

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

3-[(3-Oxo-1,3-dihydroisobenzofuran-1yl)amino]benzoic acid

Wenkuan Li, Handong Yin,* Liyuan Wen, Kang Li and Weidong Fan

College of Chemistry and Chemical Engineering, Liaocheng University, Shandong 252059, People's Republic of China Correspondence e-mail: handongyin@163.com

Received 18 September 2009; accepted 25 September 2009

Key indicators: single-crystal X-ray study; T = 298 K; mean σ (C–C) = 0.003 Å; R factor = 0.041; wR factor = 0.107; data-to-parameter ratio = 12.0.

In the title compound, $C_{15}H_{11}NO_4$, the dihedral angle formed by the benzene ring and isobenzofuran ring system is 67.82 (5) Å. The crystal structure is stabilized by intermolecular $O-H\cdots O$ and $N-H\cdots O$ hydrogen-bonding interactions.

Related literature

For general background to isobenzofuran derivatives, see: Landge *et al.* (2008); Paradkar *et al.* (1998); Joseph (1998). Odabaşoğlu & Büyükgüngör (2008).

Experimental

Crystal data $C_{15}H_{11}NO_4$ $M_r = 269.25$

Monoclinic, $P2_1/n$ *a* = 10.9025 (15) Å b = 8.1595 (12) Å c = 14.2654 (18) Å $\beta = 103.463 (1)^{\circ}$ $V = 1234.2 (3) \text{ Å}^{3}$ Z = 4

Data collection

Siemens SMART CCD area-	6011 measured reflections
detector diffractometer	2171 independent reflections
Absorption correction: multi-scan	1206 reflections with $I > 2\sigma(I)$
(SADABS; Sheldrick, 1996)	$R_{\rm int} = 0.038$
$T_{\min} = 0.972, T_{\max} = 0.982$	

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.041$ 181 parameters $wR(F^2) = 0.107$ H-atom parameters constrainedS = 0.90 $\Delta \rho_{max} = 0.23 \text{ e } \text{\AA}^{-3}$ 2171 reflections $\Delta \rho_{min} = -0.13 \text{ e } \text{\AA}^{-3}$

Table 1 Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdots A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$O1-H1A\cdots O4^{i}$ $N1-H1\cdots O2^{ii}$	0.82 0.86	1.91 2.16	2.712 (2) 2.956 (2)	166 154
Symmetry codes: (i) -	$-x + \frac{3}{2}, y + \frac{1}{2}, -z$	$x + \frac{5}{2}$; (ii) $x - \frac{1}{2}$,	$-y + \frac{1}{2}, z - \frac{1}{2}$	

Data collection: *SMART* (Siemens, 1996); cell refinement: *SAINT* (Siemens, 1996); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXTL*.

We acknowledge the financial support of the Natural Science Foundation of China (No. 20771053) and the Natural Science Foundation of Shandong Province (Y2008B48). This work was also supported by the 'Students Technology Cultural Innovation Fund' of Liaocheng University.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BQ2162).

References

- Joseph, A. R. (1998). J. Chem. Res. (S), pp. 332-333.
- Landge, S. M., Berryman, M. & Törk, B. (2008). Tetrahedron Lett. 49, 4505–4508.
- Odabaşoğlu, M. & Büyükgüngör, O. (2008). Acta Cryst. E64, 0752–0753.
- Paradkar, M. V., Ranade, A. A., Kulkarni, M. S., Godbole, H. M. & Joseph, A. R. (1998). J. Chem. Res. (S), pp. 332–333.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Siemens (1996). *SMART* and *SAINT*. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.

Mo $K\alpha$ radiation

 $0.27 \times 0.19 \times 0.17 \text{ mm}$

 $\mu = 0.11 \text{ mm}^{-1}$

T = 298 K

supporting information

Acta Cryst. (2009). E65, o2579 [doi:10.1107/S1600536809038926]

3-[(3-Oxo-1,3-dihydroisobenzofuran-1-yl)amino]benzoic acid

Wenkuan Li, Handong Yin, Liyuan Wen, Kang Li and Weidong Fan

S1. Comment

Phthalides (isobenzofuran-1(3*H*)-ones) are well known for their interesting biological properties (Paradkar *et al.*, 1998; Joseph, 1998). In addition, 3-substituted phthalides are vital heterocyclic motifs in many bioactive compounds such as isocoumarins, anthraquinones, anthracyclines, and several alkaloids (Landge *et al.*, 2008). In view of this, various methods have been reported for their synthesis. Herein, the crystal structure of the title compound is presented.

The title compound, (I), (Fig. 1) is a chirality compound with a chiral center at C_9 . The dihedral angle between the benzene ring and isobenzofuran ring system is 67.82 (5) Å indicating that the two ring systems are not coplanar. The crystal structure is stabilized by intermolecular O—H···O and N—H···O hydrogen-bonding interactions (Fig. 2, Table. 1).

S2. Experimental

To a ethanol solution (30 ml) of 3-aminobenzoic acid (3.00 mmol) added 3.00 mmol 2-formylbenzoic acid. The mixture solution was stirred at 343 K for 2.5 h. Then, sodium ethoxide (6.6 mmol) was added to the reactor and stirring for 0.5 h. Bis(tributyltin)oxide (0.3 mmol) was then added to the reactor and the reaction mixture was stirred for 6 h. The resulting clear solution was evaporated under vacuum. The product was crystallized from a solution of dichloromethane/methanol (1:1) yielding the title compound unexpectedly. Anal. Calcd (%) for $C_{15}H_{11}N_1O_4$ (Mr = 269.25): C, 66.91; H, 4.12; N, 5.20; O, 23.77. Found (%): C, 66.87; H, 4.13; N, 5.21; O, 23.79.

S3. Refinement

All the H atoms were positioned geometrically and constrained to ride on their parent atoms, with C—H = 0.93 (Ar—H), 0.86 (N—H) and 0.82 (O—H) Å.

Figure 1

The asymmetric unit of (I), showing 50% probability displacement ellipsoids.

Figure 2

Crystal packing of (I) with hydrogen bonding as dashed lines.

3-[(3-Oxo-1,3-dihydroisobenzofuran-1-yl)amino]benzoic acid

Crystal data	
$C_{15}H_{11}NO_4$	F(000) = 560
$M_r = 269.25$	$D_{\rm x} = 1.449 { m Mg m^{-3}}$
Monoclinic, $P2_1/n$	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
Hall symbol: -P 2yn	Cell parameters from 1143 reflections
a = 10.9025 (15) Å	$\theta = 2.7 - 21.4^{\circ}$
b = 8.1595 (12) Å	$\mu = 0.11 \mathrm{~mm^{-1}}$
c = 14.2654 (18) Å	T = 298 K
$\beta = 103.463 (1)^{\circ}$	Block, colorless
V = 1234.2 (3) Å ³	$0.27 \times 0.19 \times 0.17 \text{ mm}$
Z = 4	

Data collection

Siemens SMART CCD area-detector diffractometer	6011 measured reflections 2171 independent reflections
Radiation source: fine-focus sealed tube	1206 reflections with $I > 2\sigma(I)$
Graphite monochromator	$R_{\rm int} = 0.038$
φ and ω scans	$\theta_{\text{max}} = 25.0^{\circ}, \ \theta_{\text{min}} = 2.1^{\circ}$
Absorption correction: multi-scan	$h = -9 \rightarrow 12$
(SADABS; Sheldrick, 1996)	$k = -9 \rightarrow 9$
$T_{\min} = 0.972, \ T_{\max} = 0.982$	$l = -16 \rightarrow 14$
Refinement	
Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.041$	Hydrogen site location: inferred from
$wR(F^2) = 0.107$	neighbouring sites
S = 0.90	H-atom parameters constrained
2171 reflections	$w = 1/[\sigma^2(F_o^2) + (0.0513P)^2]$
181 parameters	where $P = (F_o^2 + 2F_c^2)/3$
0 restraints	$(\Delta/\sigma)_{\rm max} < 0.001$
Primary atom site location: structure-invariant	$\Delta \rho_{\rm max} = 0.23 \text{ e } \text{\AA}^{-3}$
direct methods	$\Delta \rho_{\min} = -0.13 \text{ e} \text{ Å}^{-3}$

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	У	Z	$U_{ m iso}$ */ $U_{ m eq}$
N1	0.77236 (15)	0.2945 (2)	0.94157 (13)	0.0511 (5)
H1	0.7596	0.2454	0.8868	0.061*
01	0.99795 (14)	0.5570 (2)	1.25378 (11)	0.0745 (6)
H1A	1.0238	0.6014	1.3062	0.112*
O2	1.19133 (13)	0.45300 (19)	1.28827 (10)	0.0592 (5)
O3	0.62455 (14)	0.2734 (2)	1.04292 (10)	0.0614 (5)
O4	0.44272 (16)	0.1671 (2)	1.06184 (12)	0.0788 (6)
C1	1.0886 (2)	0.4649 (3)	1.23355 (15)	0.0469 (6)
C2	1.05166 (19)	0.3785 (3)	1.14008 (14)	0.0407 (5)
C3	0.92786 (18)	0.3817 (3)	1.08532 (15)	0.0425 (5)
Н3	0.8673	0.4427	1.1063	0.051*
C4	0.89469 (18)	0.2949 (3)	1.00014 (15)	0.0402 (6)
C5	0.9866 (2)	0.2051 (3)	0.96999 (16)	0.0494 (6)
Н5	0.9656	0.1478	0.9121	0.059*
C6	1.1080 (2)	0.2000 (3)	1.02457 (17)	0.0522 (6)
H6	1.1682	0.1378	1.0039	0.063*
C7	1.1418 (2)	0.2860 (3)	1.10972 (17)	0.0491 (6)
H7	1.2243	0.2821	1.1465	0.059*
C8	0.5015 (2)	0.2389 (3)	1.01183 (17)	0.0555 (7)
С9	0.67070 (19)	0.3691 (3)	0.96714 (15)	0.0478 (6)
Н9	0.6952	0.4794	0.9916	0.057*
C10	0.55418 (18)	0.3801 (3)	0.88699 (15)	0.0422 (6)
C11	0.45572 (18)	0.3033 (3)	0.91465 (15)	0.0436 (6)
C12	0.3365 (2)	0.2979 (3)	0.85393 (16)	0.0558 (7)
H12	0.2700	0.2468	0.8729	0.067*

C13	0.3193 (2)	0.3700 (3)	0.76518 (16)	0.0592 (7)
H13	0.2400	0.3681	0.7232	0.071*
C14	0.4181 (2)	0.4451 (3)	0.73746 (16)	0.0590 (7)
H14	0.4042	0.4926	0.6766	0.071*
C15	0.53674 (19)	0.4520 (3)	0.79711 (16)	0.0514 (6)
H15	0.6029	0.5032	0.7777	0.062*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
N1	0.0355 (11)	0.0706 (14)	0.0439 (11)	0.0046 (9)	0.0027 (8)	-0.0129 (10)
01	0.0506 (10)	0.1082 (15)	0.0594 (11)	0.0126 (10)	0.0017 (8)	-0.0300 (10)
O2	0.0406 (9)	0.0749 (12)	0.0529 (10)	-0.0040 (8)	-0.0077 (7)	0.0057 (9)
03	0.0450 (10)	0.0930 (13)	0.0429 (10)	0.0050 (9)	0.0033 (7)	0.0062 (9)
O4	0.0656 (12)	0.1171 (17)	0.0559 (11)	-0.0037 (10)	0.0183 (9)	0.0242 (11)
C1	0.0398 (13)	0.0544 (15)	0.0446 (14)	-0.0052 (12)	0.0062 (11)	0.0065 (12)
C2	0.0365 (12)	0.0426 (13)	0.0410 (13)	-0.0027 (10)	0.0050 (10)	0.0029 (11)
C3	0.0359 (12)	0.0450 (14)	0.0450 (13)	0.0024 (10)	0.0065 (10)	-0.0004 (11)
C4	0.0333 (12)	0.0438 (14)	0.0412 (13)	-0.0018 (10)	0.0043 (10)	0.0009 (11)
C5	0.0443 (14)	0.0548 (15)	0.0499 (15)	-0.0004 (12)	0.0125 (11)	-0.0056 (12)
C6	0.0403 (14)	0.0549 (16)	0.0630 (16)	0.0059 (11)	0.0155 (12)	-0.0003 (13)
C7	0.0329 (13)	0.0529 (15)	0.0589 (16)	0.0003 (11)	0.0057 (10)	0.0071 (13)
C8	0.0464 (15)	0.0747 (19)	0.0448 (15)	0.0040 (13)	0.0091 (12)	0.0034 (13)
C9	0.0400 (13)	0.0575 (15)	0.0439 (14)	0.0017 (11)	0.0058 (10)	-0.0028 (12)
C10	0.0331 (12)	0.0499 (14)	0.0421 (13)	0.0039 (10)	0.0054 (10)	-0.0064 (11)
C11	0.0365 (13)	0.0559 (15)	0.0378 (13)	0.0021 (11)	0.0075 (10)	-0.0010 (11)
C12	0.0373 (13)	0.0786 (19)	0.0522 (15)	-0.0055 (12)	0.0120 (11)	-0.0035 (13)
C13	0.0375 (14)	0.0906 (19)	0.0448 (15)	0.0049 (13)	0.0002 (11)	-0.0022 (14)
C14	0.0477 (15)	0.0826 (19)	0.0454 (14)	0.0101 (13)	0.0082 (12)	0.0117 (14)
C15	0.0402 (13)	0.0630 (16)	0.0509 (15)	0.0002 (11)	0.0108 (11)	0.0046 (13)

Geometric parameters (Å, °)

N1—C9	1.386 (3)	C6—C7	1.377 (3)	
N1C4	1.399 (2)	C6—H6	0.9300	
N1—H1	0.8600	C7—H7	0.9300	
01—C1	1.326 (2)	C8—C11	1.458 (3)	
O1—H1A	0.8200	C9—C10	1.501 (3)	
O2—C1	1.211 (2)	С9—Н9	0.9800	
O3—C8	1.341 (3)	C10—C11	1.378 (3)	
О3—С9	1.512 (3)	C10—C15	1.382 (3)	
O4—C8	1.215 (3)	C11—C12	1.384 (3)	
C1—C2	1.479 (3)	C12—C13	1.369 (3)	
C2—C7	1.386 (3)	C12—H12	0.9300	
C2—C3	1.394 (3)	C13—C14	1.375 (3)	
C3—C4	1.380 (3)	C13—H13	0.9300	
С3—Н3	0.9300	C14—C15	1.374 (3)	
C4—C5	1.388 (3)	C14—H14	0.9300	

supporting information

C5—C6 C5—H5	1.371 (3) 0.9300	С15—Н15	0.9300
$\begin{array}{c} C5-C6\\ C5-H5\\ \hline \\ C9-N1-C4\\ C9-N1-H1\\ C4-N1-H1\\ C1-O1-H1A\\ C8-O3-C9\\ O2-C1-O1\\ O2-C1-C2\\ O1-C1-C2\\ C7-C2-C3\\ C7-C2-C3\\ C7-C2-C1\\ C3-C2-C1\\ C4-C3-C2\\ C4-C3-H3\\ C2-C3-H3\\ C3-C4-C5\\ C3-C4-N1\\ C5-C4-N1\\ C6-C5-C4\\ C6-C5-H5\\ C4-C5-H5\\ C4-C5-H5\\ C4-C5-H5\\ \end{array}$	$\begin{array}{c} 1.371 \ (3) \\ 0.9300 \\ \hline \\ 123.46 \ (18) \\ 118.3 \\ 118.3 \\ 109.5 \\ 110.22 \ (17) \\ 122.0 \ (2) \\ 124.1 \ (2) \\ 113.96 \ (17) \\ 120.0 \ (2) \\ 118.49 \ (19) \\ 121.4 \ (2) \\ 120.3 \ (2) \\ 119.8 \\ 119.8 \\ 119.8 \\ 118.93 \ (18) \\ 123.01 \ (19) \\ 118.05 \ (19) \\ 120.8 \ (2) \\ 119.6 \\ 119.6 \\ 119.6 \end{array}$	C15—H15 O4-C8-C11 O3-C8-C11 N1-C9-C10 N1-C9-O3 C10-C9-O3 N1-C9-H9 C10-C9-H9 O3-C9-H9 C11-C10-C15 C11-C10-C9 C15-C10-C9 C15-C10-C9 C15-C10-C9 C10-C11-C12 C10-C11-C12 C10-C11-C8 C12-C11-C8 C12-C11-C8 C13-C12-H12 C11-C12-H12 C12-C13-C14 C12-C13-H13 C14-C13-H13	0.9300 128.4 (2) 109.5 (2) 114.38 (18) 112.41 (18) 102.25 (17) 109.2 109.2 109.2 120.71 (18) 109.41 (19) 129.9 (2) 121.0 (2) 108.61 (18) 130.3 (2) 118.2 (2) 120.9 120.6 (2) 119.7 119.7
C5—C6—C7 C5—C6—H6 C7—C6—H6 C6—C7—C2 C6—C7—H7 C2—C7—H7 O4—C8—O3	120.7 (2) 119.7 119.7 119.3 (2) 120.3 120.3 122.1 (2)	C15—C14—C13 C15—C14—H14 C13—C14—H14 C14—C15—C10 C14—C15—H15 C10—C15—H15	121.9 (2) 119.1 119.1 117.6 (2) 121.2 121.2

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D····A	<i>D</i> —H··· <i>A</i>
O1—H1A···O4 ⁱ	0.82	1.91	2.712 (2)	166
N1—H1···O2 ⁱⁱ	0.86	2.16	2.956 (2)	154

Symmetry codes: (i) -x+3/2, y+1/2, -z+5/2; (ii) x-1/2, -y+1/2, z-1/2.