Acta Crystallographica Section E

Structure Reports
 Online

ISSN 1600-5368

Nicotinium hydrogen sulfate

Li-Zhuang Chen

Ordered Matter Science Research Center, College of Chemistry and Chemical Engineering, Southeast University, Nanjing 210096, People's Republic of China Correspondence e-mail: clz1977@sina.com

Received 10 August 2009; accepted 31 August 2009
Key indicators: single-crystal X-ray study; $T=293 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.002 \AA$; R factor $=0.034 ; w R$ factor $=0.090$; data-to-parameter ratio $=15.3$.

The structure of title compound, $\mathrm{C}_{6} \mathrm{H}_{6} \mathrm{NO}_{2}{ }^{+} \cdot \mathrm{HSO}_{4}{ }^{-}$, comprises discrete ions which are interconected by $\mathrm{N}-$ $\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds, leading to a neutral one-dimensional network along [001]. These hydrogen bonds appear to complement the Coulombic interaction and help to stabilize the structure further.

Related literature

For simple molecular-ionic crystals containing organic cations and acid radicals (1:1 molar ratio), see: Czupiński et al. (2002); Katrusiak \& Szafrański (1999, 2006). For the structure of dinicotinium sulfate, see: Athimoolam \& Rajaram (2005).

Experimental

Crystal data
$\mathrm{C}_{6} \mathrm{H}_{6} \mathrm{NO}_{2}{ }^{+} \cdot \mathrm{HSO}_{4}{ }^{-} \quad M_{r}=221.19$

Monoclinic, $P 2_{1} / c$
$a=8.2654$ (17) A
$Z=4$
$b=11.545$ (2) \AA
Mo $K \alpha$ radiation
$c=9.4669(19) \AA$
$\mu=0.39 \mathrm{~mm}^{-1}$
$\beta=109.43$ (3) ${ }^{\circ}$
$T=293 \mathrm{~K}$
$\beta=109.43(3)^{\circ}{ }_{\circ}^{3}$
$V=851.9(3) \mathrm{A}^{3}$
$0.25 \times 0.2 \times 0.2 \mathrm{~mm}$

Data collection

Rigaku SCXmini diffractometer Absorption correction: multi-scan (CrystalClear; Rigaku, 2005)
$T_{\text {min }}=0.91, T_{\text {max }}=0.93$

8643 measured reflections 1949 independent reflections 1788 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.029$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.034$
$w R\left(F^{2}\right)=0.090$
$S=1.14$
1949 reflections

127 parameters
H -atom parameters constrained
$\Delta \rho_{\text {max }}=0.21 \mathrm{e} \AA^{-3}$
$\Delta \rho_{\min }=-0.49 \mathrm{e}^{-3}$

Table 1
Hydrogen-bond geometry ($\AA,^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 2-\mathrm{H} 2 B \cdots \mathrm{O} 3$	0.85	1.83	$2.6697(18)$	169
O6-H1 $\cdots 5^{\mathrm{i}}$	0.89	1.73	$2.6129(17)$	170
N1-H1B $\cdots \mathrm{O}^{\mathrm{ii}}$	0.86	2.11	$2.843(2)$	143

Symmetry codes: (i) $x,-y+\frac{3}{2}, z+\frac{1}{2}$; (ii) $-x+1, y-\frac{1}{2},-z+\frac{1}{2}$.
Data collection: CrystalClear (Rigaku, 2005); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97.

This work was supported by a start-up grant from Southeast University to Professor Ren-Gen Xiong.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BX2233).

References

Athimoolam, S. \& Rajaram, R. K. (2005). Acta Cryst. E61, o2764-o2767.
Czupiński, O., Bator, G., Ciunik, Z., Jakubas, R., Medycki, W. \& Świergiel, J. (2002). J. Phys. Condens. Matter, 14, 8497-8512.

Katrusiak, A. \& Szafrański, M. (1999). Phys. Rev. Lett. 82, 576-579.
Katrusiak, A. \& Szafrański, M. (2006). J. Am. Chem. Soc. 128, 15775-15785.
Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

supporting information

Acta Cryst. (2009). E65, o2350 [doi:10.1107/S1600536809034928]

Nicotinium hydrogen sulfate

Li-Zhuang Chen

S1. Comment

Recently, much attention has been devoted to simple molecular-ionic crystals containing organic cations and acid radicals (1:1molar ratio) due to the tunability of their special structural features and their interesting physical properties. (e.g. Czupiński et al., 2002; Katrusiak \& Szafrański, 1999; Katrusiak \& Szafrański, 2006) the crystal structure of dinicotinium sulfate compound have been reported (Athimoolam et al., 2005). In our laboratory, a compound containing protoned nicotinic acid and HSO_{4}^{-}anions has been synthesized, its crystal structure is reported herein.
The asymmetric unit of the title compound, $\mathrm{C}_{6} \mathrm{H}_{6} \mathrm{NO}_{2}{ }^{+} . \mathrm{HSO}_{4}{ }^{-}$, (Fig.1) consists of protoned nicotinic acid and HSO_{4}^{-} anions, the nicotinium cation is essentially planar. The protonation of the N site of the pyridine ring is demonstrated by the $\mathrm{C}-\mathrm{N}$ bond distances and $\mathrm{C}-\mathrm{N}-\mathrm{C}$ bond angle. Usually, protonation on the aromatic ring leads to a slightly larger C $-\mathrm{N} — \mathrm{C}$ bond angle $\left(122.9(2)^{\circ}\right)$. Cations and anions are placed alternately and linked through intermolecular hydrogen bonds (Fig. 2 and Table 1). The structure of title compound $\mathrm{C}_{6} \mathrm{H}_{6} \mathrm{NO}_{2}{ }^{+} . \mathrm{HSO}_{4}{ }^{-}$, comprises discrete ions which are placed alternately and interconected by $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds leading to a neutral one-dimensional network along [001] direction. These hydrogen bonds appear to complement the Coulombic interaction and help to stabilize the structure further.

S2. Experimental

Nicotinic acid (10 mmol) and 10% aqueous $\mathrm{H}_{2} \mathrm{SO}_{4}$ in a molar ratio of $1: 1$ were mixed and dissolved in water by heating to 323 K forming a clear solution. The reaction mixture was cooled slowly to room temperature, crystals of the title compound were formed, collected and washed with dilute aqueous $\mathrm{H}_{2} \mathrm{SO}_{4}$.

S3. Refinement

All H atoms were placed in calculated positions, with $\mathrm{C}-\mathrm{H}=0.93 \AA, \mathrm{O}-\mathrm{H}=0.85 \AA$ and $\mathrm{N}-\mathrm{H}=0.86 \AA$, and refined using a riding model, with $U_{\mathrm{iso}}(\mathrm{H})=1.2 U_{\mathrm{eq}}(\mathrm{C}, N)$ and $1.5 U_{\mathrm{eq}}(\mathrm{O})$.

Figure 1
The asymmetric unit of the title compound with atom labels

Figure 2
The packing viewed along the a axis. Hydrogen bonds are drawn as dashed lines

Nicotinium hydrogen sulfate

Crystal data

$\mathrm{C}_{6} \mathrm{H}_{6} \mathrm{NO}_{2}{ }^{+} \cdot \mathrm{HSO}_{4}^{-}$
$M_{r}=221.19$
Monoclinic, $P 2_{1} / c$
Hall symbol: -P 2ybc
$a=8.2654$ (17) \AA
$b=11.545(2) \AA$
$c=9.4669(19) \AA$
$\beta=109.43$ (3) ${ }^{\circ}$
$V=851.9(3) \AA^{3}$
$Z=4$

Data collection

Rigaku SCXmini
diffractometer
Radiation source: fine-focus sealed tube
Graphite monochromator
Detector resolution: 13.6612 pixels mm^{-1}
ω scans
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
$T_{\text {min }}=0.91, T_{\text {max }}=0.93$

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.034$
$w R\left(F^{2}\right)=0.090$
$S=1.14$
1949 reflections
127 parameters
0 restraints
Primary atom site location: structure-invariant direct methods

$$
\begin{aligned}
& F(000)=456 \\
& D_{\mathrm{x}}=1.725 \mathrm{Mg} \mathrm{~m}^{-3} \\
& \text { Mo } K \alpha \text { radiation, } \lambda=0.71073 \AA \\
& \text { Cell parameters from } 1788 \text { reflections } \\
& \theta=3.2-27.5^{\circ} \\
& \mu=0.39 \mathrm{~mm}^{-1} \\
& T=293 \mathrm{~K} \\
& \text { Block, colorless } \\
& 0.25 \times 0.2 \times 0.2 \mathrm{~mm}
\end{aligned}
$$

8643 measured reflections

1949 independent reflections
1788 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.029$
$\theta_{\text {max }}=27.5^{\circ}, \theta_{\text {min }}=3.2^{\circ}$
$h=-10 \rightarrow 10$
$k=-14 \rightarrow 14$
$l=-12 \rightarrow 12$

Secondary atom site location: difference Fourier map
Hydrogen site location: inferred from neighbouring sites
H -atom parameters constrained
$w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0405 P)^{2}+0.3479 P\right]$ where $P=\left(F_{0}^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\max }=0.001$
$\Delta \rho_{\text {max }}=0.21$ e \AA^{-3}
$\Delta \rho_{\text {min }}=-0.49$ e \AA^{-3}

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor $w R$ and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>\sigma\left(F^{2}\right)$ is used only for calculating R-factors (gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F, and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^{2})

	x	y	z	$U_{\text {iso }} * / U_{\text {eq }}$
S1	$0.75328(5)$	$0.70391(3)$	$0.56623(4)$	$0.02440(13)$
O1	$0.71400(17)$	$0.45258(11)$	$0.34210(15)$	$0.0396(3)$
O2	$0.87198(17)$	$0.40764(11)$	$0.57869(13)$	$0.0382(3)$
H2B	0.8839	0.4807	0.5877	$0.057 *$

O3	$0.90270(15)$	$0.63375(11)$	$0.64101(13)$	$0.0340(3)$
O4	$0.59511(16)$	$0.64255(12)$	$0.54911(14)$	$0.0391(3)$
O5	$0.75643(18)$	$0.75578(12)$	$0.42787(13)$	$0.0395(3)$
O6	$0.76089(19)$	$0.81232(11)$	$0.66597(13)$	$0.0414(4)$
H1	0.7597	0.7975	0.7581	0.062^{*}
N1	$0.60598(19)$	$0.10546(14)$	$0.25572(17)$	$0.0366(4)$
H1B	0.5361	0.0840	0.1701	0.044^{*}
C4	$0.75053(19)$	$0.25493(14)$	$0.41590(17)$	$0.0259(3)$
C5	$0.6393(2)$	$0.21802(15)$	$0.27984(19)$	$0.0312(4)$
H5A	0.5877	0.2715	0.2050	0.037^{*}
C3	$0.8265(2)$	$0.17308(15)$	$0.52470(19)$	$0.0334(4)$
H3A	0.9031	0.1960	0.6169	0.040^{*}
C2	$0.7879(3)$	$0.05679(16)$	$0.4957(2)$	$0.0422(4)$
H2A	0.8372	0.0013	0.5685	0.051^{*}
C6	$0.7770(2)$	$0.38299(15)$	$0.43965(18)$	$0.0282(3)$
C1	$0.6761(3)$	$0.02450(16)$	$0.3583(2)$	$0.0414(4)$
H1A	0.6494	-0.0532	0.3370	0.050^{*}

Atomic displacement parameters $\left(\hat{A}^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
S1	$0.0327(2)$	$0.0247(2)$	$0.01610(19)$	$0.00166(15)$	$0.00847(15)$	$-0.00001(13)$
O1	$0.0447(7)$	$0.0301(7)$	$0.0398(7)$	$0.0039(6)$	$0.0083(6)$	$0.0078(5)$
O2	$0.0476(7)$	$0.0270(6)$	$0.0332(7)$	$-0.0027(5)$	$0.0044(5)$	$-0.0032(5)$
O3	$0.0314(6)$	$0.0327(6)$	$0.0306(6)$	$0.0016(5)$	$0.0007(5)$	$-0.0031(5)$
O4	$0.0306(6)$	$0.0493(8)$	$0.0370(7)$	$-0.0028(6)$	$0.0104(5)$	$0.0001(6)$
O5	$0.0642(9)$	$0.0384(7)$	$0.0199(6)$	$0.0022(6)$	$0.0195(6)$	$0.0021(5)$
O6	$0.0776(10)$	$0.0271(6)$	$0.0241(6)$	$0.0051(6)$	$0.0230(6)$	$-0.0019(5)$
N1	$0.0338(8)$	$0.0376(8)$	$0.0334(8)$	$-0.0030(6)$	$0.0045(6)$	$-0.0106(6)$
C4	$0.0231(7)$	$0.0274(8)$	$0.0265(8)$	$0.0008(6)$	$0.0073(6)$	$-0.0005(6)$
C5	$0.0295(8)$	$0.0336(9)$	$0.0274(8)$	$0.0029(7)$	$0.0051(6)$	$0.0002(7)$
C3	$0.0338(9)$	$0.0312(9)$	$0.0291(8)$	$0.0010(7)$	$0.0025(7)$	$0.0018(7)$
C2	$0.0512(11)$	$0.0281(9)$	$0.0417(11)$	$0.0031(8)$	$0.0079(8)$	$0.0069(8)$
C6	$0.0251(7)$	$0.0280(8)$	$0.0309(8)$	$0.0007(6)$	$0.0086(6)$	$0.0016(6)$
C1	$0.0461(11)$	$0.0268(9)$	$0.0501(11)$	$-0.0043(8)$	$0.0145(9)$	$-0.0059(8)$

Geometric parameters $\left(\AA,{ }^{\circ}\right)$

$\mathrm{S} 1-\mathrm{O} 4$	$1.4478(13)$	$\mathrm{N} 1-\mathrm{H} 1 \mathrm{~B}$	0.8600
$\mathrm{~S} 1-\mathrm{O} 5$	$1.4483(12)$	$\mathrm{C} 4-\mathrm{C} 5$	$1.377(2)$
$\mathrm{S} 1-\mathrm{O} 3$	$1.4493(13)$	$\mathrm{C} 4-\mathrm{C} 3$	$1.385(2)$
$\mathrm{S} 1-\mathrm{O} 6$	$1.5565(12)$	$\mathrm{C} 4-\mathrm{C} 6$	$1.500(2)$
$\mathrm{O} 1-\mathrm{C} 6$	$1.204(2)$	$\mathrm{C} 5-\mathrm{H} 5 \mathrm{~A}$	0.9300
$\mathrm{O} 2-\mathrm{C} 6$	$1.320(2)$	$\mathrm{C} 3-\mathrm{C} 2$	$1.386(3)$
$\mathrm{O} 2-\mathrm{H} 2 \mathrm{~B}$	0.8501	$\mathrm{C} 3-\mathrm{H} 3 \mathrm{~A}$	0.9300
$\mathrm{O} 6-\mathrm{H} 1$	0.8921	$\mathrm{C} 2-\mathrm{C} 1$	$1.373(3)$
$\mathrm{N} 1-\mathrm{C} 5$	$1.332(2)$	$\mathrm{C} 2-\mathrm{H} 2 \mathrm{~A}$	0.9300
$\mathrm{~N} 1-\mathrm{C} 1$	$1.334(2)$	$\mathrm{C} 1-\mathrm{H} 1 \mathrm{~A}$	0.9300

$\mathrm{O} 4-\mathrm{S} 1-\mathrm{O} 5$	$112.85(8)$
$\mathrm{O} 4-\mathrm{S} 1-\mathrm{O} 3$	$111.86(8)$
$\mathrm{O} 5-\mathrm{S} 1-\mathrm{O} 3$	$113.83(8)$
$\mathrm{O} 4-\mathrm{S} 1-\mathrm{O} 6$	$108.30(8)$
$\mathrm{O} 5-\mathrm{S} 1-\mathrm{O} 6$	$101.94(7)$
$\mathrm{O} 3-\mathrm{S} 1-\mathrm{O} 6$	$107.28(8)$
$\mathrm{C} 6-\mathrm{O} 2-\mathrm{H} 2 \mathrm{~B}$	108.9
$\mathrm{~S} 1-\mathrm{O} 6-\mathrm{H} 1$	115.3
$\mathrm{C} 5-\mathrm{N} 1-\mathrm{C} 1$	$122.94(16)$
$\mathrm{C} 5-\mathrm{N} 1-\mathrm{H} 1 \mathrm{~B}$	118.5
$\mathrm{C} 1-\mathrm{N} 1-\mathrm{H} 1 \mathrm{~B}$	118.5
$\mathrm{C} 5-\mathrm{C} 4-\mathrm{C} 3$	$118.73(16)$
$\mathrm{C} 5-\mathrm{C} 4-\mathrm{C} 6$	$117.62(15)$
$\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 6$	$123.61(15)$
$\mathrm{N} 1-\mathrm{C} 5-\mathrm{C} 4$	$119.85(16)$

$\mathrm{N} 1-\mathrm{C} 5-\mathrm{H} 5 \mathrm{~A}$	120.1
$\mathrm{C} 4-\mathrm{C} 5-\mathrm{H} 5 \mathrm{~A}$	120.1
$\mathrm{C} 4-\mathrm{C} 3-\mathrm{C} 2$	$119.75(16)$
$\mathrm{C} 4-\mathrm{C} 3-\mathrm{H} 3 \mathrm{~A}$	120.1
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{H} 3 \mathrm{~A}$	120.1
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	$119.25(17)$
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~A}$	120.4
$\mathrm{C} 3-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~A}$	120.4
$\mathrm{O} 1-\mathrm{C} 6-\mathrm{O} 2$	$125.66(16)$
$\mathrm{O} 1-\mathrm{C} 6-\mathrm{C} 4$	$122.57(15)$
$\mathrm{O} 2-\mathrm{C} 6-\mathrm{C} 4$	$111.75(14)$
$\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 2$	$119.48(17)$
$\mathrm{N} 1-\mathrm{C} 1-\mathrm{H} 1 \mathrm{~A}$	120.3
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{H} 1 \mathrm{~A}$	120.3

Hydrogen-bond geometry ($A,{ }^{\circ}$)

$D — \mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 2 — \mathrm{H} 2 B \cdots \mathrm{O} 3$	0.85	1.83	$2.6697(18)$	169
$\mathrm{O} 6-\mathrm{H} 1 \cdots \mathrm{O} 5^{\mathrm{i}}$	0.89	1.73	$2.6129(17)$	170
$\mathrm{~N} 1 — \mathrm{H} 1 B \cdots{ }^{\mathrm{O}} 4^{\mathrm{ii}}$	0.86	2.11	$2.843(2)$	143

Symmetry codes: (i) $x,-y+3 / 2, z+1 / 2$; (ii) $-x+1, y-1 / 2,-z+1 / 2$.

