Structure Reports

Online
ISSN 1600-5368

Trineodymium(III) pentairon(III) dodecaoxide, $\mathrm{Nd}_{3} \mathrm{Fe}_{5} \mathrm{O}_{12}$

Takashi Komori, ${ }^{\text {a* }}$ Terutoshi Sakakura, ${ }^{\text {a }}$ Yasuyuki Takenaka, ${ }^{\text {b }}$ Kiyoaki Tanaka ${ }^{\text {a }}$ and Takashi Okuda ${ }^{\text {a }}$
${ }^{\text {a }}$ Graduate School of Materials Science and Engineering, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Japan, and ${ }^{\text {b }}$ Hokkaido University of Education HAKODATE, Yahata-cho, Hakodate-shi, Japan
Correspondence e-mail: tkomori@katch.ne.jp

Received 3 September 2009; accepted 11 September 2009

Key indicators: single-crystal synchrotron study; $T=298 \mathrm{~K}$; mean $\sigma(\mathrm{Fe}-\mathrm{O})=$ $0.0001 \AA ; R$ factor $=0.016 ; w R$ factor $=0.018$; data-to-parameter ratio $=50.4$.

The title compound, $\mathrm{Nd}_{3} \mathrm{Fe}_{5} \mathrm{O}_{12}$ (NdIG), has an iron garnet structure. One of the Fe atoms is coordinated by six O atoms in a slightly distorted octahedral geometry and has $\overline{3}$ site symmetry. The other Fe atom is coordinated by four O atoms in a slightly distorted tetrahedral geometry and has $\overline{4}$ site symmetry. The FeO_{6} octahedron and FeO_{4} tetrahedron are linked together by corners. The Nd atom is coordinated by eight O atoms in a distorted dodecahedral geometry and has 222 site symmetry. The O atoms occupy general positions.

Related literature

The title compound is isotypic with the $I a \overline{3} d$ form of $\mathrm{Y}_{3} \mathrm{Fe}_{5} \mathrm{O}_{12}$ (YIG), see: Bonnet et al. (1975). For crystal growth from lowtemperature liquid-phase epitaxy, see: Fratello et al. (1986). X-ray intensities were measured avoiding multiple diffraction, see: Takenaka et al. (2008). For details of the full-matrix leastsquares program $Q N T A O$, see: Tanaka et al. (2008). For the anisotropic extinction refinement, see: Becker \& Coppens (1975).

Experimental

Crystal data

$\mathrm{Nd}_{3} \mathrm{Fe}_{5} \mathrm{O}_{12}$	Synchrotron radiation
$M_{r}=903.97$	$\lambda=0.67171 \AA$
Cubic, $I a \overline{3} d$	$\mu=18.30 \mathrm{~mm}^{-1}$
$a=12.6128(2) \AA$	$T=298 \mathrm{~K}$
$V=2006.48(6) \AA^{3}$	0.025 mm (radius)
$Z=8$	

Data collection

Rigaku AFC four-circle point interpolation; Yamauchi et diffractometer
Absorption correction: spherical [transmission coefficients for spheres tabulated in International Tables C (1992), Table 6.3.3.3, were interpolated with Lagrange's method (four

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.016 \quad 23$ parameters
$w R\left(F^{2}\right)=0.018$
$S=1.42$
6653 reflections
al., 1965)]
$T_{\text {min }}=0.502, T_{\text {max }}=0.527$
6653 measured reflections
1159 independent reflections
1159 reflections with $F>3 \sigma(F)$
$R_{\text {int }}=0.017$

Table 1
Selected geometric parameters ($\left(\mathrm{A},{ }^{\circ}\right)$.

$\mathrm{Nd} 1-\mathrm{O} 1$	$2.41820(10)$	$\mathrm{Fe} 1-\mathrm{O} 1$	$2.03300(10)$
$\mathrm{Nd} 1-\mathrm{O} 1^{\mathrm{i}}$	$2.52960(10)$	$\mathrm{Fe} 2-\mathrm{O} 1^{\mathrm{ii}}$	$1.87550(10)$

$\mathrm{O} 1-\mathrm{Fe} 1-\mathrm{O} 1^{\mathrm{i}}$	$85.59(1)$	$\mathrm{O} 1^{\mathrm{ii}}-\mathrm{Fe} 2-\mathrm{O}^{\mathrm{iv}}$	$99.87(1)$
$\mathrm{O} 1^{\mathrm{ii}}-\mathrm{Fe} 2-\mathrm{O} 1^{\mathrm{iii}}$	$114.47(1)$		

$\frac{114}{\text { Symmetry codes. (i) } z, x, y \text {; (ii) } x+\frac{1}{2}, y,-z+\frac{1}{2} \text {. (iii) }-x+\frac{1}{2} z-\frac{1}{2} y+\frac{1}{2} \text {. (iv) }}$
$x+\frac{1}{2},-y, z$.

Data collection: AFC-5, specially designed for PF-BL14A (Rigaku Corporation, 1984) and IUANGLE (Tanaka et al., 1994).; cell refinement: RSLC-3 (Sakurai \& Kobayashi, 1979); data reduction: RDEDIT (Tanaka, 2008); program(s) used to solve structure: QNTAO (Tanaka et al., 2008); program(s) used to refine structure: QNTAO (Tanaka et al., 2008); molecular graphics: ATOMS for Windows (Dowty, 2000); software used to prepare material for publication: RDEDIT.

The authors thank Dr V. J. Fratello for supplying the crystals.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BR2118).

References

Becker, P. J. \& Coppens, P. (1975). Acta Cryst. A31, 417-425.
Bonnet, M., Delapalme, A., Fuess, H. \& Thomas, M. (1975). Acta Cryst. B31, 2233-2240.
Dowty, E. (2000). ATOMS for Windows. Shape Software, Kingsport, Tennessee, USA.
Fratello, V. J., Brandle, C. D., Slusky, S. E. G., Valentino, A. J., Norelli, M. P. \& Wolfe, R. (1986). Cryst. Growth, 75, 281-283.
International Tables for X-ray Crystallography, Vol. C (1992). Birmingham: Kynoch Press.
Rigaku Corporation (1984). AFC-5. Rigaku Corporation, Tokyo, Japan.
Sakurai, T. \& Kobayashi, K. (1979). Rep. Inst. Phys. Chem. Res. 55, 69-77.
Takenaka, Y., Sakakura, T., Tanaka, K. \& Kishimoto, S. (2008). Acta Cryst. A64, C566.
Tanaka, K. (2008). RDEDIT. Unpublished.
Tanaka, K., Kumazawa, S., Tsubokawa, M., Maruno, S. \& Shirotani, I. (1994). Acta Cryst. A50, 246-252.
Tanaka, K., Makita, R., Funahashi, S., Komori, T. \& Zaw Win (2008). Acta Cryst. A64, 437-449.
Yamauchi, J., Moriguchi, S. \& Ichimatsu, S. (1965). Numerical calculation methods for computers. Tokyo: Baifūkan.

supporting information

Acta Cryst. (2009). E65, i72 [doi:10.1107/S1600536809036794]

Trineodymium(III) pentairon(III) dodecaoxide, $\mathrm{Nd}_{3} \mathrm{Fe}_{5} \mathrm{O}_{12}$

Takashi Komori, Terutoshi Sakakura, Yasuyuki Takenaka, Kiyoaki Tanaka and Takashi Okuda

S1. Comment

The title compound, $\mathrm{Nd}_{3} \mathrm{Fe}_{5} \mathrm{O}_{12}$ ($\mathrm{NdIG)} \mathrm{} ,\mathrm{was} \mathrm{difficult} \mathrm{to} \mathrm{be} \mathrm{grown} .\mathrm{It} \mathrm{was} \mathrm{grown} \mathrm{by} \mathrm{the} \mathrm{low-temperature-liquid-phase}$ epitaxy for the first time by Fratello et al. (1986). Though the crystal structure was assumed as iron-garnet-type structure by lattice constant and extinction rule, the complete structure was not determined. In this paper, we determine the O atom position and the complete structure by the full matrix least-squares program QNTAO. Since the R-factor is small and the residual density has no significant peaks where no atoms exists, the structure was finally determined to be iron-garnet structure. It is isotypic with the $\mathrm{Ia} \overline{3} \mathrm{~d}$ form of $\mathrm{Y}_{3} \mathrm{Fe}_{5} \mathrm{O}_{12}$ (YIG). (Bonnet et al., 1975). The Nd atom is coordinated by eight oxygen atoms. It forms a distorted dodecahedron. There are two Fe site symmetries. One of the Fe atom is coordinated by six oxygen atoms with site symmetry $\overline{3}$. It forms a slightly distorted octahedron. The other Fe atom is coordinated by four oxygen atoms, site symmetry $\overline{4}$. It forms a slightly distorted tetrahedron. FeO_{6} octahedron and FeO_{4} tetrahedron are linked together by corners. The structure of NdIG is drawn in Fig.1. And displacement ellipsoids of NdO_{8} is drawn in Fig.2.

S2. Experimental

Single crystals of neodymium iron garnet were prepared by low temperature liquid phase epitaxy on $\mathrm{Sm}_{3}(\mathrm{ScGa})_{5} \mathrm{O}_{12}$ seeds with lattice parameters near the projected values for NdIG.

S3. Refinement

The Becker-Coppens type 1 Gaussian anisotropic extinction parameters were employed ($\times 10^{-4}$ seconds). z11 = 10.2(5), $\mathrm{z} 22=10(2), \mathrm{z} 33=12(2), \mathrm{z} 12=1(1), \mathrm{z} 13=-0.5(7), \mathrm{z} 23=-1(1)$. X-ray intensities were measured avoiding multiple diffraction. (Takenaka et al., 2008).

Figure 1
The structure of $\mathrm{Nd}_{3} \mathrm{Fe}_{5} \mathrm{O}_{12}$. Small red and large green spheres represent O and Nd atoms, respectively. Purple octahedron and blue tetrahedron represent FeO_{6} and FeO_{4} units, respectively.

Figure 2

View of NdO_{8} with displacement ellipsoids at the 90% probability level. Green and red ellipsoids represent Nd and O atoms, in Fig. 1.

Trineodymium(III) pentairon(III) dodecaoxide

Crystal data

$\mathrm{Nd}_{3} \mathrm{Fe}_{5} \mathrm{O}_{12}$
$M_{r}=903.97$
Cubic, Ia $\overline{3} d$
Hall symbol: -I 4bd 2c 3
$a=12.6128$ (2) \AA
$V=2006.48(6) \AA^{3}$
$Z=8$
$F(000)=3248$

Data collection

Rigaku AFC four-circle diffractometer
Si 111 monochromator
Detector resolution: 1.25×1.25 degrees pixels mm^{-1}
$\omega / 2 \theta$ scans
$D_{\mathrm{x}}=5.985 \mathrm{Mg} \mathrm{m}^{-3}$
Synchrotron radiation, $\lambda=0.67171 \AA$
Cell parameters from 24 reflections
$\theta=35.7-42.4^{\circ}$
$\mu=18.30 \mathrm{~mm}^{-1}$
$T=298 \mathrm{~K}$
Sphere, black
0.03 mm (radius)

Absorption correction: for a sphere
Transmission coefficients for spheres tabulated in International Tables C (1992 \bbr00), Table
6.3.3.3, were interpolated with Lagrange's
method (four point interpolation; Yamauchi et al., 1965).
$T_{\text {min }}=0.502, T_{\text {max }}=0.527$
6653 measured reflections
1159 independent reflections
1159 reflections with $F>3 \sigma(F)$
$R_{\text {int }}=0.017$
$\theta_{\text {max }}=53.9^{\circ}, \theta_{\text {min }}=3.7^{\circ}$
$h=-8 \rightarrow 30$
$k=-8 \rightarrow 30$

Refinement
Refinement on F
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.016$
$w R\left(F^{2}\right)=0.018$
$S=1.42$
6653 reflections
23 parameters
$l=-8 \rightarrow 30$

Primary atom site location: isomorphous structure methods
Weighting scheme based on measured s.u.'s
$(\Delta / \sigma)_{\text {max }}=0.003$
$\Delta \rho_{\text {max }}=1.61 \mathrm{e}_{\AA^{-3}}$
$\Delta \rho_{\text {min }}=-1.75$ e \AA^{-3}
Extinction correction: (B-C type 1 Gaussian anisotropic; Becker \& Coppens (1975)
Extinction coefficient: 0.308 (5)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^{2})

	x	y	z	$U_{\text {iso }} * / U_{\text {eq }}$
Nd1	0.125000	0.000000	0.250000	$0.00557(1)$
Fe1	0.000000	0.000000	0.000000	$0.00501(1)$
Fe2	0.375000	0.000000	0.250000	$0.00564(1)$
O1	$-0.029295(2)$	$0.053092(2)$	$0.149342(2)$	$0.00762(5)$

Atomic displacement parameters $\left(\hat{A}^{2}\right)$

	U^{11}	U^{22}	$U^{\beta 3}$	U^{12}	U^{13}	U^{23}
Nd1	$0.00421(1)$	$0.00525(1)$	$0.00525(1)$	0	0	$0.00121(1)$
Fe 1	$0.00501(2)$	$0.00501(2)$	$0.00501(2)$	$-0.00024(2)$	$-0.00024(2)$	$-0.00024(2)$
Fe 2	$0.00442(3)$	$0.00625(2)$	$0.00625(2)$	0	0	0
O 1	$0.00791(8)$	$0.00880(9)$	$0.00614(7)$	$-0.00027(7)$	$0.00102(6)$	$0.00041(7)$

Geometric parameters (\AA, ${ }^{\circ}$)

Nd1-O1	2.4182 (1)	Fel-O1 ${ }^{\text {i }}$	2.0330 (1)
$\mathrm{Nd} 1-\mathrm{Ol}^{1}$	2.5296 (1)	Fel-O1 ${ }^{\text {viii }}$	2.0330 (1)
$\mathrm{Nd} 1-\mathrm{Ol}^{\text {ii }}$	2.4182 (1)	Fel-O1 ${ }^{\text {ix }}$	2.0330 (1)
$\mathrm{Nd} 1-\mathrm{O} 1^{\text {iii }}$	2.5296 (1)	Fel-O1 ${ }^{\text {x }}$	2.0330 (1)
$\mathrm{Nd} 1-\mathrm{O} 1^{\text {iv }}$	2.4182 (1)	$\mathrm{Fe} 1-\mathrm{O} 1^{\text {xi }}$	2.0330 (1)
$\mathrm{Nd} 1-\mathrm{Ol}^{\text {v }}$	2.5296 (1)	$\mathrm{Fe} 2-\mathrm{O} 1^{\text {xii }}$	1.8755 (1)
$\mathrm{Nd} 1-\mathrm{Ol}^{\text {vi }}$	2.4182 (1)	$\mathrm{Fe} 2-\mathrm{O} 1^{\text {iv }}$	1.8755 (1)
Nd1-O1 ${ }^{\text {vii }}$	2.5296 (1)	$\mathrm{Fe} 2-\mathrm{O} 1^{\text {xiii }}$	1.8755 (1)
Fel-O1	2.0330 (1)	$\mathrm{Fe} 2-\mathrm{O} 1^{\text {vi }}$	1.8755 (1)
$\mathrm{O} 1-\mathrm{Nd} 1-\mathrm{O} 1^{\text {i }}$	67.83 (1)	$\mathrm{O} 1-\mathrm{Fe} 1-\mathrm{O} 1^{\text {viii }}$	85.59 (1)
$\mathrm{O} 1-\mathrm{Nd} 1-\mathrm{Ol}^{\text {ii }}$	72.82 (1)	$\mathrm{O} 1-\mathrm{Fe} 1-\mathrm{Ol}^{\text {ix }}$	180.00
$\mathrm{O} 1-\mathrm{Nd} 1-\mathrm{Ol}^{\text {iii }}$	124.94 (1)	$\mathrm{O} 1-\mathrm{Fe} 1-\mathrm{O}^{\text {x }}$	94.41 (1)
$\mathrm{O} 1-\mathrm{Nd} 1-\mathrm{Ol}^{\text {iv }}$	110.91 (1)	$\mathrm{O} 1-\mathrm{Fe} 1-\mathrm{Ol}^{\text {xi }}$	94.41 (1)
$\mathrm{O} 1-\mathrm{Nd} 1-\mathrm{Ol}^{\text {v }}$	72.97 (1)	$\mathrm{O} 1^{\text {xii }}-\mathrm{Fe} 2-\mathrm{O} 1^{\text {vi }}$	114.47 (1)
$\mathrm{O} 1-\mathrm{Nd} 1-\mathrm{Ol}^{\text {vi }}$	159.79 (1)	$\mathrm{O} 1^{\text {xii }}-\mathrm{Fe} 2-\mathrm{O} 1^{\text {iv }}$	114.47 (1)

supporting information

$\mathrm{O} 1 — \mathrm{Nd} 1-\mathrm{O} 1^{\text {vii }}$	$95.60(1)$	$\mathrm{O1}^{\mathrm{xii}}-\mathrm{Fe} 2 — \mathrm{O} 1^{\text {xiii }}$	$99.87(1)$
$\mathrm{O} 1 — \mathrm{Fe} 1-\mathrm{O} 1^{\mathrm{i}}$	$85.59(1)$		

Symmetry codes: (i) z, x, y; (ii) $x,-y,-z+1 / 2$; (iii) $z,-x,-y+1 / 2$; (iv) $-x+1 / 4,-z+1 / 4,-y+1 / 4$; (v) $-z+1 / 4,-y+1 / 4,-x+1 / 4$; (vi) $-x+1 / 4, z-1 / 4, y+1 / 4$; (vii) $-z+1 / 4, y-1 / 4, x+1 / 4$; (viii) y, z, x; (ix) $-x,-y,-z$; (x) $-z,-x,-y$; (xi) $-y,-z,-x$; (xii) $x+1 / 2, y,-z+1 / 2$; (xiii) $x+1 / 2,-y, z$.

