organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

1-(3-Phenylpropyl)urea

Yang Li, Guoxiong Hua, Alexandra M. Z. Slawin and I. Derek Woollins*

School of Chemistry, University of St Andrews, Fife KY16 9ST, Scotland Correspondence e-mail: jdw3@st-and.ac.uk

Received 22 September 2009; accepted 23 September 2009

Key indicators: single-crystal X-ray study; T = 93 K; mean σ (C–C) = 0.003 Å; R factor = 0.056; wR factor = 0.144; data-to-parameter ratio = 17.4.

In the crystal of the title compound, C₁₀H₁₄N₂O, double supramolecular layers of PhCH₂CH₂CH₂NHC(O)NH₂ are formed parallel to the *bc* plane by intermolecular $N-H \cdots O$ hydrogen bonding, with $R_2^2(8)$ and $R_2^1(6)$ motifs in the b- and caxis directions, respectively. The mean plane of the $C_{ar}-C-C$ group makes a dihedral angle of 84.8 $(2)^{\circ}$ with the benzene ring.

Related literature

For related structural information see Bernstein et al. (1995). For background chemistry, see: Gray et al. (2005); Hua & Woollins (2009); Renodon-Cornière et al. (2002).

Experimental

Crystal data

$C_{10}H_{14}N_2O$
$M_r = 178.23$
Monoclinic, $P2_1/c$
a = 17.002 (4) Å
b = 6.4953 (15) Å

c = 9.171 (2) Å $\beta = 91.401 \ (8)^{\circ}$ V = 1012.5 (4) Å³ Z = 4Mo $K\alpha$ radiation

 $\mu = 0.08 \text{ mm}^{-1}$ T = 93 K

Data collection

Rigaku Mercury CCD	6696 measured reflections
diffractometer	2126 independent reflections
Absorption correction: multi-scan	1360 reflections with $I > 2\sigma(I)$
(CrystalClear; Rigaku, 2004)	$R_{\rm int} = 0.038$
$T_{\min} = 0.981, \ T_{\max} = 0.998$	

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.056$ H ator $wR(F^2) = 0.144$ index $S = 1.03$ refin2126 reflections $\Delta \rho_{max}$ 122 parameters $\Delta \rho_{max}$	ms treated by a mixture of ependent and constrained nement $= 0.23 \text{ e } \text{\AA}^{-3}$ $= -0.20 \text{ e } \text{\AA}^{-3}$
122 parameters $\Delta \rho_{\min}$	$= -0.20 \text{ e} \text{ A}^{-3}$

 $0.25 \times 0.04 \times 0.03 \text{ mm}$

Table 1 Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdots A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$N1 - H1A \cdots O1^{i}$ $N1 - H1B \cdots O1^{ii}$ $N2 - H2 \cdots O1^{ii}$	0.88 0.88 0.863 (18)	2.10 2.09 2.127 (19)	2.936 (2) 2.8788 (19) 2.9240 (19)	159 148 153.2 (17)
			5 1	

Symmetry codes: (i) -x + 1, -y + 3, -z + 1; (ii) x, $-y + \frac{5}{2}$, $z - \frac{1}{2}$.

Data collection: CrystalClear (Rigaku, 2004); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

The authors are grateful to the University of St Andrews and the Engineering and Physical Science Research Council (EPRSC, UK) for financial support.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT5070).

References

Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.

- Gray, I. P., Bhattachcharyya, P., Slawin, A. M. Z. & Woollins, J. D. (2005). Chem. Eur. J. 11, 6221-6227.
- Hua, G. & Woollins, J. D. (2009). Angew. Chem. Int. Ed. 48, 1368-1377.
- Renodon-Cornière, A., Dijols, S., Perollier, C., Lefevre-Groboillot, D., Boucher, J.-L., Attias, R., Sari, M.-A., Stuehr, D. & Mansuy, D. (2002). J. Med. Chem. 45, 944-954.
- Rigaku (2004). CrystalClear. Rigaku Corporation, Tokyo, Japan.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.

supporting information

Acta Cryst. (2009). E65, o2556 [doi:10.1107/S1600536809038501]

1-(3-Phenylpropyl)urea

Yang Li, Guoxiong Hua, Alexandra M. Z. Slawin and J. Derek Woollins

S1. Comment

2,4-Bis(phenyl)-1,3-diselenadiphosphetane-2,4-diselenide $[PhP(Se)(\mu-Se)]_2$, which is known as Woollins reagent, **WR**, has received increasing attention due to its relatively unpleasant chemical properties and since it can be prepared readily and safely handled (Gray *et al.* 2005). Now it is becoming a very useful selenium source or reagent in synthetic chemistry (Hua *et al.* 2009; Hua & Woollins, 2009). We report here the synthesis and X-ray structure of C₆H₄(CH₂)₃NHCONH₂. The title compound was prepared by the reaction of Woollins' reagent with 3-phenylpropan-1-amine.

Double supramolecular layers of the title compound (Fig. 2), PhCH₂CH₂CH₂CH₂NHC(O)NH₂, are formed parallel to the *bc* plane by intermolecular N—H···O hydrogen bonding (see Table 1), with $R_2^2(8)$ and $R_2^1(6)$ motifs in approximately b and c directions respectively (Bernstein *et al.*, 1995). The mean plane of the C3—C5 group makes dihedral angle of 84.8 (2)° with the benzene ring.

S2. Experimental

A toluene suspension of Woollins reagent (0.54 g, 1.0 mmol) and Ph(CH₂)₃NHCN (0.29 g, 2.0 mmol), which were prepared from cyanogen bromide with primary or secondary amine in dry methanol in the presence of excess of anhydrous CH₃COONa at room temperature in almost quantitative yield (Renodon-Cornière *et al.* 2002), was refluxed for 4 h under nitrogen during which time the mixtures became a clear reddish brown solution. After cooling and addition of water (1 cm³) the reflux was continued for another 1 h. The solvent was removed in vacuum, and the residue was purified by column chromatography (silica gel, 9:1 dichloromethane/ethyl acetate as eluant) to afford the title compound in the yield of 95%. The single crystals of the title compound for the X-ray crystallographic analysis were obtained by recrystallization from dichloromethane/hexane as colorless blocks.

S3. Refinement

All H atoms except H2 (which was freely refined) were included in calculated positions (C—H distances are 0.98 Å methyl H atoms, 0.99 Å for methylene H atoms and 0.95 Å for aryl H atoms, N—H 0.88 Å) and were refined as riding atoms with $U_{iso}(H) = 1.2 U_{eq}$ (parent atom, amino, methylene and aryl H atoms) or $U_{iso}(H) = 1.5 U_{eq}$ (parent atom, methyl H atoms).

Figure 1

The molecular structure of the title compound with displacement ellipsoids drawn at the 50% probability level.

Figure 2

View along the b direction of the crystal packing of the title compound with hydrogen bonding shown as dashed lines.

1-(3-Phenylpropyl)urea

Monoclinic, $P2_1/c$ q = 17,002 (4) Å

b = 6.4953 (15) Å c = 9.171 (2) Å $\beta = 91.401 (8)^{\circ}$ $V = 1012.5 (4) \text{ Å}^{3}$ Z = 4 F(000) = 384 $D_{x} = 1.169 \text{ Mg m}^{-3}$

Data collection

Rigaku Mercury CCD
diffractometer
Radiation source: rotating anode
Confocal monochromator
Detector resolution: 0.83 pixels mm ⁻¹
ω scans
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2004)
$T_{\min} = 0.981, \ T_{\max} = 0.998$

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.056$ $wR(F^2) = 0.144$ S = 1.032126 reflections 122 parameters 0 restraints Primary atom site location: structure-invariant direct methods Secondary atom site location: difference Fourier map

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
01	0.56839 (7)	1.2854 (2)	0.55596 (11)	0.0367 (4)	
N2	0.61033 (9)	1.1114 (2)	0.35832 (16)	0.0321 (4)	
C5	0.81085 (11)	0.5672 (3)	0.32854 (16)	0.0325 (5)	
N1	0.54532 (10)	1.4186 (3)	0.33030 (14)	0.0401 (5)	
H1A	0.5219	1.5274	0.3665	0.048*	
H1B	0.5499	1.4060	0.2353	0.048*	
C2	0.64786 (11)	0.9469 (3)	0.44128 (17)	0.0342 (5)	

6696 measured reflections 2126 independent reflections 1360 reflections with $I > 2\sigma(I)$ $R_{int} = 0.038$ $\theta_{max} = 28.5^\circ, \theta_{min} = 3.4^\circ$ $h = -16 \rightarrow 20$ $k = -8 \rightarrow 7$ $l = -9 \rightarrow 11$

Hydrogen site location: inferred from neighbouring sites H atoms treated by a mixture of independent and constrained refinement $w = 1/[\sigma^2(F_o^2) + (0.0607P)^2]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} < 0.001$ $\Delta\rho_{max} = 0.23$ e Å⁻³ $\Delta\rho_{min} = -0.20$ e Å⁻³ Extinction correction: *SHELXL97* (Sheldrick, 2008), Fc*=kFc[1+0.001xFc^2\lambda^3/sin(2\theta)]^{-1/4} Extinction coefficient: 0.030 (5)

H2A	0.6075	0.8490	0.4749	0.041*	
H2B	0.6756	1.0048	0.5282	0.041*	
C10	0.79059 (12)	0.3888 (3)	0.25485 (18)	0.0396 (5)	
H10	0.7413	0.3258	0.2721	0.047*	
C6	0.88327 (12)	0.6552 (3)	0.3003 (2)	0.0451 (6)	
H6	0.8987	0.7777	0.3497	0.054*	
C3	0.70581 (11)	0.8358 (3)	0.34725 (18)	0.0338 (5)	
H3A	0.7425	0.9378	0.3063	0.041*	
H3B	0.6768	0.7703	0.2646	0.041*	
C4	0.75349 (11)	0.6713 (3)	0.42853 (18)	0.0354 (5)	
H4A	0.7828	0.7353	0.5114	0.042*	
H4B	0.7174	0.5671	0.4684	0.042*	
C9	0.84088 (13)	0.3000 (3)	0.1561 (2)	0.0457 (6)	
H9	0.8259	0.1765	0.1074	0.055*	
C8	0.91183 (13)	0.3890 (4)	0.1284 (2)	0.0475 (6)	
H8	0.9459	0.3288	0.0598	0.057*	
C7	0.93348 (13)	0.5670 (4)	0.2009 (2)	0.0533 (6)	
H7	0.9828	0.6294	0.1828	0.064*	
C1	0.57407 (10)	1.2717 (3)	0.42002 (17)	0.0305 (5)	
H2	0.6095 (11)	1.110 (3)	0.264 (2)	0.037*	

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
01	0.0480 (9)	0.0409 (8)	0.0211 (7)	0.0078 (6)	0.0029 (5)	-0.0016 (5)
N2	0.0408 (10)	0.0356 (9)	0.0199 (8)	0.0082 (7)	0.0011 (6)	-0.0016 (6)
C5	0.0355 (11)	0.0340 (11)	0.0280 (9)	0.0034 (8)	0.0013 (7)	0.0026 (7)
N1	0.0575 (12)	0.0397 (10)	0.0232 (8)	0.0145 (8)	0.0041 (7)	-0.0004 (6)
C2	0.0405 (12)	0.0357 (11)	0.0264 (9)	0.0050 (8)	0.0023 (7)	0.0009 (7)
C10	0.0426 (13)	0.0348 (11)	0.0415 (11)	-0.0006 (9)	0.0055 (8)	-0.0006 (8)
C6	0.0402 (13)	0.0472 (13)	0.0480 (12)	-0.0050 (10)	0.0030 (9)	-0.0113 (9)
C3	0.0385 (12)	0.0351 (11)	0.0281 (10)	0.0043 (8)	0.0043 (7)	-0.0005 (7)
C4	0.0397 (12)	0.0363 (11)	0.0303 (10)	0.0037 (8)	0.0008 (8)	0.0013 (7)
C9	0.0541 (14)	0.0392 (12)	0.0440 (12)	0.0029 (10)	0.0029 (9)	-0.0079 (9)
C8	0.0447 (14)	0.0572 (15)	0.0408 (12)	0.0130 (11)	0.0071 (9)	-0.0058 (10)
C7	0.0388 (13)	0.0659 (16)	0.0557 (13)	-0.0033 (11)	0.0092 (10)	-0.0079 (11)
C1	0.0327 (11)	0.0361 (11)	0.0228 (10)	0.0010 (8)	0.0022 (7)	0.0001 (7)

Geometric parameters (Å, °)

01—C1	1.2559 (18)	C10—H10	0.9500
N2—C1	1.342 (2)	C6—C7	1.387 (3)
N2—C2	1.450 (2)	С6—Н6	0.9500
N2—H2	0.863 (18)	C3—C4	1.525 (2)
C5—C10	1.380 (3)	С3—НЗА	0.9900
C5—C6	1.388 (3)	C3—H3B	0.9900
C5—C4	1.514 (3)	C4—H4A	0.9900
N1—C1	1.344 (2)	C4—H4B	0.9900

N1—H1A	0.8800	С9—С8	1.367 (3)
N1—H1B	0.8800	С9—Н9	0.9500
C2—C3	1.509 (2)	C8—C7	1.379 (3)
C2—H2A	0.9900	C8—H8	0.9500
C2—H2B	0.9900	С7—Н7	0.9500
С10—С9	1.386 (3)		
C1—N2—C2	123.43 (14)	C4—C3—H3A	108.8
C1—N2—H2	115.5 (12)	С2—С3—Н3В	108.8
C2—N2—H2	121.1 (12)	C4—C3—H3B	108.8
C10—C5—C6	117.78 (17)	НЗА—СЗ—НЗВ	107.7
C10—C5—C4	120.97 (17)	C5—C4—C3	111.07 (14)
C6—C5—C4	121.11 (17)	C5—C4—H4A	109.4
C1—N1—H1A	120.0	C3—C4—H4A	109.4
C1—N1—H1B	120.0	C5—C4—H4B	109.4
H1A—N1—H1B	120.0	C3—C4—H4B	109.4
N2—C2—C3	109.73 (13)	H4A—C4—H4B	108.0
N2—C2—H2A	109.7	C8—C9—C10	120.42 (19)
C3—C2—H2A	109.7	С8—С9—Н9	119.8
N2—C2—H2B	109.7	С10—С9—Н9	119.8
C3—C2—H2B	109.7	C9—C8—C7	119.43 (18)
H2A—C2—H2B	108.2	С9—С8—Н8	120.3
С5—С10—С9	121.23 (19)	С7—С8—Н8	120.3
С5—С10—Н10	119.4	C8—C7—C6	120.1 (2)
С9—С10—Н10	119.4	С8—С7—Н7	120.0
C7—C6—C5	121.1 (2)	С6—С7—Н7	120.0
С7—С6—Н6	119.5	O1—C1—N2	121.38 (15)
С5—С6—Н6	119.5	O1—C1—N1	121.44 (16)
C2—C3—C4	113.74 (14)	N2—C1—N1	117.17 (14)
С2—С3—НЗА	108.8		
C1—N2—C2—C3	-160.22 (17)	C2—C3—C4—C5	-179.52 (16)
C6C5C10C9	0.2 (3)	C5-C10-C9-C8	-0.6 (3)
C4—C5—C10—C9	175.84 (17)	C10—C9—C8—C7	0.8 (3)
C10—C5—C6—C7	0.2 (3)	C9—C8—C7—C6	-0.4 (3)
C4—C5—C6—C7	-175.50 (18)	C5—C6—C7—C8	0.0 (3)
N2-C2-C3-C4	175.12 (15)	C2—N2—C1—O1	-2.2 (3)
C10—C5—C4—C3	-92.9 (2)	C2—N2—C1—N1	176.63 (16)
C6—C5—C4—C3	82.7 (2)		

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	Н…А	D···· A	<i>D</i> —H··· <i>A</i>
N1—H1A···O1 ⁱ	0.88	2.10	2.936 (2)	159
N1—H1B···O1 ⁱⁱ	0.88	2.09	2.8788 (19)	148
N2—H2···O1 ⁱⁱ	0.863 (18)	2.127 (19)	2.9240 (19)	153.2 (17)

Symmetry codes: (i) -x+1, -y+3, -z+1; (ii) x, -y+5/2, z-1/2.