240 (5) | 0.31292 (16)  | 0.0237 (5)                  |
| C14 | 0.5988 (3)    | 0.0075 (5)  | 0.32986 (17)  | 0.0265 (6)                  |
| C13 | 0.5917 (3)    | 0.2063 (5)  | 0.38184 (17)  | 0.0269 (6)                  |
| C12 | 0.4471 (3)    | 0.2741 (5)  | 0.41913 (16)  | 0.0251 (5)                  |
| C11 | 0.3098 (3)    | 0.1428 (4)  | 0.40203 (16)  | 0.0224 (5)                  |
| C16 | -0.3038 (3)   | -0.1589 (5) | -0.14857 (18) | 0.0255 (6)                  |
| H1  | -0.041 (3)    | 0.216 (6)   | 0.2758 (19)   | 0.044 (9)*                  |
| H2  | -0.307 (3)    | 0.526 (5)   | 0.1294 (16)   | 0.020 (6)*                  |
| H3  | -0.408 (3)    | 0.398 (5)   | -0.0179 (16)  | 0.024 (6)*                  |
| Н5  | -0.129 (3)    | -0.164 (4)  | 0.0095 (14)   | 0.013 (6)*                  |
| H7  | 0.039 (3)     | -0.236 (5)  | 0.1538 (15)   | 0.021 (6)*                  |
| H8  | 0.186 (3)     | -0.326 (5)  | 0.2845 (16)   | 0.022 (6)*                  |
| H15 | 0.466 (3)     | -0.261 (5)  | 0.2753 (19)   | 0.036 (8)*                  |
| H14 | 0.701 (3)     | -0.044 (5)  | 0.3014 (16)   | 0.030 (7)*                  |
| H13 | 0.684 (3)     | 0.319 (6)   | 0.390 (2)     | 0.046 (8)*                  |
| H12 | 0.443 (3)     | 0.421 (5)   | 0.4568 (16)   | 0.028 (7)*                  |

| H11  | 0.210 (3)  | 0.198 (5)  | 0.4247 (16)  | 0.029 (6)* |  |
|------|------------|------------|--------------|------------|--|
| H9A  | 0.045 (3)  | -0.149 (5) | 0.4484 (17)  | 0.031 (7)* |  |
| H16A | -0.330 (3) | -0.274 (5) | -0.1053 (18) | 0.031 (7)* |  |
| H9B  | -0.020 (3) | -0.371 (5) | 0.3935 (16)  | 0.026 (6)* |  |
| H16B | -0.191 (3) | -0.172 (4) | -0.1610 (14) | 0.014 (5)* |  |
| H9C  | 0.147 (3)  | -0.381 (6) | 0.4531 (19)  | 0.043 (8)* |  |
| H16C | -0.365 (3) | -0.172 (5) | -0.2090 (18) | 0.027 (7)* |  |
|      |            |            |              |            |  |

Atomic displacement parameters  $(Å^2)$ 

|     | $U^{11}$    | $U^{22}$    | $U^{33}$    | $U^{12}$     | $U^{13}$     | $U^{23}$     |
|-----|-------------|-------------|-------------|--------------|--------------|--------------|
| 01  | 0.0236 (8)  | 0.0249 (10) | 0.0252 (9)  | -0.0010 (8)  | 0.0002 (7)   | -0.0063 (8)  |
| O2  | 0.0230 (8)  | 0.0276 (10) | 0.0198 (8)  | 0.0002 (7)   | -0.0012 (6)  | 0.0021 (8)   |
| N1  | 0.0171 (8)  | 0.0238 (11) | 0.0218 (10) | -0.0012 (8)  | 0.0011 (7)   | -0.0013 (9)  |
| C1  | 0.0191 (10) | 0.0217 (14) | 0.0208 (12) | -0.0029 (10) | 0.0046 (9)   | -0.0015 (10) |
| C2  | 0.0208 (10) | 0.0195 (13) | 0.0306 (13) | 0.0001 (10)  | 0.0055 (9)   | -0.0011 (12) |
| C3  | 0.0144 (10) | 0.0230 (13) | 0.0268 (13) | 0.0015 (9)   | 0.0023 (9)   | 0.0066 (11)  |
| C4  | 0.0174 (10) | 0.0251 (14) | 0.0184 (12) | -0.0031 (9)  | 0.0035 (9)   | 0.0022 (10)  |
| C5  | 0.0173 (10) | 0.0210 (13) | 0.0219 (12) | -0.0021 (9)  | 0.0033 (8)   | -0.0003 (10) |
| C6  | 0.0160 (9)  | 0.0203 (12) | 0.0209 (11) | -0.0021 (9)  | 0.0031 (9)   | 0.0001 (10)  |
| C7  | 0.0155 (9)  | 0.0230 (13) | 0.0212 (12) | -0.0017 (9)  | 0.0043 (8)   | 0.0002 (10)  |
| C8  | 0.0202 (10) | 0.0194 (12) | 0.0215 (12) | 0.0014 (9)   | 0.0002 (9)   | -0.0014 (10) |
| C9  | 0.0233 (11) | 0.0265 (14) | 0.0263 (13) | -0.0046 (11) | 0.0019 (10)  | 0.0000 (11)  |
| C10 | 0.0219 (10) | 0.0228 (13) | 0.0149 (11) | -0.0009 (10) | -0.0015 (8)  | 0.0034 (10)  |
| C15 | 0.0234 (11) | 0.0286 (14) | 0.0193 (12) | 0.0033 (10)  | 0.0024 (9)   | 0.0005 (11)  |
| C14 | 0.0213 (11) | 0.0342 (16) | 0.0242 (13) | 0.0011 (10)  | 0.0042 (9)   | 0.0044 (11)  |
| C13 | 0.0258 (12) | 0.0322 (15) | 0.0224 (13) | -0.0081 (11) | -0.0012 (10) | 0.0043 (11)  |
| C12 | 0.0302 (12) | 0.0255 (14) | 0.0192 (12) | -0.0041 (11) | -0.0014 (9)  | 0.0002 (11)  |
| C11 | 0.0219 (11) | 0.0233 (13) | 0.0219 (12) | 0.0021 (10)  | 0.0011 (9)   | 0.0000 (10)  |
| C16 | 0.0269 (12) | 0.0280 (15) | 0.0217 (14) | 0.0011 (11)  | 0.0011 (10)  | -0.0009 (12) |
|     |             |             |             |              |              |              |

# Geometric parameters (Å, °)

| 01—C1  | 1.361 (3) | С8—Н8   | 0.99 (3)  |  |
|--------|-----------|---------|-----------|--|
| O1—H1  | 0.98 (3)  | C9—H9A  | 0.93 (3)  |  |
| O2—C4  | 1.374 (3) | C9—H9B  | 1.00 (3)  |  |
| O2-C16 | 1.422 (3) | С9—Н9С  | 1.02 (3)  |  |
| N1—C7  | 1.283 (3) | C10—C15 | 1.393 (3) |  |
| N1     | 1.466 (3) | C10—C11 | 1.393 (3) |  |
| C1—C2  | 1.387 (3) | C15—C14 | 1.390 (4) |  |
| C1—C6  | 1.409 (3) | C15—H15 | 0.96 (3)  |  |
| C2—C3  | 1.376 (3) | C14—C13 | 1.379 (4) |  |
| С2—Н2  | 0.91 (3)  | C14—H14 | 1.00 (2)  |  |
| C3—C4  | 1.399 (3) | C13—C12 | 1.389 (3) |  |
| С3—Н3  | 0.92 (3)  | C13—H13 | 1.01 (3)  |  |
| C4—C5  | 1.379 (3) | C12—C11 | 1.383 (3) |  |
| C5—C6  | 1.415 (3) | C12—H12 | 1.01 (3)  |  |
| С5—Н5  | 0.95 (2)  | C11—H11 | 0.95 (3)  |  |
|        |           |         |           |  |

| C6—C7        | 1.452 (3)    | C16—H16A        | 0.94 (3)     |
|--------------|--------------|-----------------|--------------|
| С7—Н7        | 0.97 (3)     | C16—H16B        | 0.96 (2)     |
| C8—C10       | 1.519 (3)    | C16—H16C        | 0.96 (3)     |
| C8—C9        | 1.528 (3)    |                 |              |
|              |              |                 |              |
| C1—O1—H1     | 104.5 (17)   | С8—С9—Н9А       | 110.3 (16)   |
| C4—O2—C16    | 116.9 (2)    | С8—С9—Н9В       | 111.4 (13)   |
| C7—N1—C8     | 119.6 (2)    | H9A—C9—H9B      | 111 (2)      |
| O1—C1—C2     | 118.5 (2)    | С8—С9—Н9С       | 112.1 (14)   |
| O1—C1—C6     | 121.4 (2)    | Н9А—С9—Н9С      | 110 (2)      |
| C2—C1—C6     | 120.1 (2)    | H9B—C9—H9C      | 102 (2)      |
| C3—C2—C1     | 120.0 (2)    | C15—C10—C11     | 118.5 (2)    |
| С3—С2—Н2     | 119.8 (16)   | C15—C10—C8      | 120.2 (2)    |
| C1—C2—H2     | 120.2 (16)   | C11—C10—C8      | 121.22 (19)  |
| C2—C3—C4     | 120.8 (2)    | C14—C15—C10     | 120.4 (2)    |
| С2—С3—Н3     | 120.4 (16)   | C14—C15—H15     | 119.8 (16)   |
| С4—С3—Н3     | 118.8 (16)   | C10—C15—H15     | 119.8 (16)   |
| O2—C4—C5     | 125.1 (2)    | C13—C14—C15     | 120.2 (2)    |
| O2—C4—C3     | 114.9 (2)    | C13—C14—H14     | 121.9 (17)   |
| C5—C4—C3     | 120.0 (2)    | C15—C14—H14     | 117.9 (17)   |
| C4—C5—C6     | 119.9 (2)    | C14—C13—C12     | 120.2 (2)    |
| С4—С5—Н5     | 122.7 (14)   | C14—C13—H13     | 124.3 (17)   |
| С6—С5—Н5     | 117.4 (14)   | С12—С13—Н13     | 115.3 (18)   |
| C1—C6—C5     | 119.1 (2)    | C11—C12—C13     | 119.4 (2)    |
| C1—C6—C7     | 121.4 (2)    | C11—C12—H12     | 121.2 (14)   |
| C5—C6—C7     | 119.4 (2)    | С13—С12—Н12     | 119.4 (14)   |
| N1—C7—C6     | 121.0 (2)    | C12-C11-C10     | 121.2 (2)    |
| N1—C7—H7     | 119.8 (14)   | C12—C11—H11     | 117.8 (17)   |
| С6—С7—Н7     | 119.2 (14)   | C10-C11-H11     | 120.8 (17)   |
| N1-C8-C10    | 107.1 (2)    | O2—C16—H16A     | 109.4 (17)   |
| N1—C8—C9     | 108.32 (18)  | O2—C16—H16B     | 113.2 (14)   |
| C10—C8—C9    | 113.1 (2)    | H16A—C16—H16B   | 109 (2)      |
| N1—C8—H8     | 110.1 (14)   | O2—C16—H16C     | 106.1 (17)   |
| С10—С8—Н8    | 110.1 (14)   | H16A—C16—H16C   | 112 (2)      |
| С9—С8—Н8     | 108.1 (14)   | H16B—C16—H16C   | 107.6 (18)   |
|              |              |                 |              |
| O1—C1—C2—C3  | 179.53 (18)  | C1—C6—C7—N1     | 2.0 (3)      |
| C6-C1-C2-C3  | -0.6 (3)     | C5—C6—C7—N1     | -176.18 (18) |
| C1—C2—C3—C4  | -1.6 (3)     | C7—N1—C8—C10    | 120.2 (2)    |
| C16—O2—C4—C5 | 3.7 (3)      | C7—N1—C8—C9     | -117.5 (2)   |
| C16—O2—C4—C3 | -175.42 (18) | N1-C8-C10-C15   | -116.8 (2)   |
| C2—C3—C4—O2  | -178.62 (18) | C9—C8—C10—C15   | 124.0 (2)    |
| C2—C3—C4—C5  | 2.2 (3)      | N1-C8-C10-C11   | 59.8 (3)     |
| O2—C4—C5—C6  | -179.69 (17) | C9—C8—C10—C11   | -59.5 (3)    |
| C3—C4—C5—C6  | -0.6 (3)     | C11—C10—C15—C14 | -1.1 (3)     |
| O1—C1—C6—C5  | -177.98 (17) | C8—C10—C15—C14  | 175.5 (2)    |
| C2-C1-C6-C5  | 2.2 (3)      | C10-C15-C14-C13 | 0.0 (4)      |
| O1—C1—C6—C7  | 3.8 (3)      | C15—C14—C13—C12 | 1.2 (4)      |
|              |              |                 |              |

| C2-C1-C6-C7 | -176.03 (19) | C14—C13—C12—C11 | -1.3 (4)   |
|-------------|--------------|-----------------|------------|
| C4—C5—C6—C1 | -1.5 (3)     | C13—C12—C11—C10 | 0.1 (4)    |
| C4—C5—C6—C7 | 176.70 (19)  | C15—C10—C11—C12 | 1.1 (3)    |
| C8—N1—C7—C6 | -179.40 (18) | C8—C10—C11—C12  | -175.5 (2) |

Hydrogen-bond geometry (Å, °)

| D—H···A                       | D—H      | H···A    | D····A    | D—H···A |  |
|-------------------------------|----------|----------|-----------|---------|--|
| 01—H1…N1                      | 0.97 (3) | 1.72 (5) | 2.589 (2) | 151 (3) |  |
| C12—H12···Cg1 <sup>i</sup>    | 1.03 (4) | 2.72 (3) | 3.536 (3) | 137 (3) |  |
| C16—H16C····Cg1 <sup>ii</sup> | 0.98 (4) | 2.71 (3) | 3.563 (3) | 149 (3) |  |

Symmetry codes: (i) -*x*+1, *y*+1/2, -*z*+1; (ii) -*x*, *y*-1/2, -*z*.