

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

1-[(6-Chloro-3-pyridyl)methyl]-5-ethoxy-8-nitro-1,2,3,5,6,7-hexahydroimidazo-[1,2-*a*]pyridine

Zhongzhen Tian,^a* Dongmei Li^a and Zhong Li^b*

^aInstitute of Chemistry and Chemical Engineering, University of Jinan, 106 Jiwei Road, Jinan 250022, People's Republic of China, and ^bShanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, People's Republic of China Correspondence e-mail: chm_tianzz@ujn.edu.cn, lizhong@ecust.edu.cn

Received 26 July 2009; accepted 17 September 2009

Key indicators: single-crystal X-ray study; T = 290 K; mean σ (C–C) = 0.004 Å; R factor = 0.049; wR factor = 0.135; data-to-parameter ratio = 16.6.

In the title compound, $C_{15}H_{19}CIN_4O_3$, an active agrochemical possessing insecticidal activity, the dihedral angle between the mean planes passing through the pyridine ring and the five-membered ring is 87.3 (2)°. The fused pyridine ring adopts a twisted sofa conformation. The molecular structure features close intramolecular $C-H\cdots N$ and $C-H\cdots O$ hydrogen bonding.

Related literature

For related literature, see: Kagabu et al. (2002); Moriya et al. (1992); Tian et al. (2007); Tokumitsu (1990).

a = 17.021 (3) Å

b = 5.5737 (8) Å c = 18.334 (3) Å

Experimental

Crystal data	
C15H19ClN4O3	
$M_r = 338.79$	
Monoclinic, $P2_1/c$	

$\beta = 112.097 \ (3)^{\circ}$
$V = 1611.6 (4) \text{ Å}^3$
Z = 4
Mo $K\alpha$ radiation

Data collection

Bruker SMART CCD area-detector	
diffractometer	
Absorption correction: multi-scan	
(SADABS; Bruker, 1997)	
$T_{\rm min} = 0.922, T_{\rm max} = 0.969$	

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.049$ 210 parameters $wR(F^2) = 0.135$ H-atom parameters constrainedS = 0.82 $\Delta \rho_{max} = 0.32$ e Å⁻³3486 reflections $\Delta \rho_{min} = -0.24$ e Å⁻³

Table 1	
Hydrogen-bond geometry (Å, °).	

$D - H \cdots A$	$D-{\rm H}$	$H \cdots A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
C11−H11 <i>B</i> ···O3	0.97	2.35	2.803 (3)	108
C13−H13···N1	0.93	2.54	2.891 (3)	103

Data collection: *SMART* (Bruker, 1997); cell refinement: *SAINT* (Bruker, 1997); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *ORTEP-3* (Farrugia, 1997); software used to prepare material for publication: *SHELXTL* (Sheldrick, 2008).

The authors thank the Opening Fund of Shanghai Key Laboratory of Chemical Biology (grant No. SKLCB-2008-08) and the Doctoral Foundation of the University of Jinan (grant No. XBS0823, B0542) for financial support.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BX2230).

References

Bruker (1997). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.

- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Kagabu, S., Nishiwaki, H., Sato, K., Hibi, M., Yamaoka, N. & Nakagawa, Y. (2002). Pest. Manag. Sci. 58, 483–490.
- Moriya, K., Shibuya, K., Hattori, Y., Tsuboi, S., Shiokawa, K. & Kagabu, S. (1992). Biosci. Biotechnol. Biochem. 56, 364–365.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Tian, Z. Z., Shao, X. S., Li, Z., Qian, X. H. & Huang, Q. C. (2007). J. Agric. Food. Chem. 55, 2288–2292.
- Tokumitsu, T. (1990). Bull. Chem. Soc. Jpn, 63, 1921-1924.

 $\mu = 0.26 \text{ mm}^{-1}$ T = 290 K

 $R_{\rm int} = 0.082$

 $0.50 \times 0.24 \times 0.12 \text{ mm}$

8970 measured reflections

3486 independent reflections 1870 reflections with $I > 2\sigma(I)$

supporting information

Acta Cryst. (2009). E65, o2517 [doi:10.1107/S1600536809037660]

1-[(6-Chloro-3-pyridyl)methyl]-5-ethoxy-8-nitro-1,2,3,5,6,7-hexahydroimidazo[1,2-*a*]pyridine

Zhongzhen Tian, Dongmei Li and Zhong Li

S1. Comment

Since the debut of Imidacloprid in the 1990 decade (Moriya *et al.*, 1992), neonicotinoid insecticides have become rapidly an important chemical class of insecticides. Nitromethylene compounds (Kagabu *et al.*, 2002) exhibited remarkably higher biological activity but poor photostability compared with Imidacloprid. Our synthetic interest was introducing dicyclic ring into the lead structure to improve its photostability and synthesizing a series of new compounds, in which compound (I) exhibited good insecticidal activities against pea aphids and was slightly weaker than that of imidacloprid (Tian *et al.*, 2007).The dihedral angle between the mean planes passing through the pyridine ring and the five membered ring is 87.3 (2)°. The six membered N2/C3/C4/C5/C6/C7 ring adopts a twist sofa conformation. The title compound $C_{15}H_{19}CIN_4O_3$, is an active agrochemical possessing insecticidal activity. The dihedral angle between the mean planes passing through the pyridine ring and the five membered ring is 87.3 (2)°. The six membered N2/C3/C4/C5/C6/C7 ring adopts a twist sofa conformation. The molecular structure is stabilized by intramolecular C— H… N and C— H… O hydrogen bond, Table 1.

S2. Experimental

The synthesis of the title compoud was following the reported method by Tokumitsu, 1990. Single crystals suitable for X-ray analysis were obtained by slow evaporation of the solution of dichloromethane and petroleum ether of the title compound. m.p. 399.8–400.8 K.

S3. Refinement

H atoms were positioned geometrically and included in the refinement in the riding-model approximation, with C—H = 0.93 Å and $U_{iso}(H) = 1.2 U_{eq}(C)$ for pyridine H atoms, C—H = 0.97 Å and $U_{iso}(H) = 1.2 U_{eq}(C)$ for the methylene H atoms, C—H = 0.96 Å and $U_{iso}(H) = 1.5 U_{eq}(C)$ for the methyl H atoms, C—H = 0.98 Å and $U_{iso}(H) = 1.2 U_{eq}(C)$ for the methyl H atoms, C—H = 0.98 Å and $U_{iso}(H) = 1.2 U_{eq}(C)$ for the methyl H atoms, C—H = 0.98 Å and $U_{iso}(H) = 1.2 U_{eq}(C)$ for the methyl H atoms, C—H = 0.98 Å and $U_{iso}(H) = 1.2 U_{eq}(C)$ for the methyl H atoms, C—H = 0.98 Å and $U_{iso}(H) = 1.2 U_{eq}(C)$ for the methyl H atoms, C—H = 0.98 Å and $U_{iso}(H) = 1.2 U_{eq}(C)$ for the methyl H atoms, C—H = 0.98 Å and $U_{iso}(H) = 1.2 U_{eq}(C)$ for the methyl H atoms, C—H = 0.98 Å and $U_{iso}(H) = 1.2 U_{eq}(C)$ for the methyl H atoms

Figure 1

The molecular structure of (a) with atom numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. The H atoms are shown as circles of arbitrary size and intramolecular hydrogen bonds are indicated by dotted lines.

1-[(6-Chloro-3-pyridyl)methyl]-5-ethoxy-8-nitro-1,2,3,5,6,7- hexahydroimidazo[1,2-a]pyridine

Crystal data

C₁₅H₁₉ClN₄O₃ $M_r = 338.79$ Monoclinic, $P2_1/c$ Hall symbol: -P 2ybc a = 17.021 (3) Å b = 5.5737 (8) Å c = 18.334 (3) Å $\beta = 112.097$ (3)° V = 1611.6 (4) Å³ Z = 4

Data collection

Bruker SMART CCD area-detector diffractometer Radiation source: fine-focus sealed tube Graphite monochromator φ and ω scans Absorption correction: multi-scan (*SADABS*; Bruker, 1997) $T_{\min} = 0.922, T_{\max} = 0.969$

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.049$ $wR(F^2) = 0.135$ S = 0.823486 reflections 210 parameters 0 restraints F(000) = 712 $D_x = 1.396 \text{ Mg m}^{-3}$ Mo K\alpha radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 1727 reflections $\theta = 4.8-47.4^{\circ}$ $\mu = 0.26 \text{ mm}^{-1}$ T = 290 KPrismatic, colourless $0.50 \times 0.24 \times 0.12 \text{ mm}$

8970 measured reflections 3486 independent reflections 1870 reflections with $I > 2\sigma(I)$ $R_{int} = 0.082$ $\theta_{max} = 27.0^{\circ}, \theta_{min} = 1.3^{\circ}$ $h = -21 \rightarrow 21$ $k = -7 \rightarrow 7$ $l = -23 \rightarrow 13$

Primary atom site location: structure-invariant direct methods Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained $w = 1/[\sigma^{2}(F_{o}^{2}) + (0.069P)^{2}]$ where $P = (F_{o}^{2} + 2F_{c}^{2})/3$ $(\Delta/\sigma)_{max} = 0.044$ $\Delta\rho_{max} = 0.32 \text{ e} \text{ Å}^{-3}$ $\Delta \rho_{\min} = -0.24 \text{ e } \text{\AA}^{-3}$ Extinction correction: *SHELXL97* (Sheldrick, 2008), Fc*=kFc[1+0.001xFc^2\lambda^3/sin(2\theta)]^{-1/4} Extinction coefficient: 0.020 (2)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
Cl	1.20916 (4)	0.34129 (13)	0.43476 (5)	0.0742 (3)
O1	0.58663 (11)	0.9036 (4)	0.35790 (10)	0.0669 (5)
O2	0.69588 (12)	0.4707 (4)	0.16844 (11)	0.0739 (6)
O3	0.81680 (12)	0.5033 (3)	0.26680 (11)	0.0653 (5)
N1	0.84352 (11)	0.9213 (3)	0.35853 (10)	0.0428 (5)
N2	0.71934 (11)	1.0384 (4)	0.35902 (11)	0.0484 (5)
N3	0.74299 (13)	0.5777 (4)	0.22900 (12)	0.0517 (5)
N4	1.05820 (12)	0.4680 (4)	0.42526 (12)	0.0542 (5)
C1	0.86309 (14)	1.0659 (5)	0.43064 (14)	0.0528 (6)
H1A	0.9076	1.1814	0.4361	0.063*
H1B	0.8806	0.9645	0.4770	0.063*
C2	0.77991 (15)	1.1909 (5)	0.41832 (15)	0.0594 (7)
H2A	0.7687	1.1946	0.4664	0.071*
H2B	0.7793	1.3533	0.3991	0.071*
C3	0.75815 (13)	0.9028 (4)	0.32102 (13)	0.0406 (5)
C4	0.71043 (14)	0.7723 (4)	0.25471 (13)	0.0451 (6)
C5	0.61813 (14)	0.8220 (5)	0.21354 (14)	0.0582 (7)
H5A	0.5857	0.6921	0.2236	0.070*
H5B	0.6045	0.8293	0.1572	0.070*
C6	0.59349 (15)	1.0563 (5)	0.24097 (15)	0.0602 (7)
H6A	0.5322	1.0689	0.2210	0.072*
H6B	0.6150	1.1890	0.2197	0.072*
C7	0.62807 (15)	1.0737 (5)	0.32935 (15)	0.0552 (7)
H7	0.6161	1.2340	0.3445	0.066*
C8	0.59553 (18)	0.9382 (6)	0.43754 (16)	0.0753 (9)
H8A	0.5732	1.0941	0.4433	0.090*
H8B	0.6551	0.9334	0.4715	0.090*
C9	0.5492 (2)	0.7483 (7)	0.46073 (19)	0.1023 (12)
H9A	0.4896	0.7620	0.4299	0.123*
H9B	0.5587	0.7652	0.5155	0.123*
H9C	0.5691	0.5940	0.4519	0.123*

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

C11	0.89956 (13)	0.9436 (4)	0.31525 (13)	0.0455 (6)	
H11A	0.9131	1.1118	0.3130	0.055*	
H11B	0.8695	0.8891	0.2617	0.055*	
C12	0.98050 (13)	0.8050 (4)	0.35017 (12)	0.0393 (5)	
C13	0.98935 (14)	0.6091 (4)	0.39838 (13)	0.0490 (6)	
H13	0.9443	0.5719	0.4134	0.059*	
C14	1.12093 (14)	0.5302 (4)	0.40378 (13)	0.0454 (6)	
C15	1.12235 (14)	0.7269 (4)	0.35956 (13)	0.0465 (6)	
H15	1.1699	0.7651	0.3486	0.056*	
C16	1.05008 (14)	0.8655 (4)	0.33212 (13)	0.0462 (6)	
H16	1.0480	1.0000	0.3014	0.055*	

Atomic displacement parameters $(Å^2)$

$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		U^{23}	U^{13}	U^{12}	U ³³	U^{22}	U^{11}	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	(4)	0.004	0.0313 (4)	0.0181 (3)	0.0967 (6)	0.0681 (5)	0.0596 (4)	Cl
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	7 (10)	-0.009	0.0413 (10)	-0.0114 (10)	0.0610 (12)	0.0879 (15)	0.0668 (11)	01
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	6 (11)	-0.03	0.0374 (11)	-0.0259 (11)	0.0702 (13)	0.0823 (14)	0.0778 (12)	O2
N1 $0.0411 (11)$ $0.0494 (12)$ $0.0425 (11)$ $-0.0023 (8)$ $0.0210 (9)$ $-0.0026 (9)$ N2 $0.0439 (11)$ $0.0575 (13)$ $0.0477 (12)$ $0.0013 (9)$ $0.0216 (9)$ $-0.0130 (9)$ N3 $0.0583 (13)$ $0.0558 (13)$ $0.0503 (13)$ $-0.0090 (11)$ $0.0311 (11)$ $-0.0095 (10)$ N4 $0.0553 (12)$ $0.0513 (13)$ $0.0624 (14)$ $0.0059 (10)$ $0.0293 (11)$ $0.0106 (10)$ C1 $0.0529 (14)$ $0.0594 (16)$ $0.0473 (14)$ $-0.0102 (12)$ $0.0201 (12)$ $-0.0093 (10)$ C2 $0.0641 (16)$ $0.0623 (18)$ $0.0556 (16)$ $-0.0076 (13)$ $0.0269 (13)$ $-0.0186 (12)$ C3 $0.0447 (13)$ $0.0413 (13)$ $0.0407 (13)$ $0.0016 (10)$ $0.0216 (11)$ $0.0027 (10)$ C4 $0.0475 (13)$ $0.0493 (15)$ $0.0436 (14)$ $-0.0033 (11)$ $0.0214 (12)$ $-0.0060 (12)$ C5 $0.0476 (14)$ $0.081 (2)$ $0.0545 (16)$ $0.0109 (13)$ $0.0218 (12)$ $0.0084 (14)$ C7 $0.0500 (14)$ $0.0604 (17)$ $0.0626 (17)$ $0.0079 (12)$ $0.0297 (13)$ $-0.0033 (12)$ C8 $0.0739 (19)$ $0.104 (3)$ $0.0543 (18)$ $0.0098 (17)$ $0.0314 (15)$ $0.0030 (17)$ C9 $0.111 (3)$ $0.143 (3)$ $0.071 (2)$ $-0.0020 (2)$ $0.055 (2)$ $0.006 (2)$ C11 $0.0480 (13)$ $0.0474 (14)$ $0.0479 (14)$ $-0.0003 (10)$ $0.0193 (10)$ $-0.0017 (16)$	5 (9)	-0.00^{2}	0.0320 (10)	0.0125 (9)	0.0737 (13)	0.0575 (12)	0.0691 (12)	O3
N2 $0.0439 (11)$ $0.0575 (13)$ $0.0477 (12)$ $0.0013 (9)$ $0.0216 (9)$ $-0.0130 (1)$ N3 $0.0583 (13)$ $0.0558 (13)$ $0.0503 (13)$ $-0.0090 (11)$ $0.0311 (11)$ $-0.0095 (10)$ N4 $0.0553 (12)$ $0.0513 (13)$ $0.0624 (14)$ $0.0059 (10)$ $0.0293 (11)$ $0.0106 (10)$ C1 $0.0529 (14)$ $0.0594 (16)$ $0.0473 (14)$ $-0.0102 (12)$ $0.0201 (12)$ $-0.0093 (12)$ C2 $0.0641 (16)$ $0.0623 (18)$ $0.0556 (16)$ $-0.0076 (13)$ $0.0269 (13)$ $-0.0186 (12)$ C3 $0.0447 (13)$ $0.0413 (13)$ $0.0407 (13)$ $0.0016 (10)$ $0.0216 (11)$ $0.0027 (10)$ C4 $0.0475 (13)$ $0.0493 (15)$ $0.0436 (14)$ $-0.0033 (11)$ $0.0204 (12)$ $-0.0060 (12)$ C5 $0.0476 (14)$ $0.081 (2)$ $0.0484 (15)$ $-0.0038 (13)$ $0.0204 (12)$ $-0.0060 (12)$ C6 $0.0466 (14)$ $0.082 (2)$ $0.0543 (18)$ $0.0098 (17)$ $0.0314 (15)$ $0.0030 (17)$ C8 $0.0739 (19)$ $0.104 (3)$ $0.0543 (18)$ $0.0098 (17)$ $0.0314 (15)$ $0.0030 (17)$ C9 $0.111 (3)$ $0.143 (3)$ $0.071 (2)$ $-0.0020 (2)$ $0.055 (2)$ $0.006 (2)$ C11 $0.0480 (13)$ $0.0474 (14)$ $0.0479 (14)$ $-0.0009 (11)$ $0.0257 (11)$ $0.0059 (11)$ C12 $0.0426 (12)$ $0.0410 (13)$ $0.0379 (12)$ $-0.0033 (10)$ $-0.0017 (16)$	6 (9)	-0.002	0.0210 (9)	-0.0023 (8)	0.0425 (11)	0.0494 (12)	0.0411 (11)	N1
N3 $0.0583(13)$ $0.0558(13)$ $0.0503(13)$ $-0.0090(11)$ $0.0311(11)$ $-0.0095(10)$ N4 $0.0553(12)$ $0.0513(13)$ $0.0624(14)$ $0.0059(10)$ $0.0293(11)$ $0.0106(10)$ C1 $0.0529(14)$ $0.0594(16)$ $0.0473(14)$ $-0.0102(12)$ $0.0201(12)$ $-0.0093(10)$ C2 $0.0641(16)$ $0.0623(18)$ $0.0556(16)$ $-0.0076(13)$ $0.0269(13)$ $-0.0186(10)$ C3 $0.0447(13)$ $0.0413(13)$ $0.0407(13)$ $0.0016(10)$ $0.0216(11)$ $0.0027(10)$ C4 $0.0475(13)$ $0.0493(15)$ $0.0436(14)$ $-0.0033(11)$ $0.0231(11)$ $-0.0055(10)$ C5 $0.0476(14)$ $0.081(2)$ $0.0448(15)$ $-0.0038(13)$ $0.0204(12)$ $-0.0060(12)$ C6 $0.0466(14)$ $0.082(2)$ $0.0545(16)$ $0.0109(13)$ $0.0218(12)$ $0.0084(14)$ C7 $0.0500(14)$ $0.0604(17)$ $0.0626(17)$ $0.0079(12)$ $0.0297(13)$ $-0.0033(12)$ C8 $0.0739(19)$ $0.104(3)$ $0.0543(18)$ $0.0098(17)$ $0.0314(15)$ $0.0030(12)$ C9 $0.111(3)$ $0.143(3)$ $0.071(2)$ $-0.0020(2)$ $0.055(2)$ $0.006(2)$ C11 $0.0480(13)$ $0.0474(14)$ $0.0479(14)$ $-0.0003(10)$ $-0.0193(10)$ $-0.0017(12)$	0 (10)	-0.013	0.0216 (9)	0.0013 (9)	0.0477 (12)	0.0575 (13)	0.0439 (11)	N2
N4 $0.0553(12)$ $0.0513(13)$ $0.0624(14)$ $0.0059(10)$ $0.0293(11)$ $0.0106(10)$ C1 $0.0529(14)$ $0.0594(16)$ $0.0473(14)$ $-0.0102(12)$ $0.0201(12)$ $-0.0093(12)$ C2 $0.0641(16)$ $0.0623(18)$ $0.0556(16)$ $-0.0076(13)$ $0.0269(13)$ $-0.0186(12)$ C3 $0.0447(13)$ $0.0413(13)$ $0.0407(13)$ $0.0016(10)$ $0.0216(11)$ $0.0027(16)$ C4 $0.0475(13)$ $0.0493(15)$ $0.0436(14)$ $-0.0033(11)$ $0.0214(12)$ $-0.0060(12)$ C5 $0.0476(14)$ $0.081(2)$ $0.0484(15)$ $-0.0038(13)$ $0.0204(12)$ $-0.0060(12)$ C6 $0.0466(14)$ $0.082(2)$ $0.0545(16)$ $0.0109(13)$ $0.0218(12)$ $0.0084(14)$ C7 $0.0500(14)$ $0.0604(17)$ $0.0626(17)$ $0.0079(12)$ $0.0297(13)$ $-0.0033(12)$ C8 $0.0739(19)$ $0.143(3)$ $0.071(2)$ $-0.020(2)$ $0.055(2)$ $0.006(2)$ C11 $0.0480(13)$ $0.0474(14)$ $0.0479(14)$ $-0.0009(11)$ $0.0257(11)$ $0.0059(11)$ C12 $0.0426(12)$ $0.0410(13)$ $0.0379(12)$ $-0.0033(10)$ $-0.0017(12)$	5 (11)	-0.009	0.0311 (11)	-0.0090 (11)	0.0503 (13)	0.0558 (13)	0.0583 (13)	N3
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	(10)	0.0106	0.0293 (11)	0.0059 (10)	0.0624 (14)	0.0513 (13)	0.0553 (12)	N4
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3 (12)	-0.009	0.0201 (12)	-0.0102 (12)	0.0473 (14)	0.0594 (16)	0.0529 (14)	C1
C3 $0.0447 (13)$ $0.0413 (13)$ $0.0407 (13)$ $0.0016 (10)$ $0.0216 (11)$ $0.0027 (10)$ C4 $0.0475 (13)$ $0.0493 (15)$ $0.0436 (14)$ $-0.0033 (11)$ $0.0231 (11)$ $-0.0055 (12)$ C5 $0.0476 (14)$ $0.081 (2)$ $0.0484 (15)$ $-0.0038 (13)$ $0.0204 (12)$ $-0.0060 (12)$ C6 $0.0466 (14)$ $0.082 (2)$ $0.0545 (16)$ $0.0109 (13)$ $0.0218 (12)$ $0.0084 (14)$ C7 $0.0500 (14)$ $0.0604 (17)$ $0.0626 (17)$ $0.0079 (12)$ $0.0297 (13)$ $-0.0033 (12)$ C8 $0.0739 (19)$ $0.104 (3)$ $0.0543 (18)$ $0.0098 (17)$ $0.0314 (15)$ $0.0030 (12)$ C9 $0.111 (3)$ $0.143 (3)$ $0.071 (2)$ $-0.020 (2)$ $0.055 (2)$ $0.006 (2)$ C11 $0.0480 (13)$ $0.0474 (14)$ $0.0479 (14)$ $-0.0009 (11)$ $0.0257 (11)$ $0.0059 (11)$ C12 $0.0426 (12)$ $0.0410 (13)$ $0.0379 (12)$ $-0.0033 (10)$ $-0.0133 (10)$ $-0.0017 (12)$	6 (13)	-0.018	0.0269 (13)	-0.0076 (13)	0.0556 (16)	0.0623 (18)	0.0641 (16)	C2
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	(10)	0.0027	0.0216 (11)	0.0016 (10)	0.0407 (13)	0.0413 (13)	0.0447 (13)	C3
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	5 (11)	-0.003	0.0231 (11)	-0.0033 (11)	0.0436 (14)	0.0493 (15)	0.0475 (13)	C4
C6 0.0466 (14) 0.082 (2) 0.0545 (16) 0.0109 (13) 0.0218 (12) 0.0084 (14) C7 0.0500 (14) 0.0604 (17) 0.0626 (17) 0.0079 (12) 0.0297 (13) -0.0033 (12) C8 0.0739 (19) 0.104 (3) 0.0543 (18) 0.0098 (17) 0.0314 (15) 0.0030 (12) C9 0.111 (3) 0.143 (3) 0.071 (2) -0.020 (2) 0.055 (2) 0.006 (2) C11 0.0480 (13) 0.0474 (14) 0.0479 (14) -0.0009 (11) 0.0257 (11) 0.0059 (11) C12 0.0426 (12) 0.0410 (13) 0.0379 (12) -0.0033 (10) 0.0193 (10) -0.0017 (11)	0 (13)	-0.000	0.0204 (12)	-0.0038 (13)	0.0484 (15)	0.081 (2)	0.0476 (14)	C5
C7 0.0500 (14) 0.0604 (17) 0.0626 (17) 0.0079 (12) 0.0297 (13) -0.0033 (C8 0.0739 (19) 0.104 (3) 0.0543 (18) 0.0098 (17) 0.0314 (15) 0.0030 (17) C9 0.111 (3) 0.143 (3) 0.071 (2) -0.020 (2) 0.055 (2) 0.006 (2) C11 0.0480 (13) 0.0474 (14) 0.0479 (14) -0.0009 (11) 0.0257 (11) 0.0059 (11) C12 0.0426 (12) 0.0410 (13) 0.0379 (12) -0.0033 (10) 0.0193 (10) -0.0017 (11)	(14)	0.0084	0.0218 (12)	0.0109 (13)	0.0545 (16)	0.082 (2)	0.0466 (14)	C6
C8 0.0739 (19) 0.104 (3) 0.0543 (18) 0.0098 (17) 0.0314 (15) 0.0030 (17) C9 0.111 (3) 0.143 (3) 0.071 (2) -0.020 (2) 0.055 (2) 0.006 (2) C11 0.0480 (13) 0.0474 (14) 0.0479 (14) -0.0009 (11) 0.0257 (11) 0.0059 (11) C12 0.0426 (12) 0.0410 (13) 0.0379 (12) -0.0033 (10) 0.0193 (10) -0.0017 (10)	3 (13)	-0.002	0.0297 (13)	0.0079 (12)	0.0626 (17)	0.0604 (17)	0.0500 (14)	C7
C9 0.111 (3) 0.143 (3) 0.071 (2) -0.020 (2) 0.055 (2) 0.006 (2) C11 0.0480 (13) 0.0474 (14) 0.0479 (14) -0.0009 (11) 0.0257 (11) 0.0059 (11) C12 0.0426 (12) 0.0410 (13) 0.0379 (12) -0.0033 (10) 0.0193 (10) -0.0017 (11)	(17)	0.0030	0.0314 (15)	0.0098 (17)	0.0543 (18)	0.104 (3)	0.0739 (19)	C8
C11 0.0480 (13) 0.0474 (14) 0.0479 (14) -0.0009 (11) 0.0257 (11) 0.0059 (11) C12 0.0426 (12) 0.0410 (13) 0.0379 (12) -0.0033 (10) 0.0193 (10) -0.0017 (10)	2)	0.006	0.055 (2)	-0.020 (2)	0.071 (2)	0.143 (3)	0.111 (3)	C9
C12 $0.0426(12)$ $0.0410(13)$ $0.0379(12)$ $-0.0033(10)$ $0.0193(10)$ $-0.0017(10)$	(11)	0.0059	0.0257 (11)	-0.0009 (11)	0.0479 (14)	0.0474 (14)	0.0480 (13)	C11
	7 (10)	-0.00	0.0193 (10)	-0.0033 (10)	0.0379 (12)	0.0410 (13)	0.0426 (12)	C12
C13 0.0483 (14) 0.0533 (16) 0.0545 (15) -0.0001 (11) 0.0299 (12) 0.0080 (12)	(12)	0.0080	0.0299 (12)	-0.0001 (11)	0.0545 (15)	0.0533 (16)	0.0483 (14)	C13
C14 0.0433 (13) 0.0477 (15) 0.0453 (14) 0.0016 (11) 0.0167 (11) -0.0066 (6 (11)	-0.006	0.0167 (11)	0.0016 (11)	0.0453 (14)	0.0477 (15)	0.0433 (13)	C14
C15 0.0435 (13) 0.0538 (15) 0.0494 (14) -0.0068 (11) 0.0257 (11) -0.0048 (8 (12)	-0.004	0.0257 (11)	-0.0068 (11)	0.0494 (14)	0.0538 (15)	0.0435 (13)	C15
C16 0.0488 (14) 0.0493 (14) 0.0451 (14) -0.0073 (11) 0.0230 (11) 0.0045 (11)	(11)	0.0045	0.0230 (11)	-0.0073 (11)	0.0451 (14)	0.0493 (14)	0.0488 (14)	C16

Geometric parameters (Å, °)

Cl—C14	1.745 (2)	C5—H5A	0.9700
O1—C7	1.396 (3)	C5—H5B	0.9700
O1—C8	1.423 (3)	C6—C7	1.505 (4)
O2—N3	1.250 (2)	C6—H6A	0.9700
O3—N3	1.255 (2)	C6—H6B	0.9700
N1—C3	1.358 (3)	C7—H7	0.9800
N1-C11	1.458 (3)	C8—C9	1.475 (4)

N1—C1	1.475 (3)	C8—H8A	0.9700
N2—C3	1.356 (3)	C8—H8B	0.9700
N2—C7	1.453 (3)	C9—H9A	0.9600
N2—C2	1.457 (3)	С9—Н9В	0.9600
N3—C4	1 379 (3)	C9—H9C	0.9600
N4—C14	1 316 (3)	C_{11} C_{12}	1497(3)
N4—C13	1 342 (3)	C11—H11A	0.9700
C1-C2	1.517(3)	C11_H11B	0.9700
C1 H1A	0.9700	C_{12} C_{13}	1.377(3)
C1 H1B	0.9700	$C_{12} = C_{13}$	1.377(3)
$C_2 = H_2 \lambda$	0.9700	$C_{12} = C_{10}$	0.0300
$C_2 = H_2 R$	0.9700	C_{13}	0.3300
C_2 — C_4	0.9700	C15 - C16	1.309(3)
$C_3 = C_4$	1.387 (3)		1.378 (3)
C4—C3	1.491 (3)		0.9300
05-06	1.514 (4)	С10—Н10	0.9300
C7—O1—C8	114.8 (2)	Н6А—С6—Н6В	108.0
C3—N1—C11	121.70 (18)	O1—C7—N2	112.8 (2)
C3—N1—C1	109.47 (18)	O1—C7—C6	108.2 (2)
C11—N1—C1	117.89 (18)	N2—C7—C6	108.9 (2)
C3—N2—C7	122.79 (19)	O1—C7—H7	108.9
C3—N2—C2	111.33 (18)	N2—C7—H7	108.9
C7—N2—C2	123.86 (19)	С6—С7—Н7	108.9
02—N3—O3	120.5 (2)	01-C8-C9	109.7 (3)
02—N3—C4	118.2 (2)	01—C8—H8A	109.7
03—N3—C4	1212(2)	C9—C8—H8A	109.7
C14 - N4 - C13	1155(2)	01—C8—H8B	109.7
N1-C1-C2	103.5(2) 103.53(17)	C9—C8—H8B	109.7
N1—C1—H1A	111 1	H8A - C8 - H8B	108.2
$C_2 - C_1 - H_1 A$	111.1	C8_C9_H9A	109.5
N1_C1_H1B	111.1	$C_8 - C_9 - H_{9B}$	109.5
C_2 C_1 H_1B	111.1	$H_{0}A = C_{0} = H_{0}B$	109.5
HIA_C1_HIB	109.0	$C_8 = C_9 = H_9C$	109.5
$N_2 C_2 C_1$	107.0		109.5
$N_2 = C_2 = C_1$ $N_2 = C_2 = H_2 \Lambda$	111 4	HOR CO HOC	109.5
12 - C2 - H2A	111.4	$N_1 - C_1 - C_1^2$	109.5
N2 C2 H2B	111.4	N1 C11 H11A	108 7
12 - C2 - 112D	111.4	C_{12} C_{11} H_{11A}	108.7
$H_{2A} = C_2 = H_{2B}$	100.3	NI CII HIIR	108.7
$N_2 C_3 N_1$	109.3	C_{12} C_{11} H_{11B}	108.7
$N_2 = C_3 = C_4$	109.43(19) 120.32(10)		107.6
$N_2 = C_3 = C_4$	120.32(19) 120.2(2)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	107.0
$N_1 = C_2 = C_4$	130.3(2) 122.2(2)	$C_{13} = C_{12} = C_{10}$	110.7(2)
$N_2 = C_4 = C_5$	122.3(2)	C16 - C12 - C11	123.00(19)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	11/.1(2) 120.3(2)	10 - 012 - 011	120.3 (2)
$C_{4} = C_{5} = C_{6}$	120.3(2)	N4 C12 H12	124.0 (2) 117.6
$C_4 = C_5 = U_5 \wedge C_5 \to U_5 \cap U_5 \to U_5 $	111.3 (2)	134 - 013 - 013	117.0
C_{+} C_{-} C_{-	109.4	$ \begin{array}{c} 12 \\ 12 \\ 12 \\ 13 \\ 13 \\ 13 \\ 13 \\ 13 \\$	11/.0
Со-Сэ-НЭА	109.4	IN4-U14-U15	125.8 (2)

C4—C5—H5B	109.4	N4—C14—Cl	116.08 (18)
С6—С5—Н5В	109.4	C15—C14—Cl	118.11 (18)
H5A—C5—H5B	108.0	C14—C15—C16	117.0 (2)
C5—C6—C7	111.6 (2)	C14—C15—H15	121.5
С5—С6—Н6А	109.3	C16—C15—H15	121.5
С7—С6—Н6А	109.3	C15—C16—C12	120.1 (2)
С5—С6—Н6В	109.3	C15—C16—H16	119.9
С7—С6—Н6В	109.3	C12-C16-H16	119.9
C2 N1 C1 C2	1(2(2)	C9 01 C7 N2	75 1 (2)
$C_3 - N_1 - C_1 - C_2$	-16.3(3)	$C_{N} = C_{N} = C_{N}$	/5.1 (3)
CII = NI = CI = C2	128.5 (2)	$C_{8} = 01 = C_{7} = C_{6}$	-164.3(2)
$C_3 - N_2 - C_2 - C_1$	-19.3(3)	$C_3 = N_2 = C_1 = 01$	91.2 (3)
C/—N2—C2—C1	176.5 (2)	$C_2 N_2 C_7 0_1$	-106.4 (3)
NI-CI-C2-N2	20.5 (2)	C3—N2—C7—C6	-28.9 (3)
C7—N2—C3—N1	174.3 (2)	C2—N2—C7—C6	133.5 (2)
C2—N2—C3—N1	9.9 (3)	C5—C6—C7—O1	-67.8 (3)
C7—N2—C3—C4	-6.0 (3)	C5—C6—C7—N2	55.2 (3)
C2—N2—C3—C4	-170.4 (2)	C7—O1—C8—C9	180.0 (2)
C11—N1—C3—N2	-138.6 (2)	C3—N1—C11—C12	-140.6 (2)
C1—N1—C3—N2	4.7 (3)	C1—N1—C11—C12	79.0 (2)
C11—N1—C3—C4	41.7 (4)	N1—C11—C12—C13	23.2 (3)
C1—N1—C3—C4	-175.0 (2)	N1-C11-C12-C16	-159.4 (2)
O2—N3—C4—C3	-179.6 (2)	C14—N4—C13—C12	1.3 (3)
O3—N3—C4—C3	3.1 (3)	C16—C12—C13—N4	-3.6 (3)
O2—N3—C4—C5	7.1 (3)	C11—C12—C13—N4	173.9 (2)
O3—N3—C4—C5	-170.2 (2)	C13—N4—C14—C15	2.3 (3)
N2-C3-C4-N3	-158.8 (2)	C13—N4—C14—C1	-177.37 (17)
N1—C3—C4—N3	20.8 (4)	N4-C14-C15-C16	-3.2 (3)
N2—C3—C4—C5	14.3 (3)	Cl-C14-C15-C16	176.44 (17)
N1—C3—C4—C5	-166.1 (2)	C14-C15-C16-C12	0.6 (3)
N3—C4—C5—C6	-173.1 (2)	C13—C12—C16—C15	2.4 (3)
C3—C4—C5—C6	13.5 (3)	C11—C12—C16—C15	-175.1 (2)
C4—C5—C6—C7	-48.2 (3)		

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D····A	<i>D</i> —H··· <i>A</i>
С11—Н11В…ОЗ	0.97	2.35	2.803 (3)	108
C13—H13…N1	0.93	2.54	2.891 (3)	103