Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

3-Cyanoanilinium bromide

Bo Wang

Ordered Matter Science Research Center, College of Chemistry and Chemical Engineering, Southeast University, Nanjing 210096, People's Republic of China Correspondence e-mail: fudavid88@yahoo.com.cn

Received 19 August 2009; accepted 31 August 2009

Key indicators: single-crystal X-ray study; T = 298 K; mean σ (C–C) = 0.007 Å; R factor = 0.052; wR factor = 0.134; data-to-parameter ratio = 18.7.

In the cation of the title compound, $C_7H_7N_2^+ \cdot Br^-$, all non-H atoms are essentially coplanar [r.m.s. deviation = 0.010(5) Å]. The compound is isomorphous with the chloride analogue. In the crystal, the cations and anions are connected by N- $H \cdots Br$ hydrogen bonds.

Related literature

For applications of metal-organic coordination compounds, see: Fu et al. (2007); Chen et al. (2001); Fu & Xiong (2008); Xiong et al. (1999); Xie et al. (2003); Zhao et al. (2004). For nitrile derivatives, see: Fu et al. (2008); Wang et al. 2002. For the chloride analogue, see: Wen (2008).

Experimental

Crystal data

 $C_7H_7N_2^+ \cdot Br^ M_r = 199.06$ Triclinic, $P\overline{1}$ a = 4.6396 (9) Å b = 6.1757 (12) Åc = 13.542 (3) Å $\alpha = 93.07 (3)^{\circ}$ $\beta = 96.22 \ (3)^{\circ}$

 $\gamma = 97.33 \ (3)^{\circ}$ $V = 381.68 (13) \text{ Å}^3$ Z = 2Mo $K\alpha$ radiation $\mu = 5.31 \text{ mm}^{-1}$ T = 298 K $0.40 \times 0.05 \times 0.05$ mm

Data collection

Rigaku Mercurv2 diffractometer	3777 measured reflections
Absorption correction: multi-scan	1716 independent reflections
(CrystalClear; Rigaku, 2005)	1378 reflections with $I > 2\sigma(I)$
$T_{\rm min} = 0.90, \ T_{\rm max} = 1.00$	$R_{\rm int} = 0.063$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.052$	92 parameters
$wR(F^2) = 0.134$	H-atom parameters constrained
S = 1.10	$\Delta \rho_{\rm max} = 0.71 \text{ e } \text{\AA}^{-3}$
1716 reflections	$\Delta \rho_{\rm min} = -0.75 \text{ e } \text{\AA}^{-3}$

Table 1	
Hydrogen-bond geometry (Å,	°).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$N2-H2A\cdots Br1^{i}$	0.89	2.59	3.434 (4)	159
$N2 - H2B \cdot \cdot \cdot Br1^{ii}$	0.89	2.46	3.337 (4)	169
$N2-H2C\cdots Br1$	0.89	2.45	3.299 (4)	160

Symmetry codes: (i) -x + 1, -y, -z + 1; (ii) -x + 1, -y + 1, -z + 1.

Data collection: CrystalClear (Rigaku, 2005); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

This work was supported by a start-up grant from Southeast University to Professor Ren-Gen Xiong.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BX2236).

References

- Chen, Z.-F., Li, B.-Q., Xie, Y.-R., Xiong, R.-G., You, X.-Z. & Feng, X.-L. (2001). Inorg. Chem. Commun. 4, 346-349.
- Fu, D.-W., Song, Y.-M., Wang, G.-X., Ye, Q., Xiong, R.-G., Akutagawa, T., Nakamura, T., Chan, P. W. H., Huang, S.-P. & -, D. (2007). J. Am. Chem. Soc. 129. 5346-5347.
- Fu, D.-W. & Xiong, R.-G. (2008). Dalton Trans. pp. 3946-3948.
- Fu, D.-W., Zhang, W. & Xiong, R.-G. (2008). Cryst. Growth Des. 8, 3461-3464. Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

- Wang, L.-Z., Wang, X.-S., Li, Y.-H., Bai, Z.-P., Xiong, R.-G., Xiong, M. & Li, G.-W. (2002). Chin. J. Inorg. Chem. 18, 1191-1194.
- Wen, X.-C. (2008). Acta Cryst. E64, 01462.
- Xie, Y.-R., Zhao, H., Wang, X.-S., Qu, Z.-R., Xiong, R.-G., Xue, X.-A., Xue, Z.-L. & You, X.-Z. (2003). Eur. J. Inorg. Chem. 20, 3712-3715.
- Xiong, R.-G., Zuo, J.-L., You, X.-Z., Fun, H.-K. & Raj, S. S. S. (1999). New J. Chem. 23, 1051-1052.
- Zhao, H., Ye, Q., Wu, Q., Song, Y.-M., Liu, Y.-J. & Xiong, R.-G. (2004). Z. Anorg. Allg. Chem. 630, 1367-1370.

supporting information

Acta Cryst. (2009). E65, o2396 [doi:10.1107/S1600536809034941]

3-Cyanoanilinium bromide

Bo Wang

S1. Comment

The construction of metal-organic coordination compounds has attracted much attention owing to potential functions, such as permittivity, fluorescence, magnetism and optical properties (Fu *et al.*, 2007; Chen *et al.*, 2001; Fu & Xiong (2008); Xie *et al.*, 2003; Zhao *et al.*,2004; Xiong *et al.*, 1999). Nitrile derivatives are a class of excellent ligands for the construction of novel metal-organic frameworks. (Wang *et al.* 2002; Fu *et al.*, 2008). We report here the crystal structure of the title compound, which is isomorphous with the chloride analogue (Wen, 2008). In the cation all non-H atoms are essentially coplanar [r.m.s. deviation 0.010 (5) Å]. In the crystal structure, the organic cations and bromide ions are connected by N—H…Br hydrogen bonds along *b* axis, (Table 1), (Fig. 2).

S2. Experimental

The commercial 3-aminobenzonitrile (3 mmol, 0.55 g) and HBr (0.5 ml) were dissolved in ethanol (20 ml). Colourless block-shaped crystals of the title compound suitable for X-ray analysis were obtained by slow evaporation at room temperature.

S3. Refinement

All H atoms attached to C and N atoms were positioned geometrically and treated as riding, with C-H = 0.93 Å, N-H = 0.89 Å and $U_{iso}(H) = 1.2U_{eq}(C)$ and $U_{iso}(H) = 1.5U_{eq}(N)$. A rotating-group model was used for the -NH₃ group.

Figure 1

A view of the title compound with the atomic numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.

Figure 2

The crystal packing of the title compound, viewed along the *a* axis showing the N—H…Br interactions (dotted line) in the title compound. H atoms not involved in hydrogen bonding (dashed lines) have been omitted for clarity.

3-Cyanoanilinium bromide

Crystal data C₇H₇N₂⁺·Br⁻ $M_r = 199.06$ Triclinic, *P*I Hall symbol: -P 1 a = 4.6396 (9) Å b = 6.1757 (12) Å c = 13.542 (3) Å a = 93.07 (3)° $\beta = 96.22$ (3)° $\gamma = 97.33$ (3)° V = 381.68 (13) Å³

Z = 2 F(000) = 196 $D_x = 1.732 \text{ Mg m}^{-3}$ Mo K α radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 1378 reflections $\theta = 3.0-27.5^{\circ}$ $\mu = 5.31 \text{ mm}^{-1}$ T = 298 K Block, colourless $0.40 \times 0.05 \times 0.05 \text{ mm}$ Data collection

Rigaku Mercury2 diffractometer Radiation source: fine-focus sealed tube Graphite monochromator Detector resolution: 13.6612 pixels mm ⁻¹ CCD profile fitting scans Absorption correction: multi-scan (<i>CrystalClear</i> ; Rigaku, 2005) $T_{min} = 0.90, T_{max} = 1.00$	3777 measured reflections 1716 independent reflections 1378 reflections with $I > 2\sigma(I)$ $R_{int} = 0.063$ $\theta_{max} = 27.5^{\circ}, \ \theta_{min} = 3.0^{\circ}$ $h = -6 \rightarrow 5$ $k = -8 \rightarrow 8$ $l = -17 \rightarrow 17$
Refinement	
Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.052$ $wR(F^2) = 0.134$ S = 1.10 1716 reflections 92 parameters 0 restraints Primary atom site location: structure-invariant direct methods	Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.053P)^2 + 0.0394P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} < 0.001$ $\Delta\rho_{max} = 0.71$ e Å ⁻³ $\Delta\rho_{min} = -0.75$ e Å ⁻³

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2 , conventional R-factors R are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2$ sigma(F^2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
N2	0.6256 (9)	0.2461 (6)	0.6051 (3)	0.0419 (10)	
H2A	0.7437	0.1446	0.5990	0.063*	
H2B	0.7175	0.3755	0.5927	0.063*	
H2C	0.4653	0.2118	0.5619	0.063*	
N1	-0.0113 (11)	0.7158 (8)	0.8871 (4)	0.0575 (13)	
C4	0.5438 (10)	0.2565 (7)	0.7064 (4)	0.0339 (10)	
C3	0.3783 (10)	0.4177 (7)	0.7330 (3)	0.0349 (10)	
Н3	0.3215	0.5166	0.6877	0.042*	
C2	0.3001 (10)	0.4273 (7)	0.8286 (4)	0.0350 (10)	
C5	0.6331 (11)	0.1113 (7)	0.7719 (4)	0.0389 (11)	
Н5	0.7446	0.0048	0.7527	0.047*	
C7	0.3878 (12)	0.2814 (8)	0.8962 (4)	0.0429 (12)	
H7	0.3345	0.2889	0.9604	0.051*	
C6	0.5540 (12)	0.1259 (8)	0.8677 (4)	0.0473 (13)	
H6	0.6146	0.0287	0.9132	0.057*	
C1	0.1216 (11)	0.5910 (8)	0.8593 (4)	0.0422 (12)	

supporting information

Br1	0.09268	(11)	0.23870 (7)	0.42210 (4)	0.0448 (2)			
Atomic	Atomic displacement parameters (\mathring{A}^2)							
	U^{11}	U ²²	U^{33}	U^{12}	U^{13}	U^{23}		
N2	0.053 (3)	0.044 (2)	0.032 (2)	0.0176 (19)	0.0038 (19)	0.0003 (18)		
N1	0.058 (3)	0.052 (3)	0.067 (3)	0.020 (2)	0.016 (3)	-0.004 (2)		
C4	0.040 (3)	0.028 (2)	0.033 (3)	0.0073 (18)	0.004 (2)	-0.0017 (18)		
C3	0.039 (3)	0.033 (2)	0.032 (3)	0.010 (2)	0.000(2)	0.0010 (19)		
C2	0.030 (2)	0.034 (2)	0.041 (3)	0.0057 (18)	0.005 (2)	-0.002 (2)		
C5	0.049 (3)	0.034 (2)	0.037 (3)	0.018 (2)	0.007 (2)	-0.001 (2)		
C7	0.056 (3)	0.039 (3)	0.035 (3)	0.011 (2)	0.010(2)	0.000(2)		
C6	0.062 (4)	0.040 (3)	0.045 (3)	0.015 (2)	0.010 (3)	0.014 (2)		
C1	0.045 (3)	0.040 (3)	0.044 (3)	0.012 (2)	0.011 (2)	0.000(2)		
Br1	0.0573 (4)	0.0399 (3)	0.0423 (4)	0.0214 (2)	0.0112 (3)	0.0037 (2)		

Geometric parameters (Å, °)

N2—C4	1.463 (6)	С3—Н3	0.9300
N2—H2A	0.8900	C2—C7	1.384 (7)
N2—H2B	0.8900	C2—C1	1.457 (6)
N2—H2C	0.8900	C5—C6	1.388 (7)
N1—C1	1.121 (6)	С5—Н5	0.9300
C4—C5	1.365 (6)	C7—C6	1.371 (7)
C4—C3	1.388 (6)	С7—Н7	0.9300
C3—C2	1.383 (7)	С6—Н6	0.9300
C4—N2—H2A	109.5	C3—C2—C1	120.2 (4)
C4—N2—H2B	109.5	C7—C2—C1	119.1 (5)
H2A—N2—H2B	109.5	C4—C5—C6	118.6 (4)
C4—N2—H2C	109.5	С4—С5—Н5	120.7
H2A—N2—H2C	109.5	С6—С5—Н5	120.7
H2B—N2—H2C	109.5	C6—C7—C2	119.4 (5)
C5—C4—C3	122.0 (4)	С6—С7—Н7	120.3
C5—C4—N2	119.8 (4)	С2—С7—Н7	120.3
C3—C4—N2	118.2 (4)	C7—C6—C5	121.0 (5)
C2—C3—C4	118.2 (4)	С7—С6—Н6	119.5
С2—С3—Н3	120.9	С5—С6—Н6	119.5
С4—С3—Н3	120.9	N1—C1—C2	177.0 (6)
C3—C2—C7	120.7 (4)		
C5—C4—C3—C2	-0.9 (7)	N2-C4-C5-C6	179.6 (5)
N2-C4-C3-C2	179.8 (4)	C3—C2—C7—C6	0.0 (7)
C4—C3—C2—C7	0.7 (7)	C1—C2—C7—C6	179.5 (5)
C4—C3—C2—C1	-178.8 (4)	C2—C7—C6—C5	-0.6 (8)
C3—C4—C5—C6	0.3 (7)	C4—C5—C6—C7	0.5 (8)

D—H···A	<i>D</i> —Н	H···A	$D \cdots A$	D—H···A
N2—H2A···Br1 ⁱ	0.89	2.59	3.434 (4)	159
N2—H2 <i>B</i> ···Br1 ⁱⁱ	0.89	2.46	3.337 (4)	169
N2—H2 <i>C</i> …Br1	0.89	2.45	3.299 (4)	160

Hydrogen-bond geometry (Å, °)

Symmetry codes: (i) -*x*+1, -*y*, -*z*+1; (ii) -*x*+1, -*y*+1, -*z*+1.