organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

N'-[(1*E*)-1-(4-Chlorophenyl)ethylidene]formohydrazide

Zahid Shafiq,^a Muhammad Yaqub,^a M. Nawaz Tahir,^b Mian Hasnain Nawaz^a and M. Saeed Igbal^c*

^aDepartment of Chemistry, Bahauddin Zakariya University, Multan-60800, Pakistan, ^bDepartment of Physics, University of Sargodha, Sargodha, Pakistan, and ^cDepartment of Chemistry, Government College University, Lahore, Pakistan Correspondence e-mail: dmntahir_uos@yahoo.com

Received 5 September 2009; accepted 14 September 2009

Key indicators: single-crystal X-ray study; T = 296 K; mean σ (C–C) = 0.003 Å; R factor = 0.050; wR factor = 0.150; data-to-parameter ratio = 19.4.

The structure of the title compound, $C_9H_9ClN_2O$, consists of centrosymmetric dimers due to intermolecular $N-H\cdots O$ hydrogen bonding, forming $R_2^2(8)$ ring motifs. The dihedral angle between the *p*-chlorophenyl unit and the remaining heavy-atom group is 6.77 (17)°.

Related literature

For hydrogen-bond motifs, see: Bernstein *et al.* (1995). For a related structure, see: Guo (2007).

Experimental

C	rys	tal	a	lata	
_			_	-	

$C_9H_9CIN_2O$	
$M_r = 196.63$	
Monoclinic, $P2_1/c$	
a = 5.9373 (5) Å	
b = 6.2178 (4) Å	

c = 25.3495 (18) Å $\beta = 93.900 (4)^{\circ}$ $V = 933.66 (12) \text{ Å}^{3}$ Z = 4Mo K α radiation

 $0.25 \times 0.22 \times 0.18 \; \mathrm{mm}$

 $\mu = 0.37 \text{ mm}^{-1}$ T = 296 K

Data collection

Bruker Kappa APEXII CCD	9690 measured reflections
diffractometer	2311 independent reflections
Absorption correction: multi-scan	1426 reflections with $I > 2\sigma(I)$
(SADABS; Bruker, 2005)	$R_{\rm int} = 0.025$
$T_{\min} = 0.914, \ T_{\max} = 0.940$	

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.050$	119 parameters
$wR(F^2) = 0.150$	H-atom parameters constrained
S = 1.05	$\Delta \rho_{\rm max} = 0.26 \text{ e } \text{\AA}^{-3}$
2311 reflections	$\Delta \rho_{\rm min} = -0.20 \ {\rm e} \ {\rm \AA}^{-3}$

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
N2-H2 A ···O1 ⁱ	0.8600	2.0800	2.920 (3)	164.00

Symmetry code: (i) -x, -y, -z.

Data collection: *APEX2* (Bruker, 2007); cell refinement: *SAINT* (Bruker, 2007); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *ORTEP-3 for Windows* (Farrugia, 1997) and *PLATON* (Spek, 2009); software used to prepare material for publication: *WinGX* (Farrugia, 1999) and *PLATON*.

The authors acknowledge the Higher Education Commission, Islamabad, Pakistan, and Bana International, Karachi, Pakistan, for funding the purchase of the diffractometer at GCU, Lahore, and for technical support, respectively.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BQ2157).

References

Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.
Bruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.
Guo, H.-M. (2007). Acta Cryst. E63, o3870.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.
Spek, A. L. (2009). Acta Cryst. D65, 148–155.

supporting information

Acta Cryst. (2009). E65, o2494 [doi:10.1107/S1600536809037143]

N'-[(1E)-1-(4-Chlorophenyl)ethylidene]formohydrazide

Zahid Shafiq, Muhammad Yaqub, M. Nawaz Tahir, Mian Hasnain Nawaz and M. Saeed Iqbal

S1. Comment

Schiff bases are important intermediates in a number of enzymatic reactions involving interaction of an enzyme with an amino or a carbonyl group of the substrate. The title compound (I, Fig. 1), has been prepared as a derivative.

The crystal structures of *N*'-(1-(4-Chlorophenyl)ethylidene)propionohydrazide (Guo, 2007) has been published which differs from the title compound (I) due to the attachment of ethyl moiety instead of H-atom with the carbonyl group.

In the title compound, due to intermolecular H-bonding the molecules are dimerized forming 8-membered $R_2^2(8)$ ring motifs (Table 1, Fig. 2) (Bernstein *et al.*, 1995). The *p*-Clorophenyl moiety A (C1—C6, C11) and the remaining heavy atoms group B (C8, C7, N1, N2 C9, O1) are almost planar with r.m.s. deviations of 0.007 and 0.009 Å, respectively, with a 6.77 (17)° dihedral angle between them.

S2. Experimental

formohydrazide (1 g, 0.017 mol) was dissolved in ethanol (10 ml) and stirred. To this solution 4-Chlororoacetophenone (2.067 ml, 0.017 mol) was added dropwise and refluxed for 30 min. During refluxing precipitates were formed and the reaction mixture was further heated for 2 h. The completion of reaction was monitored by TLC. The solution was cooled to room temperature and the crued solid was collected by suction filtration. The precipitates were washed with hot ethanol, filtered and dried. The colorless prisms of title compound (I) were obtained by crystallization of the crude material in 1,4-dioxan.

S3. Refinement

The H-atoms were positioned geometrically with N—H = 0.86, C—H = 0.93 and 0.96 Å for aromatic and methyl H atoms, respectively and constrained to ride on their parent atoms, with $U_{iso}(H) = xUeq(C,N)$, where x = 1.5 for methyl H and x = 1.2 for all other H atoms.

Figure 1

View of the title compound with the atom numbering scheme. The thermal ellipsoids are drawn at the 50% probability level.

Figure 2

The partial packing (PLATON; Spek, 2009) which shows that molecules are dimerized and form ring motifs.

N'-[(1*E*)-1-(4-Chlorophenyl)ethylidene]formohydrazide

Crystal data	
C ₉ H ₉ ClN ₂ O $M_r = 196.63$ Monoclinic, $P2_1/c$ Hall symbol: -P 2ybc a = 5.9373 (5) Å b = 6.2178 (4) Å c = 25.3495 (18) Å $\beta = 93.900$ (4)° V = 933.66 (12) Å ³	F(000) = 408 $D_x = 1.399 \text{ Mg m}^{-3}$ Mo Ka radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 1864 reflections $\theta = 2.3-28.0^{\circ}$ $\mu = 0.37 \text{ mm}^{-1}$ T = 296 K Prismatic, colorless $0.25 \times 0.22 \times 0.18 \text{ mm}$
$Z = 4$ Data collection Bruker Kappa APEXII CCD diffractometer Radiation source: fine-focus sealed tube Graphite monochromator Detector resolution: 7.40 pixels mm ⁻¹ ω scans Absorption correction: multi-scan (<i>SADABS</i> ; Bruker, 2005) $T_{\min} = 0.914, T_{\max} = 0.940$	9690 measured reflections 2311 independent reflections 1426 reflections with $I > 2\sigma(I)$ $R_{int} = 0.025$ $\theta_{max} = 28.3^\circ, \ \theta_{min} = 3.2^\circ$ $h = -7 \rightarrow 7$ $k = -8 \rightarrow 8$ $l = -33 \rightarrow 32$

Refinement

Refinement on F^2 Least-squares matrix: full	Secondary atom site location: difference Fourier map
$R[F^2 > 2\sigma(F^2)] = 0.050$	Hydrogen site location: inferred from
$wR(F^2) = 0.150$	neighbouring sites
S = 1.05	H-atom parameters constrained
2311 reflections	$w = 1/[\sigma^2(F_o^2) + (0.0631P)^2 + 0.2896P]$
119 parameters	where $P = (F_{o}^{2} + 2F_{c}^{2})/3$
0 restraints	$(\Delta/\sigma)_{\rm max} < 0.001$
Primary atom site location: structure-invariant	$\Delta \rho_{\rm max} = 0.26 \text{ e } \text{\AA}^{-3}$
direct methods	$\Delta \rho_{\rm min} = -0.20 \text{ e} \text{ Å}^{-3}$

Special details

Geometry. Bond distances, angles *etc*. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

	x	у	Z	$U_{ m iso}$ */ $U_{ m eq}$
Cl1	0.38204 (13)	1.27773 (12)	0.21878 (3)	0.0806 (3)
O1	0.2494 (3)	0.0349 (3)	-0.03180 (7)	0.0740 (7)
N1	0.1941 (3)	0.4376 (3)	0.06100 (7)	0.0500 (6)
N2	0.1350 (3)	0.2578 (3)	0.03140 (7)	0.0536 (7)
C1	0.1329 (3)	0.6969 (3)	0.12510 (8)	0.0447 (7)
C2	0.0192 (4)	0.7732 (4)	0.16716 (9)	0.0611 (9)
C3	0.0928 (4)	0.9511 (4)	0.19580 (10)	0.0654 (9)
C4	0.2836 (4)	1.0560 (4)	0.18273 (9)	0.0523 (8)
C5	0.3992 (4)	0.9858 (4)	0.14095 (10)	0.0622 (9)
C6	0.3239 (4)	0.8092 (4)	0.11281 (9)	0.0593 (8)
C7	0.0599 (4)	0.5018 (3)	0.09485 (8)	0.0481 (7)
C8	-0.1579 (4)	0.3947 (4)	0.10580 (11)	0.0743 (10)
C9	0.2786 (4)	0.1908 (4)	-0.00268 (10)	0.0623 (9)
H2	-0.11039	0.70239	0.17636	0.0733*
H2A	0.00968	0.19185	0.03497	0.0644*
Н3	0.01322	0.99959	0.22383	0.0785*
Н5	0.52814	1.05794	0.13180	0.0746*
H6	0.40342	0.76308	0.08454	0.0712*
Н9	0.41191	0.26791	-0.00468	0.0747*
H81	-0.13024	0.24613	0.11431	0.1115*
H82	-0.26116	0.40444	0.07507	0.1115*
H83	-0.22185	0.46470	0.13504	0.1115*

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Cl1	0.0897 (6)	0.0672 (5)	0.0858 (5)	-0.0185 (3)	0.0123 (4)	-0.0250 (3)
01	0.0641 (12)	0.0777 (12)	0.0818 (12)	-0.0196 (9)	0.0177 (9)	-0.0322 (10)
N1	0.0503 (11)	0.0477 (10)	0.0521 (10)	-0.0062 (8)	0.0042 (8)	-0.0047 (8)
N2	0.0498 (11)	0.0522 (12)	0.0592 (12)	-0.0094 (9)	0.0059 (9)	-0.0090 (9)
C1	0.0426 (12)	0.0427 (11)	0.0491 (12)	-0.0028 (9)	0.0055 (9)	0.0032 (9)
C2	0.0555 (15)	0.0653 (15)	0.0647 (15)	-0.0166 (12)	0.0207 (11)	-0.0094 (11)
C3	0.0656 (17)	0.0681 (16)	0.0649 (15)	-0.0096 (13)	0.0224 (12)	-0.0138 (12)
C4	0.0548 (14)	0.0467 (12)	0.0553 (13)	-0.0031 (10)	0.0032 (10)	-0.0035 (9)
C5	0.0566 (15)	0.0567 (14)	0.0756 (16)	-0.0178 (11)	0.0215 (12)	-0.0066 (12)
C6	0.0558 (14)	0.0593 (14)	0.0658 (14)	-0.0143 (11)	0.0252 (11)	-0.0120 (11)
C7	0.0454 (12)	0.0467 (12)	0.0524 (12)	-0.0047 (10)	0.0048 (10)	0.0036 (9)
C8	0.0589 (16)	0.0718 (18)	0.0944 (19)	-0.0237 (13)	0.0209 (14)	-0.0215 (14)
C9	0.0531 (15)	0.0669 (16)	0.0677 (16)	-0.0143 (12)	0.0107 (12)	-0.0152 (12)

Atomic displacement parameters $(Å^2)$

Geometric parameters (Å, °)

Cl1—C4	1.733 (3)	C4—C5	1.372 (3)
O1—C9	1.224 (3)	C5—C6	1.368 (3)
N1—N2	1.379 (3)	C7—C8	1.497 (3)
N1—C7	1.274 (3)	C2—H2	0.9300
N2—C9	1.322 (3)	С3—Н3	0.9300
N2—H2A	0.8600	С5—Н5	0.9300
C1—C2	1.384 (3)	С6—Н6	0.9300
C1—C7	1.484 (3)	C8—H81	0.9600
C1—C6	1.385 (3)	C8—H82	0.9600
C2—C3	1.378 (3)	C8—H83	0.9600
C3—C4	1.367 (3)	С9—Н9	0.9300
Cl1…C4 ⁱ	3.535 (2)	H2…C8	2.6200
O1…N2 ⁱⁱ	2.920 (3)	H2…H83	1.9000
O1····C8 ⁱⁱ	3.288 (3)	H2A…C8	2.4600
O1…C9 ⁱⁱⁱ	3.202 (3)	H2A…H81	2.2500
O1…H2A ⁱⁱ	2.0800	H2A…H82	2.3600
O1…H6 ^{iv}	2.8300	H2A…O1 ⁱⁱ	2.0800
O1…H9 ⁱⁱⁱ	2.8600	H2A…C9 ⁱⁱ	3.0100
O1…H81 ⁱⁱ	2.7800	H5…C8 ^{ix}	2.9100
N2…O1 ⁱⁱ	2.920(3)	H5…H81 ^{ix}	2.4100
N1…H6	2.4300	H6…N1	2.4300
N2…H81	2.7100	H6…O1 ^{iv}	2.8300
N2…H82	2.8200	H6…C9 ^{iv}	2.9100
C4…Cl1 ^v	3.535 (2)	H6…H9 ^{iv}	2.3700
C7····C9 ^{vi}	3.537 (3)	H9…O1 ⁱⁱⁱ	2.8600
C8…O1 ⁱⁱ	3.288 (3)	H9····H6 ^{iv}	2.3700
C9…O1 ⁱⁱⁱ	3.202 (3)	H81…N2	2.7100
C9····C9 ⁱⁱⁱ	3.537 (3)	H81…C3 ^x	3.0000

C9C7 ^{vi}	3537(3)	H81H2A	2 2500
C2H83	2,5000		2.2500
	2.3000		2.4100
	3.0000		2.7800
C8···H2A	2.4600		2.8200
C8H5	2.9100	H82····H2A	2.3600
С8…H2	2.6200	H83····C2	2.5000
C9···H2A ⁿ	3.0100	H83…H2	1.9000
C9···H6 ^{iv}	2.9100		
N2—N1—C7	118.23 (18)	O1—C9—N2	124.9 (2)
N1—N2—C9	117.37 (18)	C1—C2—H2	119.00
C9—N2—H2A	121.00	C3—C2—H2	119.00
N1—N2—H2A	121.00	С2—С3—Н3	120.00
C6—C1—C7	120.71 (19)	C4—C3—H3	120.00
C2—C1—C7	122.53 (18)	C4—C5—H5	120.00
C2—C1—C6	116.75 (19)	C6—C5—H5	120.00
C1—C2—C3	121.8 (2)	C1—C6—H6	119.00
C2—C3—C4	119.6 (2)	С5—С6—Н6	119.00
Cl1—C4—C5	119.44 (19)	C7—C8—H81	109.00
Cl1—C4—C3	120.45 (19)	C7—C8—H82	109.00
C3—C4—C5	120.1 (2)	С7—С8—Н83	109.00
C4—C5—C6	119.7 (2)	H81—C8—H82	109.00
C1—C6—C5	122.1 (2)	H81—C8—H83	109.00
N1—C7—C1	115.47 (19)	H82—C8—H83	109.00
N1—C7—C8	124.97 (19)	O1—C9—H9	118.00
C1—C7—C8	119.56 (19)	N2—C9—H9	118.00
C7—N1—N2—C9	-178.5 (2)	C6—C1—C2—C3	-0.5(3)
N2—N1—C7—C8	1.0 (3)	C7-C1-C2-C3	178.1 (2)
N2—N1—C7—C1	-179.61 (17)	C6—C1—C7—C8	-174.7 (2)
N1—N2—C9—O1	-179.6 (2)	C1—C2—C3—C4	-0.2(4)
C2-C1-C6-C5	0.6 (3)	C2—C3—C4—C5	0.8 (4)
C7—C1—C6—C5	-178.0 (2)	C2—C3—C4—Cl1	-179.02 (19)
C2—C1—C7—C8	6.7 (3)	Cl1—C4—C5—C6	179.14 (19)
C6—C1—C7—N1	5.9 (3)	C3—C4—C5—C6	-0.7 (4)
C2—C1—C7—N1	-172.7 (2)	C4—C5—C6—C1	-0.1(4)
	× /		· · ·

Symmetry codes: (i) -*x*+1, *y*+1/2, -*z*+1/2; (ii) -*x*, -*y*, -*z*; (iii) -*x*+1, -*y*, -*z*; (iv) -*x*+1, -*y*+1, -*z*; (v) -*x*+1, *y*-1/2, -*z*+1/2; (vi) -*x*, -*y*+1, -*z*; (vii) *x*, *y*+1, *z*; (viii) *x*-1, *z*, (ix) *x*+1, *y*+1, *z*; (x) *x*, *y*-1, *z*.

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	D····A	<i>D</i> —H··· <i>A</i>
N2—H2A····O1 ⁱⁱ	0.8600	2.0800	2.920 (3)	164.00

Symmetry code: (ii) -x, -y, -z.