organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

(E)-2-(Isonicotinoylhydrazonomethyl)benzoic acid methanol monosolvate

Wenkuan Li, Handong Yin,* Liyuan Wen, Jichun Cui and Daqi Wang

College of Chemistry and Chemical Engineering, Liaocheng University, Shandong 252059, People's Republic of China Correspondence e-mail: handongyin@163.com

Received 14 September 2009; accepted 25 September 2009

Key indicators: single-crystal X-ray study; T = 298 K; mean σ (C–C) = 0.004 Å; R factor = 0.050; wR factor = 0.141; data-to-parameter ratio = 12.6.

The title compound, $C_{14}H_{11}N_3O_3 \cdot CH_4O$, was synthesized by the condensation reaction of isonicotinohydrazide with an equimolar quantity of 2-formylbenzoic acid in methanol. The hydrazone molecule displays an *E* configuration about the *C*==N bond. The dihedral angel between the pyridine and the benzene rings is 12.04 (5)°. In the crystal structure, molecules are linked by $O-H\cdots N$, $O-H\cdots O$ and $N-H\cdots O$ hydrogenbonding interactions.

Related literature

For general background to hydrazones, see: Dhande *et al.* (2007). For a related structure, see: Zhang *et al.* (2009).

Experimental

Crystal data $C_{14}H_{11}N_3O_3 \cdot CH_4O$ $M_r = 301.30$

Monoclinic, $P2_1/n$ a = 6.9768 (11) Å

b = 12.2103 (13) Å	
c = 17.2650 (19) Å	
$\beta = 95.497 (1)^{\circ}$	
V = 1464.0 (3) Å ³	
Z = 4	

Data collection

Siemens SMART CCD area-	7290 measured reflections
detector diffractometer	2508 independent reflections
Absorption correction: multi-scan	1233 reflections with $I > 2\sigma(I)$
(SADABS; Sheldrick, 1996)	$R_{\rm int} = 0.076$
$T_{\min} = 0.958, \ T_{\max} = 0.985$	

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.050$ 199 parameters $wR(F^2) = 0.141$ H-atom parameters constrainedS = 0.99 $\Delta \rho_{max} = 0.34$ e Å⁻³2508 reflections $\Delta \rho_{min} = -0.19$ e Å⁻³

Mo $K\alpha$ radiation $\mu = 0.10 \text{ mm}^{-1}$

 $0.43 \times 0.19 \times 0.15$ mm

T = 298 K

Table 1 Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$N1-H1\cdots O4^{i}$	0.86	2.13	2.891 (3)	148
O4−H4···O1	0.82	2.14	2.864 (4)	148
$O2-H2\cdots N3^{ii}$	0.82	1.76	2.565 (3)	165

Symmetry codes: (i) -x + 1, -y + 1, -z + 1; (ii) $x + \frac{1}{2}$, $-y + \frac{3}{2}$, $z + \frac{1}{2}$.

Data collection: *SMART* (Siemens, 1996); cell refinement: *SAINT* (Siemens, 1996); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXTL*.

We acknowledge the financial support of the Natural Science Foundation of China (No. 20771053) and the Natural Science Foundation of Shandong Province (Y2008B48). This work was also supported by the 'Shangdong Tai-Shan Scholar Research Fund'.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BQ2160).

References

- Dhande, V. V., Badwaik, V. B. & Aswar, A. S. (2007). Russ. J. Inorg. Chem. 52, 1206–1210.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
- Zhang, Q.-L., Yin, L.-Z., Deng, X.-M., Liu, S.-C. & Song, D.-G. (2009). Acta Cryst. E65, 02392–02393.

supporting information

Acta Cryst. (2009). E65, o2578 [doi:10.1107/S1600536809038902]

(E)-2-(Isonicotinoylhydrazonomethyl)benzoic acid methanol monosolvate

Wenkuan Li, Handong Yin, Liyuan Wen, Jichun Cui and Daqi Wang

S1. Comment

Hydrazones have been attracted significant attention because of their physiological activity, coordinative capability, and applications in analytical chemistry (Dhande *et al.* 2007). Recently, a large number of hydrazone compounds have been reported (Zhang *et al.* 2009). As a contribution to the chemistry of hydrazone, we report here the synthesis and crystal structure of the title compound (I).

The crystal structure of (I) is built up of hydrazone and methanol molecules (Fig.1). The dihedral angel between the pyridine and the benzene rings is 12.04 (5) °. The hydrazone molecule crystallizes in E conformation. In the crystal structure, three kinds of intermolecular O—H···N, O—H···O and N—H···O hydrogen bonding interactions are observed and the crystal packing is stabilized by these intermolecular interactions. (Table 1. and Fig. 2).

S2. Experimental

Isonicotinohydrazide (10 mmol) was dissolved in ethanol (40 ml), then 2-formylbenzoic acid (10 mmol) was added into the solution. The reaction mixture was heated under reflux for 2 h. After the solution had cooled to room white sediment appeared. The product was crystallized from methanol. Anal. Calcd (%) for $[(C_{14}H_{11}N_3O_3).(C_1H_4O_1)]$ (Mr = 301.30): C, 59.79; H, 5.02; N, 13.95; O, 21.24 Found (%): C, 59.83; H, 5.00; N, 13.92; O, 21.25

S3. Refinement

The imino H atom was located in a difference Fourier map and refined isotropically, with the N—H distance restrained to 0.86 Å. Other H atoms were positioned geometrically and constrained to ride on their parent atoms, with C—H = 0.93 (aromatic and methylene) and 0.96(methyl), O—H = 0.82, and with $U_{iso}(H) = 1.2U_{eq}(C)$ and $1.5U_{eq}(C15 \text{ and } O)$.

Figure 1

The molecular structure (I) with 50% probability displacement ellipsoids. O—H…O hydrogen bond is shown in dashed line.

Figure 2

The molecular packing of the title compound. Hydrogen bonding is shown in dashed lines.

(E)-2-(Isonicotinoylhydrazonomethyl)benzoic acid methanol monosolvate

F(000) = 632
$D_{\rm x} = 1.367 {\rm ~Mg} {\rm ~m}^{-3}$
Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
Cell parameters from 1170 reflections
$\theta = 2.4 - 21.5^{\circ}$
$\mu=0.10~\mathrm{mm^{-1}}$
T = 298 K
Block, yellow
$0.43 \times 0.19 \times 0.15 \text{ mm}$

Data collection

Siemens SMART CCD area-detector diffractometer	7290 measured reflections 2508 independent reflections
Radiation source: fine-focus sealed tube	1233 reflections with $I > 2\sigma(I)$
Graphite monochromator	$R_{\rm int} = 0.076$
φ and ω scans	$\theta_{\text{max}} = 25.0^{\circ}, \ \theta_{\text{min}} = 2.1^{\circ}$
Absorption correction: multi-scan	$h = -8 \rightarrow 8$
(SADABS; Sheldrick, 1996)	$k = -12 \rightarrow 14$
$T_{\min} = 0.958, \ T_{\max} = 0.985$	$l = -19 \rightarrow 20$
Refinement	
Refinement on F^2 Least-squares matrix: full	Secondary atom site location: difference Fourier map
$R[F^2 > 2\sigma(F^2)] = 0.050$ wR(F^2) = 0.141	Hydrogen site location: inferred from neighbouring sites
S = 0.99	H-atom parameters constrained
2508 reflections	$w = 1/[\sigma^2(F_o^2) + (0.0559P)^2]$
199 parameters	where $P = (F_o^2 + 2F_c^2)/3$
0 restraints	$(\Delta/\sigma)_{\rm max} < 0.001$
Primary atom site location: structure-invariant	$\Delta ho_{ m max} = 0.34 \ { m e} \ { m \AA}^{-3}$
direct methods	$\Delta \rho_{\rm min} = -0.19 \text{ e} \text{ Å}^{-3}$

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	У	Ζ	$U_{ m iso}*/U_{ m eq}$
N1	0.2762 (4)	0.52906 (18)	0.52873 (12)	0.0371 (7)
H1	0.3076	0.5854	0.5570	0.045*
N2	0.2993 (4)	0.42528 (18)	0.55868 (14)	0.0390 (7)
N3	0.1111 (4)	0.8638 (2)	0.36585 (14)	0.0438 (7)
01	0.1643 (3)	0.46359 (16)	0.41058 (12)	0.0537 (7)
O2	0.5588 (3)	0.46550 (16)	0.77984 (11)	0.0523 (7)
H2	0.5752	0.5125	0.8137	0.078*
03	0.4040 (4)	0.38081 (18)	0.86917 (13)	0.0654 (8)
O4	0.4701 (4)	0.3132 (2)	0.38940 (15)	0.0876 (10)
H4	0.3697	0.3467	0.3775	0.131*
C1	0.2034 (5)	0.5407 (2)	0.45415 (17)	0.0361 (8)
C2	0.1221 (5)	0.8462 (3)	0.44169 (18)	0.0474 (9)
H2A	0.1103	0.9057	0.4745	0.057*
C3	0.1501 (5)	0.7440 (2)	0.47459 (17)	0.0406 (9)
Н3	0.1551	0.7347	0.5282	0.049*
C4	0.1704 (4)	0.6558 (2)	0.42630 (15)	0.0312 (7)
C5	0.1561 (5)	0.6736 (2)	0.34726 (16)	0.0380 (8)
Н5	0.1660	0.6155	0.3131	0.046*
C6	0.1271 (5)	0.7785 (3)	0.31942 (18)	0.0429 (9)
H6	0.1183	0.7900	0.2659	0.052*
C7	0.3532 (4)	0.4180 (2)	0.63048 (16)	0.0347 (8)
H7	0.3768	0.4809	0.6602	0.042*
C8	0.3783 (4)	0.3093 (2)	0.66650 (17)	0.0322 (8)
C9	0.4202 (5)	0.2943 (2)	0.74724 (17)	0.0353 (8)
C10	0.4338 (5)	0.1888 (2)	0.77718 (19)	0.0456 (9)

H10	0.4572	0.1786	0.8306	0.055*	
C11	0.4133 (5)	0.0993 (3)	0.7289 (2)	0.0548 (10)	
H11	0.4255	0.0290	0.7496	0.066*	
C12	0.3750 (5)	0.1135 (3)	0.6503 (2)	0.0551 (10)	
H12	0.3624	0.0530	0.6175	0.066*	
C13	0.3551 (5)	0.2177 (2)	0.61980 (18)	0.0434 (9)	
H13	0.3254	0.2264	0.5665	0.052*	
C14	0.4585 (5)	0.3846 (3)	0.80510 (18)	0.0416 (9)	
C15	0.4316 (6)	0.2034 (3)	0.3937 (2)	0.0742 (13)	
H15A	0.4264	0.1828	0.4471	0.111*	
H15B	0.5314	0.1626	0.3720	0.111*	
H15C	0.3101	0.1879	0.3648	0.111*	

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
N1	0.0488 (19)	0.0284 (14)	0.0325 (15)	0.0004 (13)	-0.0045 (13)	0.0009 (11)
N2	0.0479 (19)	0.0308 (14)	0.0365 (15)	-0.0022 (13)	-0.0049 (13)	0.0049 (12)
N3	0.046 (2)	0.0452 (16)	0.0389 (16)	0.0059 (14)	-0.0003 (13)	0.0045 (13)
01	0.076 (2)	0.0369 (12)	0.0436 (13)	0.0013 (12)	-0.0172 (12)	-0.0072 (11)
O2	0.078 (2)	0.0419 (13)	0.0375 (13)	-0.0119 (13)	0.0066 (12)	-0.0091 (10)
O3	0.099 (2)	0.0622 (16)	0.0371 (14)	0.0029 (15)	0.0188 (14)	0.0043 (12)
O4	0.091 (3)	0.0691 (19)	0.096 (2)	-0.0088 (17)	-0.0259 (17)	-0.0136 (15)
C1	0.041 (2)	0.0362 (18)	0.0302 (17)	0.0006 (16)	-0.0025 (15)	-0.0011 (14)
C2	0.063 (3)	0.045 (2)	0.0339 (19)	0.0114 (18)	0.0027 (16)	-0.0026 (15)
C3	0.055 (3)	0.0425 (19)	0.0232 (17)	0.0076 (17)	0.0002 (16)	0.0029 (14)
C4	0.030 (2)	0.0366 (17)	0.0266 (16)	0.0033 (14)	0.0013 (13)	-0.0005 (13)
C5	0.041 (2)	0.0438 (19)	0.0284 (17)	0.0048 (16)	0.0018 (15)	-0.0019 (14)
C6	0.046 (2)	0.054 (2)	0.0286 (18)	0.0026 (18)	-0.0005 (16)	0.0094 (16)
C7	0.041 (2)	0.0315 (17)	0.0309 (17)	-0.0005 (15)	-0.0007 (14)	0.0031 (13)
C8	0.028 (2)	0.0290 (17)	0.0388 (18)	-0.0009 (14)	0.0007 (14)	0.0024 (14)
C9	0.034 (2)	0.0332 (17)	0.0374 (18)	0.0021 (15)	-0.0006 (15)	0.0079 (14)
C10	0.051 (2)	0.041 (2)	0.044 (2)	0.0005 (17)	0.0033 (17)	0.0115 (16)
C11	0.061 (3)	0.0333 (19)	0.069 (3)	-0.0039 (18)	0.001 (2)	0.0131 (18)
C12	0.067 (3)	0.032 (2)	0.066 (2)	-0.0038 (18)	0.001 (2)	-0.0039 (18)
C13	0.048 (3)	0.0372 (19)	0.0430 (19)	-0.0029 (17)	-0.0059 (17)	-0.0002 (15)
C14	0.050 (2)	0.0410 (19)	0.0329 (18)	0.0089 (18)	0.0001 (16)	0.0054 (15)
C15	0.085 (4)	0.058 (3)	0.077 (3)	-0.005(2)	-0.004(2)	-0.007(2)

Geometric parameters (Å, °)

N1-C1	1.346 (3)	C5—C6	1.376 (4)	-
N1—N2	1.372 (3)	С5—Н5	0.9300	
N1—H1	0.8600	С6—Н6	0.9300	
N2C7	1.264 (3)	C7—C8	1.469 (4)	
N3—C2	1.322 (4)	С7—Н7	0.9300	
N3—C6	1.325 (4)	C8—C13	1.380 (4)	
01—C1	1.219 (3)	C8—C9	1.409 (4)	

O2—C14	1.309 (4)	C9—C10	1.388 (4)
O2—H2	0.8200	C9—C14	1.495 (4)
O3—C14	1.205 (3)	C10—C11	1.374 (4)
O4—C15	1.371 (4)	C10—H10	0.9300
O4—H4	0.8200	C11—C12	1.369 (4)
C1—O1	1.219 (3)	C11—H11	0.9300
C1—C4	1.496 (4)	C12—C13	1.378 (4)
C2—C3	1.377 (4)	C12—H12	0.9300
C2—H2A	0.9300	C13—H13	0.9300
C3—C4	1.377 (4)	C15—H15A	0.9600
С3—Н3	0.9300	C15—H15B	0.9600
C4—C5	1.376 (4)	C15—H15C	0.9600
C1—N1—N2	118.6 (2)	C8—C7—H7	120.3
C1—N1—H1	120.7	C13—C8—C9	118.3 (3)
N2—N1—H1	120.7	C13—C8—C7	118.9 (3)
C7—N2—N1	116.6 (2)	C9—C8—C7	122.8 (3)
C2—N3—C6	118.1 (3)	C10—C9—C8	119.3 (3)
C14—O2—H2	109.5	C10—C9—C14	115.7 (3)
C15—O4—H4	109.5	C8—C9—C14	124.9 (3)
01—C1—N1	123.4 (3)	C11—C10—C9	120.9 (3)
01—C1—N1	123.4 (3)	C11—C10—H10	119.6
O1—C1—C4	120.6 (3)	С9—С10—Н10	119.6
O1—C1—C4	120.6 (3)	C12—C11—C10	120.0 (3)
N1—C1—C4	116.0 (3)	C12—C11—H11	120.0
N3—C2—C3	123.3 (3)	C10-C11-H11	120.0
N3—C2—H2A	118.4	C11—C12—C13	119.9 (3)
C3—C2—H2A	118.4	C11—C12—H12	120.0
C2—C3—C4	118.5 (3)	C13—C12—H12	120.0
С2—С3—Н3	120.7	C12—C13—C8	121.6 (3)
С4—С3—Н3	120.7	C12—C13—H13	119.2
C5—C4—C3	118.3 (3)	C8—C13—H13	119.2
C5—C4—C1	117.5 (2)	O3—C14—O2	124.1 (3)
C3—C4—C1	124.2 (2)	O3—C14—C9	122.2 (3)
C6—C5—C4	119.2 (3)	O2—C14—C9	113.7 (3)
С6—С5—Н5	120.4	O4—C15—H15A	109.5
С4—С5—Н5	120.4	O4—C15—H15B	109.5
N3—C6—C5	122.5 (3)	H15A—C15—H15B	109.5
N3—C6—H6	118.7	O4—C15—H15C	109.5
С5—С6—Н6	118.7	H15A—C15—H15C	109.5
N2—C7—C8	119.4 (3)	H15B—C15—H15C	109.5
N2—C7—H7	120.3		

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	D····A	<i>D</i> —H··· <i>A</i>
N1—H1···O4 ⁱ	0.86	2.13	2.891 (3)	148

			supporting informatio		
O4—H4…O1	0.82	2.14	2.864 (4)	148	
O2—H2···N3 ⁱⁱ	0.82	1.76	2.565 (3)	165	

Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) x+1/2, -y+3/2, z+1/2.