

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

*N*⁴,*N*⁸,3,6,9,10,11-Heptaphenyl-3,6,9,10,11-pentaazatricyclo[5.2.1.1^{2,5}]undecane-4,8-diamine

Amir Taheri* and Sayed Mojtaba Moosavi

Department of Chemistry, Imam Hossein University, Tehran, Iran Correspondence e-mail: amir.tahery1@gmail.com

Received 25 August 2009; accepted 27 August 2009

Key indicators: single-crystal X-ray study; T = 100 K; mean σ (C–C) = 0.007 Å; R factor = 0.056; wR factor = 0.121; data-to-parameter ratio = 8.8.

The title compound, $C_{48}H_{43}N_7$, is a polyazapolycyclic compound with a near- C_2 symmetric skeleton. In the crystal, a N-H··· π interaction occurs.

Related literature

For the synthesis of the 2,5,7–triazabicyclo[2.2.1]heptane derivative, see: Taheri & Moosavi (2009a,b). For general background to triazanorbornanes, see: Nitravati & Sikhibhushan (1939). For the syntheses of polyazapolycyclic compounds, see: Nielsen *et al.* (1990, 1992).

Experimental

Crystal data $C_{48}H_{43}N_7$ $M_r = 717.89$ Triclinic, P1

a = 9.4889 (19) Å
b = 9.6252 (19) Å
c = 10.967 (2) Å

$\alpha = 113.924 \ (4)^{\circ}$
$\beta = 94.555 \ (4)^{\circ}$
$\gamma = 93.835 \ (4)^{\circ}$
V = 907.3 (3) Å ³
Z = 1

Data collection

Bruker APEXII CCD area-detector diffractometer Absorption correction: none 9544 measured reflections

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.056$ $wR(F^2) = 0.121$ S = 1.034343 reflections 496 parameters 4343 independent reflections 2787 reflections with $I > 2\sigma(I)$ $R_{\text{int}} = 0.062$

3 restraints H-atom parameters constrained $\Delta \rho_{max} = 0.25$ e Å⁻³ $\Delta \rho_{min} = -0.24$ e Å⁻³

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdot \cdot \cdot A$
$N3-H3\cdots Cg^{i}$	0.81	2.90	3.699 (4)	169

Symmetry code: (i) x, y, z + 1. Cg is the centroid of the C71–C76 ring.

Data collection: *APEX2* (Bruker, 2005); cell refinement: *SAINT* (Bruker, 2005); data reduction: *SAINT* program(s) used to solve structure: *SHELXTL* (Sheldrick, 2008); program(s) used to refine structure: *SHELXTL*; molecular graphics: *SHELXTL*; software used to prepare material for publication: *SHELXTL*.

We are thankful the Chemistry Group of Imam Hossain University for their cooperation.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BX2238).

References

Bruker (2005). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.

Nielsen, A. T., Nissan, R. A., Cafin, A. P., Gilardi, R. D. & Gorge, C. F. (1992). J. Org. Chem. 57, 6756–6759.

Nielsen, A. T., Nissan, R. A., Vanderah, D. J., Coon, C. L., Gilardi, R. D., George, C. F. & Anderson, J. F. (1990). J. Org. Chem. 55, 1459–1466.

- Nitravati, D. D. & Sikhibhushan, D. (1939). Proc. Natl Acad. Sci. India, 9, 93-98
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Taheri, A. & Moosavi, S. M. (2009a). Acta Cryst. C65, 0115-0117.
- Taheri, A. & Moosavi, S. M. (2009b). Acta Cryst. E65, 01724.

Mo $K\alpha$ radiation $\mu = 0.08 \text{ mm}^{-1}$

 $0.28 \times 0.15 \times 0.06 \text{ mm}$

T = 100 K

supporting information

Acta Cryst. (2009). E65, o2337 [doi:10.1107/S1600536809034436]

*N*⁴,*N*⁸,3,6,9,10,11-Heptaphenyl-3,6,9,10,11-pentaazatricyclo-[5.2.1.1^{2,5}]undecane-4,8-diamine

Amir Taheri and Sayed Mojtaba Moosavi

S1. Comment

Polyazapolycyclic compounds are constituted of saturated ring systems with multiple N atoms with different kinds of skeletons which be utilized for the syntheses of other derivatives (Nielsen *et al.*, 1992). Among the cage skeletons, 2,4,6,8,10,12-Hexabenzyl-2,4,6,8,10,12-hexaazaisowurtzitane (HBIW) is a famous precursor for 2,4,6,8,10,12-Hexanitro-2,4,6,8,10,12-hexaazaisowurtzitane (HNIW), a highly energetic compound (Nielsen *et al.*, 1990). In the norbornane skeletons triazanorbornanes or triazabicyclo[2,2,1]heptanes have been determined (Nitravati & Sikhibhushan, 1939). $N^4,N^8,3,6,9,10,11$ -Heptaphenyl-3,6,9,10,11-pentaazatricyclo[5,2,1^{1,7},1^{2,5}]undecane-4,8-diamine is synthesized for the first time *via* a catalytic reaction of $N^3,N^6,2,5,7$ -pentaphenyl-2,5,7-triazabicyclo[2,2,1]heptane-3,6-diamine (Taheri & Mossavi, 2009*a*; Taheri & Mossavi, 2009*b*) with nickel(II)nitrate as reagent. An *ORTEP* diagram of the title compound is shown in Figure 1. It consists of a nine-membered ring and two N-atoms bridging between C1 and C3 as well as C4 and C6. The compound is chiral, but only the relative configuration of the chiral centres could be determined. The skeleton is almost C₂ symmetric with a two-fold rotation axis running through the midpoint of the C1-C4 bond and N4.

There are no classical hydrogen bonds, just a weak intermolecular interactions, N3—H3…cg [(C71,C72, C73, C74, C75, C76) at x,y,z + z]: H…cg 2.90 Å, angle at H 168.6°.

S2. Experimental

To a stirred solution of N^3 , N^6 , 2, 5, 7-pentaphenyl-2, 5, 7-triazabicyclo[2, 2, 1]heptane-\3, 6-diamine(II) (1 mmol) in 20 ml of acetonitril was added 8.9 mg of nickel(II)nitrate (0.5 mmol) slowly at 288 K over 30 min. The reaction mixture was warmed up to 318 K and left for 40 min. The reaction mixture was then allowed to cool to 298 K and stand for 48 h. The precipitation was filtered and washed with cold ethanol to give a white powder 0.61 g (85% yield) of the title compound (m.p. 531 K). Recrystallization in hot dichloromethane yielded the single crystals for data collection. IR (KBr) (v_{max} /cm⁻¹): 3358 (NH). ¹H NMR (CDCl₃): $\delta_{\rm H}$ 6.74–7.24 (35*H*, m, CH_{Ar}), 6.30 (2*H*, s, CH), 5.56 (2*H*, s, CH), 5.21 (2*H*, d, ²*J*=7.0 Hz, NH), 3.89 (2*H*, d, ²*J*=7.0 Hz, NH). ¹³C NMR (CDCl₃): $\delta_{\rm C}$ 146.9, 145.6, 145.2, 143.3, 142.5, 130.0, 129.7, 129.5, 129.4, 129.1, 129.0, 119.9, 119.0, 118.8, 118.4, 118.3, 118.2, 116.3, 114.6, 114.3, 113.8, 113.6, 113.5, 113.2 (CH_{Ar}), 81.9 (2CH), 72.3 (2CH), 76.1 (2CH).

S3. Refinement

All H atoms were located in difference Fourier synthesis. They were refined using a riding model with N-H ranging from $0.81\text{\AA} - 0.88 \text{\AA}$, C-H ranging from $0.95\text{\AA} - 1.00 \text{\AA}$ and with $U_{iso}(H)$ set to $1.2 U_{eq}(C,N)$.

Figure 1

The molecular structure of the title compound, showing the atom-numbering scheme. Only H atoms bond to N and tertiary C atoms are shown. Displacement ellipsoids are at the 50% probability level.

*N*⁴,*N*⁸,3,6,9,10,11-Heptaphenyl-3,6,9,10,11-pentaazatricyclo[5.2.1.1^{2,5}]undecane-4,8-diamine

Crystal data	
$C_{48}H_{43}N_7$ $M_r = 717.89$ Triclinic, P1 Hall symbol: P 1 a = 9.4889 (19) Å b = 9.6252 (19) Å c = 10.967 (2) Å $a = 113.924 (4)^{\circ}$ $\beta = 94.555 (4)^{\circ}$ $\gamma = 93.835 (4)^{\circ}$ $V = 907.3 (3) \text{ Å}^3$	Z = 1 F(000) = 380 $D_x = 1.314 \text{ Mg m}^{-3}$ Mo K α radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 1186 reflections $\theta = 2.3-22.0^{\circ}$ $\mu = 0.08 \text{ mm}^{-1}$ T = 100 K Prism, red $0.28 \times 0.15 \times 0.06 \text{ mm}$
Data collectionBruker APEXII CCD area-detector diffractometerRadiation source: fine-focus sealed tubeGraphite monochromator φ and ω scans9544 measured reflections4343 independent reflections	2787 reflections with $I > 2\sigma(I)$ $R_{int} = 0.062$ $\theta_{max} = 28.0^{\circ}, \theta_{min} = 2.1^{\circ}$ $h = -12 \rightarrow 12$ $k = -12 \rightarrow 12$ $l = -14 \rightarrow 14$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.056$	Hydrogen site location: mixed
$wR(F^2) = 0.121$	H-atom parameters constrained
S = 1.03	$w = 1/[\sigma^2(F_o^2) + (0.048P)^2]$
4343 reflections	where $P = (F_o^2 + 2F_c^2)/3$
496 parameters	$(\Delta/\sigma)_{\rm max} < 0.001$
3 restraints	$\Delta ho_{ m max} = 0.25 \ { m e} \ { m \AA}^{-3}$
Primary atom site location: structure-invariant	$\Delta \rho_{\rm min} = -0.24 \text{ e } \text{\AA}^{-3}$
direct methods	

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
N1	-0.1525 (3)	0.6552 (4)	0.2565 (3)	0.0243 (8)
N2	-0.0946 (3)	0.7828 (4)	0.4788 (3)	0.0251 (8)
N3	-0.0754 (4)	0.5526 (4)	0.5139 (4)	0.0310 (9)
Н3	-0.0231	0.5589	0.5787	0.037*
N4	0.0672 (3)	0.5451 (4)	0.2164 (3)	0.0232 (7)
N5	0.1312 (3)	0.8199 (4)	0.3351 (3)	0.0233 (8)
N6	-0.0103 (3)	0.8702 (4)	0.1880 (3)	0.0249 (8)
N7	0.1492 (3)	0.7731 (4)	0.0288 (3)	0.0272 (8)
H7	0.1815	0.8690	0.0534	0.033*
C1	-0.1258 (4)	0.8074 (5)	0.3592 (4)	0.0255 (9)
H1A	-0.2120	0.8629	0.3646	0.031*
C2	-0.0255 (4)	0.6409 (5)	0.4445 (4)	0.0259 (10)
H2A	0.0796	0.6679	0.4686	0.031*
C3	-0.0588 (4)	0.5602 (5)	0.2896 (4)	0.0238 (9)
H3A	-0.1106	0.4566	0.2639	0.029*
C4	0.0039 (4)	0.8930 (4)	0.3268 (4)	0.0225 (9)
H4A	0.0175	1.0042	0.3883	0.027*
C5	0.0517 (4)	0.7329 (5)	0.1059 (4)	0.0223 (9)
H5A	-0.0238	0.6504	0.0462	0.027*
C6	0.1311 (4)	0.6857 (5)	0.2101 (4)	0.0255 (9)
H6A	0.2315	0.6725	0.1897	0.031*
C11	-0.2637 (4)	0.5993 (5)	0.1503 (4)	0.0233 (9)
C12	-0.2673 (4)	0.4571 (5)	0.0480 (5)	0.0331 (11)
H12A	-0.1955	0.3938	0.0506	0.040*
C13	-0.3732 (4)	0.4043 (5)	-0.0586 (5)	0.0353 (11)

H13A	-0.3741	0.3049	-0.1282	0.042*
C14	-0.4789 (5)	0.4956 (5)	-0.0651 (5)	0.0381 (12)
H14A	-0.5501	0.4616	-0.1400	0.046*
C15	-0.4775 (5)	0.6360 (5)	0.0396 (4)	0.0325 (11)
H15A	-0.5502	0.6985	0.0374	0.039*
C16	-0.3740 (4)	0.6886 (5)	0.1473 (4)	0.0261 (10)
H16A	-0.3768	0.7851	0.2196	0.031*
C21	-0.0692 (4)	0.9047 (5)	0.6055 (4)	0.0267 (9)
C22	-0.1324 (4)	1.0411 (5)	0.6308 (4)	0.0298 (10)
H22A	-0.1922	1.0497	0.5611	0.036*
C23	-0.1084 (5)	1.1597 (5)	0.7535 (5)	0.0343 (11)
H23A	-0.1507	1.2510	0.7679	0.041*
C24	-0.0243 (5)	1.1509 (6)	0.8581 (5)	0.0395 (12)
H24A	-0.0100	1.2340	0.9442	0.047*
C25	0.0386 (5)	1.0193 (6)	0.8349 (4)	0.0361 (11)
H25A	0.0988	1.0126	0.9054	0.043*
C26	0.0159 (5)	0.8977 (6)	0.7122 (4)	0.0341 (11)
H26A	0.0587	0.8071	0.6993	0.041*
C31	-0.2083 (4)	0.4805 (5)	0.5026 (5)	0.0300 (10)
C32	-0.2259 (5)	0.3798 (5)	0.5641 (5)	0.0390 (12)
H32A	-0.1475	0.3667	0.6164	0.047*
C33	-0.3554 (5)	0.2998 (6)	0.5492 (5)	0.0415 (13)
H33A	-0.3647	0.2282	0.5882	0.050*
C34	-0.4730 (5)	0.3211 (5)	0.4788 (5)	0.0374 (11)
H34A	-0.5627	0.2657	0.4699	0.045*
C35	-0.4578 (4)	0.4236 (5)	0.4217 (5)	0.0331 (11)
H35A	-0.5386	0.4400	0.3742	0.040*
C36	-0.3283 (4)	0.5035 (5)	0.4315 (5)	0.0313 (10)
H36A	-0.3200	0.5735	0.3907	0.038*
C41	0.1493 (4)	0.4233 (4)	0.1994 (4)	0.0236 (9)
C42	0.1242 (4)	0.3272 (4)	0.2642 (4)	0.0251 (9)
H42A	0.0537	0.3464	0.3242	0.030*
C43	0.2018 (4)	0.2039 (5)	0.2412 (5)	0.0300 (10)
H43A	0.1817	0.1373	0.2836	0.036*
C44	0.3079 (4)	0.1759 (5)	0.1577 (5)	0.0331 (11)
H44A	0.3619	0.0923	0.1441	0.040*
C45	0.3341 (4)	0.2711 (5)	0.0946 (5)	0.0306 (10)
H45A	0.4066	0.2525	0.0367	0.037*
C46	0.2562 (4)	0.3936 (4)	0.1141 (4)	0.0268 (9)
H46A	0.2756	0.4579	0.0694	0.032*
C51	0.2448 (4)	0.8775 (5)	0.4368 (4)	0.0248 (9)
C52	0.2463 (4)	1.0172 (5)	0.5463 (4)	0.0294 (10)
H52A	0.1686	1.0761	0.5523	0.035*
C53	0.3605 (5)	1.0712 (5)	0.6467 (5)	0.0347 (11)
H53A	0.3592	1.1662	0.7213	0.042*
C54	0.4758 (5)	0.9894 (5)	0.6402 (5)	0.0336 (11)
H54A	0.5545	1.0278	0.7084	0.040*
C55	0.4739 (5)	0.8506 (5)	0.5322 (5)	0.0357 (11)

H55A	0.5525	0.7930	0.5264	0.043*
C56	0.3609 (4)	0.7933 (5)	0.4323 (5)	0.0341 (11)
H56A	0.3616	0.6962	0.3600	0.041*
C61	-0.1228 (4)	0.9217 (5)	0.1294 (5)	0.0286 (10)
C62	-0.1656 (4)	0.8543 (5)	-0.0059 (5)	0.0313 (10)
H62A	-0.1200	0.7705	-0.0621	0.038*
C63	-0.2761 (5)	0.9077 (6)	-0.0627 (5)	0.0368 (11)
H63A	-0.3052	0.8600	-0.1567	0.044*
C64	-0.3418 (5)	1.0297 (6)	0.0188 (5)	0.0391 (12)
H64A	-0.4172	1.0657	-0.0186	0.047*
C65	-0.2976 (5)	1.0993 (5)	0.1552 (5)	0.0375 (12)
H65A	-0.3431	1.1833	0.2110	0.045*
C66	-0.1882 (4)	1.0486 (5)	0.2114 (5)	0.0329 (11)
H66A	-0.1573	1.0990	0.3048	0.039*
C71	0.1765 (4)	0.6732 (5)	-0.0973 (4)	0.0290 (10)
C72	0.1245 (4)	0.5187 (5)	-0.1531 (5)	0.0356 (11)
H72A	0.0688	0.4791	-0.1038	0.043*
C73	0.1538 (5)	0.4225 (6)	-0.2802 (5)	0.0449 (13)
H73A	0.1165	0.3179	-0.3174	0.054*
C74	0.2338 (5)	0.4747 (7)	-0.3516 (5)	0.0458 (13)
H74A	0.2502	0.4080	-0.4397	0.055*
C75	0.2917 (5)	0.6242 (7)	-0.2973 (5)	0.0491 (14)
H75A	0.3515	0.6596	-0.3465	0.059*
C76	0.2640 (5)	0.7246 (6)	-0.1709 (5)	0.0401 (12)
H76A	0.3044	0.8282	-0.1344	0.048*

Atomic displacement parameters (\mathring{A}^2)

U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
0.0191 (16)	0.0197 (18)	0.031 (2)	0.0057 (14)	-0.0021 (15)	0.0081 (16)
0.0234 (18)	0.030 (2)	0.0216 (19)	0.0074 (15)	0.0003 (15)	0.0098 (17)
0.0276 (19)	0.041 (2)	0.033 (2)	0.0065 (16)	-0.0004 (16)	0.0245 (18)
0.0186 (17)	0.0204 (17)	0.031 (2)	0.0054 (14)	0.0036 (14)	0.0106 (15)
0.0195 (17)	0.0219 (19)	0.025 (2)	0.0091 (14)	0.0004 (15)	0.0056 (16)
0.0239 (17)	0.0233 (19)	0.028 (2)	0.0095 (14)	0.0032 (15)	0.0106 (16)
0.0257 (19)	0.0223 (19)	0.033 (2)	0.0075 (15)	0.0063 (16)	0.0102 (17)
0.024 (2)	0.026 (2)	0.025 (2)	0.0081 (17)	0.0009 (18)	0.0081 (19)
0.021 (2)	0.032 (2)	0.030 (3)	0.0084 (17)	0.0045 (18)	0.016 (2)
0.0173 (19)	0.024 (2)	0.034 (2)	0.0053 (16)	0.0023 (18)	0.0144 (19)
0.021 (2)	0.021 (2)	0.023 (2)	0.0075 (16)	-0.0003 (17)	0.0063 (18)
0.022 (2)	0.022 (2)	0.024 (2)	0.0079 (16)	0.0002 (18)	0.0098 (18)
0.023 (2)	0.027 (2)	0.025 (2)	0.0052 (17)	0.0029 (18)	0.0095 (19)
0.018 (2)	0.028 (2)	0.025 (2)	0.0025 (17)	0.0008 (17)	0.0120 (19)
0.025 (2)	0.036 (3)	0.036 (3)	0.0055 (19)	-0.001 (2)	0.013 (2)
0.030(2)	0.036 (3)	0.032 (3)	0.003 (2)	-0.001 (2)	0.006 (2)
0.031 (2)	0.041 (3)	0.040 (3)	0.001 (2)	-0.007 (2)	0.016 (2)
0.028 (2)	0.036 (3)	0.032 (3)	0.0084 (19)	-0.001 (2)	0.013 (2)
0.021 (2)	0.028 (2)	0.027 (2)	0.0072 (17)	0.0019 (19)	0.009 (2)
	U^{11} 0.0191 (16) 0.0234 (18) 0.0276 (19) 0.0186 (17) 0.0195 (17) 0.0239 (17) 0.0257 (19) 0.024 (2) 0.021 (2) 0.021 (2) 0.021 (2) 0.022 (2) 0.023 (2) 0.018 (2) 0.025 (2) 0.031 (2) 0.028 (2) 0.021 (2)	$\begin{array}{c ccccc} U^{11} & U^{22} \\ \hline 0.0191 (16) & 0.0197 (18) \\ \hline 0.0234 (18) & 0.030 (2) \\ \hline 0.0276 (19) & 0.041 (2) \\ \hline 0.0186 (17) & 0.0204 (17) \\ \hline 0.0195 (17) & 0.0219 (19) \\ \hline 0.0239 (17) & 0.0233 (19) \\ \hline 0.0257 (19) & 0.0223 (19) \\ \hline 0.024 (2) & 0.026 (2) \\ \hline 0.021 (2) & 0.024 (2) \\ \hline 0.021 (2) & 0.024 (2) \\ \hline 0.021 (2) & 0.021 (2) \\ \hline 0.022 (2) & 0.022 (2) \\ \hline 0.023 (2) & 0.027 (2) \\ \hline 0.018 (2) & 0.028 (2) \\ \hline 0.030 (2) & 0.036 (3) \\ \hline 0.031 (2) & 0.028 (2) \\ \hline 0.021 (2) & 0.028 (2) \\ \hline \end{array}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	U^{11} U^{22} U^{33} U^{12} 0.0191 (16)0.0197 (18)0.031 (2)0.0057 (14)0.0234 (18)0.030 (2)0.0216 (19)0.0074 (15)0.0276 (19)0.041 (2)0.033 (2)0.0065 (16)0.0186 (17)0.0204 (17)0.031 (2)0.0054 (14)0.0195 (17)0.0219 (19)0.025 (2)0.0091 (14)0.0257 (19)0.0223 (19)0.033 (2)0.0075 (15)0.024 (2)0.026 (2)0.025 (2)0.0081 (17)0.021 (2)0.032 (2)0.030 (3)0.0084 (17)0.021 (2)0.022 (2)0.030 (3)0.0084 (17)0.0173 (19)0.024 (2)0.023 (2)0.0075 (16)0.022 (2)0.021 (2)0.025 (2)0.0075 (16)0.023 (2)0.027 (2)0.025 (2)0.0075 (16)0.023 (2)0.027 (2)0.025 (2)0.0052 (17)0.018 (2)0.028 (2)0.025 (2)0.0055 (19)0.030 (2)0.036 (3)0.036 (3)0.001 (2)0.031 (2)0.036 (3)0.032 (3)0.0084 (19)0.028 (2)0.028 (2)0.027 (2)0.027 (2)0.028 (2)0.028 (2)0.027 (2)0.0072 (17)	U^{11} U^{22} U^{33} U^{12} U^{13} $0.0191 (16)$ $0.0197 (18)$ $0.031 (2)$ $0.0057 (14)$ $-0.0021 (15)$ $0.0234 (18)$ $0.030 (2)$ $0.0216 (19)$ $0.0074 (15)$ $0.0003 (15)$ $0.0276 (19)$ $0.041 (2)$ $0.033 (2)$ $0.0065 (16)$ $-0.0004 (16)$ $0.0186 (17)$ $0.0204 (17)$ $0.031 (2)$ $0.0054 (14)$ $0.0036 (14)$ $0.0195 (17)$ $0.0219 (19)$ $0.025 (2)$ $0.0091 (14)$ $0.0032 (15)$ $0.0239 (17)$ $0.0233 (19)$ $0.028 (2)$ $0.0075 (15)$ $0.0063 (16)$ $0.0257 (19)$ $0.0223 (19)$ $0.033 (2)$ $0.0075 (15)$ $0.0063 (16)$ $0.024 (2)$ $0.026 (2)$ $0.025 (2)$ $0.0081 (17)$ $0.0009 (18)$ $0.021 (2)$ $0.024 (2)$ $0.033 (2)$ $0.0075 (16)$ $-0.0003 (17)$ $0.021 (2)$ $0.021 (2)$ $0.023 (2)$ $0.0075 (16)$ $-0.0003 (17)$ $0.022 (2)$ $0.021 (2)$ $0.023 (2)$ $0.0075 (16)$ $-0.0003 (17)$ $0.022 (2)$ $0.022 (2)$ $0.024 (2)$ $0.0075 (16)$ $-0.0003 (17)$ $0.022 (2)$ $0.022 (2)$ $0.025 (2)$ $0.0025 (17)$ $0.0029 (18)$ $0.018 (2)$ $0.028 (2)$ $0.025 (2)$ $0.0025 (17)$ $0.0008 (17)$ $0.025 (2)$ $0.036 (3)$ $0.036 (3)$ $0.003 (2)$ $-0.001 (2)$ $0.030 (2)$ $0.036 (3)$ $0.032 (3)$ $0.003 (2)$ $-0.001 (2)$ $0.031 (2)$ $0.036 (3)$ $0.032 (3)$ $0.0084 (19)$ $-0.001 (2)$ </td

C21	0.019 (2)	0.034 (2)	0.026 (2)	-0.0017 (18)	0.0021 (17)	0.012 (2)
C22	0.024 (2)	0.035 (3)	0.032 (3)	0.0085 (19)	0.0004 (19)	0.014 (2)
C23	0.036 (3)	0.028 (3)	0.033 (3)	0.0059 (19)	0.004 (2)	0.006 (2)
C24	0.041 (3)	0.042 (3)	0.025 (3)	0.005 (2)	0.003 (2)	0.003 (2)
C25	0.034 (3)	0.051 (3)	0.026 (3)	0.004 (2)	0.001 (2)	0.019 (2)
C26	0.032 (2)	0.046 (3)	0.029 (3)	0.008 (2)	-0.001 (2)	0.021 (2)
C31	0.027 (2)	0.026 (2)	0.035 (3)	0.0078 (18)	0.004 (2)	0.010 (2)
C32	0.031 (2)	0.047 (3)	0.048 (3)	0.007 (2)	0.005 (2)	0.030 (3)
C33	0.035 (3)	0.052 (3)	0.053 (3)	0.003 (2)	0.006 (2)	0.037 (3)
C34	0.027 (2)	0.041 (3)	0.046 (3)	0.002 (2)	0.004 (2)	0.020 (2)
C35	0.026 (2)	0.034 (3)	0.036 (3)	0.0058 (19)	0.000 (2)	0.011 (2)
C36	0.032 (2)	0.029 (2)	0.034 (3)	0.0075 (19)	0.005 (2)	0.014 (2)
C41	0.018 (2)	0.024 (2)	0.025 (2)	0.0012 (16)	-0.0026 (17)	0.0072 (18)
C42	0.022 (2)	0.026 (2)	0.025 (2)	0.0052 (17)	-0.0030 (18)	0.0090 (19)
C43	0.027 (2)	0.026 (2)	0.040 (3)	0.0035 (18)	0.000 (2)	0.017 (2)
C44	0.025 (2)	0.029 (2)	0.045 (3)	0.0117 (19)	0.003 (2)	0.014 (2)
C45	0.026 (2)	0.028 (2)	0.036 (3)	0.0111 (19)	0.007 (2)	0.010 (2)
C46	0.022 (2)	0.022 (2)	0.034 (3)	0.0024 (17)	-0.0007 (19)	0.0103 (19)
C51	0.022 (2)	0.025 (2)	0.030 (2)	0.0031 (17)	0.0013 (18)	0.014 (2)
C52	0.024 (2)	0.025 (2)	0.032 (3)	0.0014 (17)	0.003 (2)	0.005 (2)
C53	0.030 (2)	0.027 (2)	0.036 (3)	0.0007 (19)	0.000 (2)	0.003 (2)
C54	0.026 (2)	0.034 (3)	0.036 (3)	-0.0005 (19)	-0.008 (2)	0.012 (2)
C55	0.028 (2)	0.032 (3)	0.045 (3)	0.0086 (19)	-0.002 (2)	0.014 (2)
C56	0.029 (2)	0.026 (2)	0.041 (3)	0.0068 (19)	-0.002 (2)	0.007 (2)
C61	0.022 (2)	0.028 (2)	0.043 (3)	0.0075 (17)	0.0059 (19)	0.021 (2)
C62	0.034 (2)	0.032 (2)	0.033 (3)	0.0144 (19)	0.010 (2)	0.016 (2)
C63	0.035 (3)	0.050 (3)	0.034 (3)	0.015 (2)	0.002 (2)	0.024 (2)
C64	0.035 (3)	0.048 (3)	0.042 (3)	0.022 (2)	0.008 (2)	0.024 (3)
C65	0.032 (2)	0.032 (3)	0.057 (3)	0.023 (2)	0.015 (2)	0.023 (2)
C66	0.032 (2)	0.027 (2)	0.041 (3)	0.0095 (19)	0.010 (2)	0.013 (2)
C71	0.023 (2)	0.037 (3)	0.030 (2)	0.0085 (18)	0.0001 (19)	0.017 (2)
C72	0.025 (2)	0.043 (3)	0.039 (3)	0.011 (2)	0.005 (2)	0.015 (2)
C73	0.031 (3)	0.050 (3)	0.041 (3)	0.015 (2)	-0.001 (2)	0.005 (3)
C74	0.035 (3)	0.066 (4)	0.033 (3)	0.022 (3)	0.005 (2)	0.014 (3)
C75	0.034 (3)	0.087 (4)	0.041 (3)	0.026 (3)	0.013 (2)	0.038 (3)
C76	0.034 (3)	0.050 (3)	0.042 (3)	0.013 (2)	0.003 (2)	0.024 (3)

Geometric parameters (Å, °)

N1—C11	1.407 (5)	С32—С33	1.367 (6)	
N1-C1	1.430 (5)	C32—H32A	0.9500	
N1—C3	1.444 (5)	C33—C34	1.380 (6)	
N2-C21	1.397 (5)	С33—Н33А	0.9500	
N2—C1	1.437 (5)	C34—C35	1.373 (6)	
N2—C2	1.476 (5)	C34—H34A	0.9500	
N3—C31	1.370 (5)	C35—C36	1.377 (6)	
N3—C2	1.433 (5)	С35—Н35А	0.9500	
N3—H3	0.8127	C36—H36A	0.9500	

N4—C41	1.409 (5)	C41—C42	1.396 (6)
N4—C3	1.475 (5)	C41—C46	1.399 (6)
N4—C6	1.475 (5)	C42—C43	1.385 (6)
N5—C51	1.394 (5)	C42—H42A	0.9500
N5—C6	1.453 (5)	C43—C44	1.381 (6)
N5—C4	1.453 (5)	C43—H43A	0.9500
N6—C61	1.421 (5)	C44—C45	1.376 (6)
N6—C4	1.441 (5)	C44—H44A	0.9500
N6—C5	1 458 (5)	$C_{45} - C_{46}$	1 385 (5)
N7-C71	1.130(5)	C_{45} H45A	0.9500
N7 C5	1.364 (5)	C46 H46A	0.9500
N7 H7	0.8756	C_{40}	1 201 (6)
N = H	0.8730	C51_C52	1.391 (0)
	1.577(6)	C51—C56	1.403 (5)
	1.0000	052-053	1.389 (6)
C2—C3	1.550 (6)	С52—Н52А	0.9500
C2—H2A	1.0000	C53—C54	1.380 (6)
С3—НЗА	1.0000	С53—Н53А	0.9500
C4—H4A	1.0000	C54—C55	1.378 (6)
C5—C6	1.552 (6)	C54—H54A	0.9500
С5—Н5А	1.0000	C55—C56	1.377 (6)
С6—Н6А	1.0000	С55—Н55А	0.9500
C11—C12	1.370 (6)	С56—Н56А	0.9500
C11—C16	1.404 (5)	C61—C62	1.369 (6)
C12—C13	1.378 (6)	C61—C66	1.409 (6)
C12—H12A	0.9500	C62—C63	1.407 (6)
C13—C14	1.394 (6)	С62—Н62А	0.9500
С13—Н13А	0.9500	C63—C64	1.379 (6)
C14—C15	1.371 (6)	С63—Н63А	0.9500
C14—H14A	0.9500	C64—C65	1.383 (7)
C15-C16	1 371 (6)	C64—H64A	0.9500
C15—H15A	0.9500	C65—C66	1 380 (6)
C16—H16A	0.9500	C65—H65A	0.9500
C_{21} C_{26}	1 395 (6)	C66 H66A	0.9500
$C_{21} = C_{20}$	1.393(0) 1.412(6)	C71 C72	1 204 (6)
$C_{21} = C_{22}$	1.412(0) 1.255(6)	C71 - C72	1.394 (0)
C_{22}	1.555 (0)	C72 - C72	1.400 (0)
C22—H22A	0.9500	C72_C73	1.389 (7)
C23—C24	1.379(6)	С/2—Н/2А	0.9500
С23—Н23А	0.9500	C/3_C/4	1.343 (7)
C24—C25	1.374 (7)	С73—Н73А	0.9500
C24—H24A	0.9500	C74—C75	1.369 (8)
C25—C26	1.368 (6)	С74—Н74А	0.9500
C25—H25A	0.9500	C75—C76	1.389 (7)
C26—H26A	0.9500	С75—Н75А	0.9500
C31—C32	1.396 (6)	С76—Н76А	0.9500
C31—C36	1.409 (6)		
	12(((2)		110 5
CII—NI—CI	120.0 (3)	$U_2 I - U_2 b - H_2 b A$	119.5
C11—N1—C3	124.2 (3)	N3-C31-C32	118.7 (4)

C1—N1—C3	108.7 (3)	N3—C31—C36	122.9 (4)
C21—N2—C1	121.5 (3)	C32—C31—C36	118.5 (4)
C21—N2—C2	122.7 (3)	C33—C32—C31	120.3 (4)
C1—N2—C2	109.0 (3)	С33—С32—Н32А	119.8
C31—N3—C2	129.2 (4)	С31—С32—Н32А	119.8
C31—N3—H3	113.7	C32—C33—C34	121.3 (5)
C2—N3—H3	115.9	С32—С33—Н33А	119.3
C41—N4—C3	119.6 (3)	С34—С33—Н33А	119.3
C41—N4—C6	120.0 (3)	C35—C34—C33	118.7 (4)
C3—N4—C6	116.3 (3)	С35—С34—Н34А	120.6
C51—N5—C6	124.4 (3)	С33—С34—Н34А	120.6
C51—N5—C4	126.5 (3)	C34—C35—C36	121.7 (4)
C6—N5—C4	108.6 (3)	С34—С35—Н35А	119.2
C61—N6—C4	123.0 (3)	С36—С35—Н35А	119.2
C61—N6—C5	119.8 (3)	C35—C36—C31	119.4 (4)
C4—N6—C5	110.7 (3)	С35—С36—Н36А	120.3
C71—N7—C5	123.5 (3)	С31—С36—Н36А	120.3
C71—N7—H7	115.8	C42—C41—C46	118.3 (4)
C5—N7—H7	119.6	C42—C41—N4	121.1 (4)
N1—C1—N2	102.8 (3)	C46—C41—N4	120.6 (4)
N1—C1—C4	108.6 (3)	C43—C42—C41	120.2 (4)
N2—C1—C4	113.0 (3)	C43—C42—H42A	119.9
N1—C1—H1A	110.7	C41—C42—H42A	119.9
N2—C1—H1A	110.7	C44—C43—C42	121.2 (4)
C4—C1—H1A	110.7	С44—С43—Н43А	119.4
N3—C2—N2	112.1 (3)	С42—С43—Н43А	119.4
N3—C2—C3	114.4 (3)	C45—C44—C43	118.9 (4)
N2—C2—C3	103.1 (3)	C45—C44—H44A	120.6
N3—C2—H2A	109.0	C43—C44—H44A	120.6
N2—C2—H2A	109.0	C44—C45—C46	121.0 (4)
C3—C2—H2A	109.0	C44—C45—H45A	119.5
N1—C3—N4	110.1 (3)	C46—C45—H45A	119.5
N1—C3—C2	104.1 (3)	C45—C46—C41	120.4 (4)
N4—C3—C2	114.5 (3)	C45—C46—H46A	119.8
N1—C3—H3A	109.3	C41—C46—H46A	119.8
N4—C3—H3A	109.3	C52—C51—N5	121.7 (4)
C2—C3—H3A	109.3	C52—C51—C56	118.0 (4)
N6-C4-N5	101.4 (3)	N5—C51—C56	120.3 (4)
N6-C4-C1	111.7 (3)	C53—C52—C51	120.5(4)
N5—C4—C1	109.3 (3)	С53—С52—Н52А	119.8
N6—C4—H4A	111.3	С51—С52—Н52А	119.8
N5—C4—H4A	111.3	C54—C53—C52	121.3 (4)
C1—C4—H4A	111.3	С54—С53—Н53А	119.4
N7—C5—N6	108.2 (3)	С52—С53—Н53А	119.4
N7—C5—C6	111.1 (3)	C55—C54—C53	118.2 (4)
N6—C5—C6	104.0 (3)	C55—C54—H54A	120.9
N7—C5—H5A	111.1	C53—C54—H54A	120.9
N6—C5—H5A	111.1	C56—C55—C54	121.7 (4)

С6—С5—Н5А	111.1	С56—С55—Н55А	119.1
N5—C6—N4	112.4 (3)	С54—С55—Н55А	119.1
N5—C6—C5	102.5 (3)	C55—C56—C51	120.3 (4)
N4—C6—C5	115.3 (3)	С55—С56—Н56А	119.8
N5—C6—H6A	108.8	С51—С56—Н56А	119.8
N4—C6—H6A	108.8	C62—C61—C66	119.2 (4)
С5—С6—Н6А	108.8	C62—C61—N6	121.4 (4)
C12—C11—C16	118.5 (4)	C66—C61—N6	119.3 (4)
C12—C11—N1	121.0 (3)	C61—C62—C63	120.8 (4)
C16—C11—N1	120.5 (4)	С61—С62—Н62А	119.6
C11—C12—C13	121.2 (4)	С63—С62—Н62А	119.6
C11—C12—H12A	119.4	C64—C63—C62	119.6 (4)
C13—C12—H12A	119.4	С64—С63—Н63А	120.2
C12—C13—C14	120.4 (4)	С62—С63—Н63А	120.2
С12—С13—Н13А	119.8	C63—C64—C65	119.8 (4)
C14—C13—H13A	119.8	С63—С64—Н64А	120.1
C15-C14-C13	118.2 (4)	C65—C64—H64A	120.1
C15—C14—H14A	120.9	C66—C65—C64	121.0 (4)
C13—C14—H14A	120.9	C66—C65—H65A	119.5
C16-C15-C14	121.8 (4)	C64—C65—H65A	119.5
C16—C15—H15A	119.1	C65—C66—C61	119.7 (4)
C14—C15—H15A	119.1	С65—С66—Н66А	120.2
C15-C16-C11	119.8 (4)	C61—C66—H66A	120.2
C15—C16—H16A	120.1	N7—C71—C72	122.2 (4)
C11—C16—H16A	120.1	N7—C71—C76	120.1(4)
C_{26} C_{21} N_{2}	122.6 (4)	C72-C71-C76	117.7 (4)
$C_{26} = C_{21} = C_{22}$	117.1 (4)	C73 - C72 - C71	120.3 (5)
N2-C21-C22	120.3 (4)	C73—C72—H72A	119.8
C_{23} C_{22} C_{21}	120.7 (4)	C71—C72—H72A	119.8
C23—C22—H22A	119.7	C74—C73—C72	121.2 (5)
C21—C22—H22A	119.7	С74—С73—Н73А	119.4
C22-C23-C24	121.5 (4)	С72—С73—Н73А	119.4
C22—C23—H23A	119.2	C73—C74—C75	119.8 (5)
C24—C23—H23A	119.2	C73—C74—H74A	120.1
C_{25} C_{24} C_{23}	118.5 (4)	C75—C74—H74A	120.1
C_{25} C_{24} H_{24A}	120.7	C74-C75-C76	120.8 (5)
C_{23} C_{24} H_{24A}	120.7	C74—C75—H75A	119.6
$C_{26} = C_{25} = C_{24}$	121.1 (4)	C76—C75—H75A	119.6
$C_{26} = C_{25} = H_{25A}$	119.4	C75 - C76 - C71	120.0(5)
C_{24} C_{25} H_{25A}	119.1	C75—C76—H76A	120.0
C_{25} C_{26} C_{21}	121.0 (4)	C71 - C76 - H76A	120.0
$C_{25} = C_{26} = H_{26A}$	119.5		120.0
025 020 11201	117.5		
C11 - N1 - C1 - N2	136 1 (4)	C1 - N2 - C21 - C26	-1524(4)
C_{3} N1 C_{1} N2	-35 8 (4)	C_{2} N2 C_{21} C_{20}	-4 5 (6)
C11-N1-C1-C4	-1040(4)	C1 - N2 - C21 - C22	28 7 (5)
C3-N1-C1-C4	84.2 (4)	C_{2} N_{2} C_{21} C_{22}	176.6 (4)
$C_{1} = N_{2} = C_{1} = N_{1}$	-1765(3)	C_{26} C_{21} C_{22} C_{23}	0.9(6)
021 112 01 111	1/0.5 (5)	020 021 $022 - 023$	0.7 (0)

C2—N2—C1—N1	31.7 (4)	N2-C21-C22-C23	179.9 (4)
C21—N2—C1—C4	66.6 (4)	C21—C22—C23—C24	-1.1 (7)
C2—N2—C1—C4	-85.1 (4)	C22—C23—C24—C25	1.4 (7)
C31—N3—C2—N2	65.4 (6)	C23—C24—C25—C26	-1.6 (7)
C31—N3—C2—C3	-51.5 (6)	C24—C25—C26—C21	1.5 (7)
C21—N2—C2—N3	69.0 (5)	N2-C21-C26-C25	180.0 (4)
C1—N2—C2—N3	-139.6 (3)	C22—C21—C26—C25	-1.1 (6)
C21—N2—C2—C3	-167.5 (3)	C2—N3—C31—C32	169.3 (4)
C1—N2—C2—C3	-16.1 (4)	C2—N3—C31—C36	-10.7 (7)
C11—N1—C3—N4	90.5 (4)	N3—C31—C32—C33	-176.7 (4)
C1—N1—C3—N4	-97.4 (4)	C36—C31—C32—C33	3.3 (7)
C11—N1—C3—C2	-146.3 (4)	C31—C32—C33—C34	-2.9(8)
C1—N1—C3—C2	25.8 (4)	C32—C33—C34—C35	0.7 (7)
C41—N4—C3—N1	-160.3 (3)	C33—C34—C35—C36	1.0 (7)
C6—N4—C3—N1	42.2 (4)	C34—C35—C36—C31	-0.4(7)
C41—N4—C3—C2	82.8 (4)	N3-C31-C36-C35	178.3 (4)
C6—N4—C3—C2	-74.7 (4)	C32—C31—C36—C35	-1.7 (6)
N3—C2—C3—N1	116.4 (3)	C3—N4—C41—C42	-7.9(5)
N2—C2—C3—N1	-5.6 (4)	C6—N4—C41—C42	148.8 (4)
N3—C2—C3—N4	-123.4 (4)	C3—N4—C41—C46	170.6 (4)
N2-C2-C3-N4	114.7 (4)	C6—N4—C41—C46	-32.7(5)
C61—N6—C4—N5	179.4 (3)	C46—C41—C42—C43	-1.5 (6)
C5—N6—C4—N5	28.0 (4)	N4—C41—C42—C43	177.0 (4)
C61—N6—C4—C1	63.0 (5)	C41—C42—C43—C44	2.0 (6)
C5—N6—C4—C1	-88.4 (4)	C42—C43—C44—C45	-1.4 (7)
C51—N5—C4—N6	135.2 (4)	C43—C44—C45—C46	0.2 (7)
C6—N5—C4—N6	-36.8 (4)	C44—C45—C46—C41	0.2 (6)
C51—N5—C4—C1	-106.7 (4)	C42—C41—C46—C45	0.4 (6)
C6—N5—C4—C1	81.4 (4)	N4-C41-C46-C45	-178.1 (4)
N1-C1-C4-N6	46.6 (4)	C6—N5—C51—C52	171.4 (4)
N2-C1-C4-N6	160.0 (3)	C4—N5—C51—C52	0.6 (6)
N1-C1-C4-N5	-64.9 (4)	C6—N5—C51—C56	-9.8 (6)
N2-C1-C4-N5	48.5 (4)	C4—N5—C51—C56	179.4 (4)
C71—N7—C5—N6	-149.1 (3)	N5-C51-C52-C53	179.5 (4)
C71—N7—C5—C6	97.3 (4)	C56—C51—C52—C53	0.6 (6)
C61—N6—C5—N7	79.5 (4)	C51—C52—C53—C54	0.8 (7)
C4—N6—C5—N7	-128.0 (3)	C52—C53—C54—C55	-1.2 (7)
C61—N6—C5—C6	-162.3 (3)	C53—C54—C55—C56	0.1 (7)
C4—N6—C5—C6	-9.8 (4)	C54—C55—C56—C51	1.4 (7)
C51—N5—C6—N4	94.4 (4)	C52—C51—C56—C55	-1.7 (7)
C4—N5—C6—N4	-93.4 (4)	N5-C51-C56-C55	179.5 (4)
C51—N5—C6—C5	-141.3 (4)	C4—N6—C61—C62	-155.6 (4)
C4—N5—C6—C5	30.9 (4)	C5—N6—C61—C62	-6.6 (6)
C41—N4—C6—N5	-118.5 (4)	C4—N6—C61—C66	26.9 (6)
C3—N4—C6—N5	38.9 (5)	C5—N6—C61—C66	175.9 (4)
C41—N4—C6—C5	124.6 (4)	C66—C61—C62—C63	-1.7 (6)
C3—N4—C6—C5	-78.0 (4)	N6-C61-C62-C63	-179.3 (4)
N7—C5—C6—N5	103.7 (4)	C61—C62—C63—C64	0.2 (7)

N6-C5-C6-N5	-12.5 (4)	C62—C63—C64—C65	0.7 (7)
N7—C5—C6—N4	-133.9 (3)	C63—C64—C65—C66	0.0 (7)
N6-C5-C6-N4	109.9 (4)	C64—C65—C66—C61	-1.6 (7)
C1—N1—C11—C12	171.1 (4)	C62—C61—C66—C65	2.4 (6)
C3—N1—C11—C12	-18.2 (6)	N6-C61-C66-C65	180.0 (4)
C1—N1—C11—C16	-9.0 (6)	C5—N7—C71—C72	-8.1 (6)
C3—N1—C11—C16	161.6 (4)	C5—N7—C71—C76	174.7 (4)
C16-C11-C12-C13	2.5 (7)	N7—C71—C72—C73	179.6 (4)
N1-C11-C12-C13	-177.6 (4)	C76—C71—C72—C73	-3.1 (6)
C11—C12—C13—C14	0.5 (7)	C71—C72—C73—C74	0.9 (7)
C12—C13—C14—C15	-2.5 (7)	C72—C73—C74—C75	2.0 (7)
C13—C14—C15—C16	1.4 (7)	C73—C74—C75—C76	-2.6 (7)
C14—C15—C16—C11	1.6 (7)	C74—C75—C76—C71	0.3 (7)
C12-C11-C16-C15	-3.6 (6)	N7—C71—C76—C75	179.8 (4)
N1-C11-C16-C15	176.5 (4)	C72—C71—C76—C75	2.5 (6)

Hydrogen-bond geometry (Å, °)

<i>D</i> —H··· <i>A</i>	<i>D</i> —Н	H···A	D····A	<i>D</i> —H··· <i>A</i>
N3—H3···Cg ⁱ	0.81	2.90	3.699 (4)	169

Symmetry code: (i) x, y, z+1.