

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

2-Amino-4-methylbenzenesulfonamide

Shao-Song Qian,^a* Hao Hu^a and Hong-You Cui^b

^aSchool of Life, ShanDong University of Technology, ZiBo 255049, People's Republic of China, and ^bSchool of Chemical Engineering, ShanDong University of Technology, ZiBo 255049, People's Republic of China Correspondence e-mail: njuqss@yahoo.com.cn

Received 5 September 2009; accepted 15 September 2009

Key indicators: single-crystal X-ray study; T = 273 K; mean σ (C–C) = 0.005 Å; R factor = 0.047; wR factor = 0.132; data-to-parameter ratio = 13.2.

In the crystal of the title compound, $C_7H_{10}N_2O_2S$, the molecules are linked by two strong $N-H\cdots O$ hydrogen bonds. The molecular structure is stabilized by an intramolecular $N-H\cdots O$ hydrogen bond. The C/S/N plane makes a dihedral angle of 69.7 (2)° with the aromatic ring plane.

Related literature

For the anticonvulsant activity of the title compound and its derivatives, see: Monzani *et al.* (1985); Tait *et al.* (1993). For hydrogen-bond motifs, see: Bernstein *et al.* (1995).

Experimental

Crystal data

$C_7H_{10}N_2O_2S$	c = 10.408 (5) Å
$M_r = 186.23$	$\beta = 114.689 \ (6)^{\circ}$
Monoclinic, $P2_1/c$	V = 854.4 (7) Å ³
a = 9.873 (5) Å	Z = 4
b = 9.151 (4) Å	Mo $K\alpha$ radiation

```
organic compounds
```

4115 measured reflections 1449 independent reflections 1338 reflections with $I > 2\sigma(I)$

 $0.16 \times 0.13 \times 0.10 \text{ mm}$

 $R_{\rm int} = 0.017$

 $\mu = 0.34 \text{ mm}^{-1}$ T = 273 K

Data collection

Bruker SMART CCD area-detector
diffractometer
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
$T_{\rm min} = 0.948, T_{\rm max} = 0.967$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.047$ 110 parameters $wR(F^2) = 0.132$ H-atom parameters constrainedS = 1.10 $\Delta \rho_{max} = 0.56$ e Å $^{-3}$ 1449 reflections $\Delta \rho_{min} = -0.41$ e Å $^{-3}$

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	$D-\mathrm{H}$	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$N2-H2B\cdots O2^{i}$ $N2-H2A\cdots O1^{ii}$ $N1-H1B\cdots O2$	0.86 0.86 0.86	2.15 2.27 2.60	3.003 (4) 2.975 (4) 3.080 (5)	174 139 117

Symmetry codes: (i) $x, -y + \frac{1}{2}, z + \frac{1}{2}$; (ii) $-x, y + \frac{1}{2}, -z + \frac{3}{2}$.

Data collection: *SMART* (Bruker, 2004); cell refinement: *SAINT* (Bruker, 2004); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXTL*.

This project was sponsored by the ShanDong Province Science & Technology Innovation Foundation.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BX2239).

References

- Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.
- Bruker (2004). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Monzani, A., Gamberini, G., Braghiroli, D., Di Bella, M., Raffa, L. & Sandrini, M. (1985). Arch. Pharm. 318, 299–304.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Tait, A., Parenti, C., Zanoli, P., Veneri, C., Truzzi, C., Brandoli, C., Baraldi, M. & Di Bella, M. (1993). *Farmaco*, **48**, 1463–1473.

supporting information

Acta Cryst. (2009). E65, o2513 [doi:10.1107/S1600536809037271]

2-Amino-4-methylbenzenesulfonamide

Shao-Song Qian, Hao Hu and Hong-You Cui

S1. Comment

The title compound (I), Figure 1, was prepared and tested for anticonvulsant activity in mice, (Monzani, *et al.*,1985). In addition, its derivatives was studied using indomethacin as a reference drug (Tait, *et al.*,1993). We report here its crystal and molecular structure. The molecules are linked by two strong N—H···O generating a graph-set motif $R^4_4(16)$ ring (Bernstein, *et al.*, 1995) and is stabilized by one N—H···O intramolecular hydrogen bonds (Table 1, Figure 2). The C2/S1/N2 plane makes a dihedral angle of 69.7 (2)° with the aromatic ring plane.

S2. Experimental

The title compound was synthesized according to method described by Monzani, *et al.*, 1985. The single crystals suitable for X-ray diffraction were obtained by spontaneous evaporation of the solvent.

S3. Refinement

All the H atoms attached to C atoms were placed in geometrical positions and constrained to ride on their parent atoms with C—H distance in the range 0.93–0.98 Å, They were treated as riding atoms, with $U_{iso}(H) = 1.2U_{eq}(C)$.

Figure 1

The structure of (I), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 35% probability level.

Figure 2

A portion of the packing diagram for (I) showing graph-set motif $R_4^{4}(16)$ ring. For the sake clarity the atoms not involved in the motif shown have been omitted Symmetry codes: (i) x, -y+1/2, z+1/2; (ii)-x,y+1/2,-z+3/2.

2-Amino-4-methylbenzenesulfonamide

Crystal data	
$C_7H_{10}N_2O_2S$ $M_r = 186.23$ Monoclinic, $P2_1/c$ Hall symbol: -P 2ybc a = 9.873 (5) Å b = 9.151 (4) Å c = 10.408 (5) Å $\beta = 114.689$ (6)° V = 854.4 (7) Å ³ Z = 4	F(000) = 392 $D_x = 1.448 \text{ Mg m}^{-3}$ Mo Ka radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 3354 reflections $\theta = 2.2-28.2^{\circ}$ $\mu = 0.34 \text{ mm}^{-1}$ T = 273 K Block, colorless $0.16 \times 0.13 \times 0.10 \text{ mm}$
Data collection	
Bruker SMART CCD area-detector diffractometer Radiation source: fine-focus sealed tube Graphite monochromator φ and ω scans	Absorption correction: multi-scan (<i>SADABS</i> ; Sheldrick, 1996) $T_{min} = 0.948$, $T_{max} = 0.967$ 4115 measured reflections 1449 independent reflections 1338 reflections with $I > 2\sigma(I)$

$R_{\rm int} = 0.017$
$\theta_{\text{max}} = 25.1^{\circ}, \ \theta_{\text{min}} = 3.1^{\circ}$
$h = -11 \rightarrow 11$

Refinement

Кејтетет	
Refinement on F^2	Hydrogen site location: inferred from
Least-squares matrix: full	neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.047$	H-atom parameters constrained
$wR(F^2) = 0.132$	$w = 1/[\sigma^2(F_o^2) + (0.0721P)^2 + 0.701P]$
<i>S</i> = 1.10	where $P = (F_o^2 + 2F_c^2)/3$
1449 reflections	$(\Delta/\sigma)_{ m max} < 0.001$
110 parameters	$\Delta ho_{ m max} = 0.56 \ { m e} \ { m \AA}^{-3}$
0 restraints	$\Delta \rho_{\rm min} = -0.41 \text{ e } \text{\AA}^{-3}$
Primary atom site location: structure-invariant direct methods	Extinction correction: <i>SHELXL97</i> (Sheldrick, 2008), $Fc^*=kFc[1+0.001xFc^2\lambda^3/sin(2\theta)]^{-1/4}$
Secondary atom site location: difference Fourier	Extinction coefficient: 0.047 (9)
map	

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. **Refinement**. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

 $k = -10 \rightarrow 10$ $l = -12 \rightarrow 9$

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
S1	0.13944 (9)	0.19821 (9)	0.76214 (8)	0.0361 (4)
O1	0.1511 (3)	0.0560 (3)	0.8246 (3)	0.0533 (8)
O2	0.0800 (3)	0.2040 (4)	0.6109 (3)	0.0603 (9)
N1	0.2315 (4)	0.5060 (4)	0.6773 (4)	0.0604 (10)
H1A	0.2566	0.5867	0.6510	0.073*
H1B	0.1391	0.4815	0.6450	0.073*
N2	0.0260 (3)	0.2896 (3)	0.8048 (3)	0.0412 (7)
H2A	-0.0514	0.3293	0.7402	0.049*
H2B	0.0426	0.2990	0.8924	0.049*
C1	0.3488 (4)	0.4078 (4)	0.7793 (3)	0.0357 (7)
C2	0.3186 (3)	0.2754 (4)	0.8318 (3)	0.0342 (7)
C3	0.4324 (4)	0.1967 (4)	0.9361 (4)	0.0396 (8)
Н3	0.4098	0.1121	0.9727	0.048*
C4	0.5787 (4)	0.2433 (4)	0.9859 (4)	0.0443 (9)
H4	0.6543	0.1920	1.0571	0.053*
C5	0.6107 (3)	0.3669 (4)	0.9282 (4)	0.0417 (8)
C6	0.4979 (4)	0.4501 (4)	0.8300 (4)	0.0406 (8)
H6	0.5221	0.5362	0.7969	0.049*
C7	0.7610 (3)	0.4151 (5)	0.9737 (4)	0.0497 (9)
H7A	0.7795	0.4947	1.0389	0.074*

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

supporting information

H7B	0.7771	0.4471	0.8933	0.074*
H7C	0.8276	0.3360	1.0193	0.074*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
S1	0.0355 (6)	0.0364 (6)	0.0356 (6)	-0.0058 (3)	0.0140 (4)	-0.0071 (3)
01	0.0470 (15)	0.0348 (14)	0.0722 (18)	-0.0059 (11)	0.0191 (13)	-0.0030 (12)
O2	0.0540 (16)	0.086 (2)	0.0376 (14)	-0.0211 (14)	0.0163 (12)	-0.0185 (13)
N1	0.056 (2)	0.063 (2)	0.062 (2)	0.0026 (16)	0.0245 (17)	0.0197 (17)
N2	0.0373 (16)	0.0455 (17)	0.0419 (15)	0.0014 (12)	0.0174 (13)	0.0004 (12)
C1	0.0368 (16)	0.0390 (17)	0.0348 (15)	0.0007 (13)	0.0184 (13)	-0.0019 (13)
C2	0.0329 (16)	0.0357 (16)	0.0352 (16)	-0.0012 (12)	0.0155 (13)	-0.0053 (12)
C3	0.0414 (18)	0.0327 (17)	0.0435 (18)	0.0024 (13)	0.0165 (15)	0.0001 (13)
C4	0.0360 (18)	0.0431 (19)	0.0474 (19)	0.0067 (14)	0.0109 (15)	-0.0027 (16)
C5	0.0313 (17)	0.047 (2)	0.0467 (18)	-0.0029 (14)	0.0165 (14)	-0.0113 (15)
C6	0.0395 (17)	0.0420 (18)	0.0443 (18)	-0.0051 (14)	0.0213 (15)	-0.0005 (15)
C7	0.0246 (16)	0.058 (2)	0.062 (2)	-0.0056(15)	0.0139 (16)	-0.0010(18)

Geometric parameters (Å, °)

1.433 (3)	C2—C3	1.393 (5)
1.438 (3)	C3—C4	1.383 (5)
1.602 (3)	С3—Н3	0.9300
1.756 (3)	C4—C5	1.378 (6)
1.500 (5)	C4—H4	0.9300
0.8600	C5—C6	1.383 (5)
0.8600	C5—C7	1.426 (4)
0.8600	С6—Н6	0.9300
0.8600	С7—Н7А	0.9600
1.395 (5)	С7—Н7В	0.9600
1.412 (5)	С7—Н7С	0.9600
116.68 (18)	C4—C3—C2	120.6 (3)
105.80 (18)	С4—С3—Н3	119.7
106.29 (16)	С2—С3—Н3	119.7
108.58 (16)	C5—C4—C3	118.9 (3)
107.49 (16)	С5—С4—Н4	120.5
112.08 (16)	C3—C4—H4	120.5
120.0	C4—C5—C6	120.9 (3)
120.0	C4—C5—C7	120.3 (3)
120.0	C6—C5—C7	118.7 (4)
120.0	C5—C6—C1	121.5 (3)
120.0	С5—С6—Н6	119.2
120.0	С1—С6—Н6	119.2
116.9 (3)	С5—С7—Н7А	109.5
118.9 (3)	С5—С7—Н7В	109.5
124.3 (3)	H7A—C7—H7B	109.5
	$\begin{array}{c} 1.433 \ (3) \\ 1.438 \ (3) \\ 1.438 \ (3) \\ 1.602 \ (3) \\ 1.756 \ (3) \\ 1.500 \ (5) \\ 0.8600 \\ 0.8600 \\ 0.8600 \\ 0.8600 \\ 1.395 \ (5) \\ 1.412 \ (5) \\ \end{array}$ $\begin{array}{c} 116.68 \ (18) \\ 105.80 \ (18) \\ 105.80 \ (18) \\ 106.29 \ (16) \\ 107.49 \ (16) \\ 112.08 \ (16) \\ 120.0 \\ 12$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

supporting information

C3—C2—C1	120.9 (3)	С5—С7—Н7С	109.5
C3—C2—S1	117.4 (3)	H7A—C7—H7C	109.5
C1—C2—S1	121.6 (3)	H7B—C7—H7C	109.5

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	$D \cdots A$	D—H…A
N2—H2 <i>B</i> ···O2 ⁱ	0.86	2.15	3.003 (4)	174
N2—H2A···O1 ⁱⁱ	0.86	2.27	2.975 (4)	139
N1—H1 <i>B</i> …O2	0.86	2.60	3.080 (5)	117

Symmetry codes: (i) *x*, -*y*+1/2, *z*+1/2; (ii) -*x*, *y*+1/2, -*z*+3/2.