organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

Pyridine-4-carboximidamidate chloride

Ping Fan,^a* Lei Wang^a and Huidong Zhang^b

^aCollege of Chemistry, Liaoning University, Shenyang 110036, People's Republic of China, and ^bLiaoning Fixed Star Chemicals (Group) Co. Ltd, Dandong 118000, People's Republic of China Correspondence e-mail: pingfan@lnu.edu.cn

Received 27 July 2009; accepted 1 September 2009

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.002 Å; R factor = 0.033; wR factor = 0.092; data-to-parameter ratio = 11.6.

In the title salt, $C_6H_8N_3^+ \cdot Cl^-$, each pyridinecarboximidamidate cation is linked to two symmetry-related cations through N-H···N hydrogen bonds, and to two chloride ions by $N-H\cdots Cl$ hydrogen bonds. The $N-H\cdots N$ hydrogen bonds involve the pyridine N atom and one NH₂ group. In the crystal, $N-H \cdots N$ and $N-H \cdots Cl$ hydrogen bonds extend the structure into two-dimensional layers. Weak C-H···Cl interactions further connect these layers into a three-dimensional network.

Related literature

For background, see: Chudinov et al. (2005); Kamei et al. (2005).

Experimental

Crystal data $C_6H_8N_3^+\cdot Cl^-$

 $M_r = 157.60$

Orthorhombic, Pbca a = 7.3928 (13) Å b = 10.4467 (16) Åc = 18.925 (3) Å V = 1461.6 (4) Å³

Data collection

Bruker SMART CCD area-detector	1949 measured reflections
diffractometer	1435 independent reflections
Absorption correction: multi-scan	1215 reflections with $I > 2\sigma(I)$
(SADABS; Bruker, 2001)	$R_{\rm int} = 0.018$
$T_{\min} = 0.853, \ T_{\max} = 0.911$	

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.033$	124 parameters
$wR(F^2) = 0.092$	All H-atom parameters refined
S = 1.04	$\Delta \rho_{\rm max} = 0.23 \text{ e } \text{\AA}^{-3}$
1435 reflections	$\Delta \rho_{\rm min} = -0.18 \text{ e} \text{ Å}^{-3}$

Z = 8

Mo $K\alpha$ radiation

 $0.37 \times 0.32 \times 0.21 \text{ mm}$

 $\mu = 0.44 \text{ mm}^{-1}$

T = 293 K

Table 1 Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$N2-H2A\cdots N1^{i}$	0.88 (2)	2.22 (2)	3.058 (2)	160 (2)
$N2-H2B\cdots Cl1$	0.83 (2)	2.79 (2)	3.476 (2)	142 (2)
$N3-H3A\cdots Cl1$	0.93 (2)	2.19 (2)	3.100 (2)	167 (2)
$N3-H3B\cdots Cl1^{ii}$	0.89 (2)	2.41 (2)	3.270 (2)	161 (2)
$C5-H5\cdots Cl1^{iii}$	0.90 (2)	2.68 (2)	3.556 (2)	166 (2)
	1 2	an 1	1	2 1

Symmetry codes: (i) $-x, y + \frac{1}{2}, -z + \frac{3}{2}$; (ii) $-x + \frac{1}{2}, y - \frac{1}{2}, z$; (iii) $x, -y + \frac{3}{2}, z - \frac{1}{2}$.

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BH2242).

References

Bruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.

- Chudinov, M. V., Konstantinova, I. D., Ryzhova, O. I., Esipov, R. S., Yurkevich, A. M., Shvets, V. I. & Miroshnikov, A. I. (2005). Pharm. Chem. J. 39, 212-215
- Kamei, K., Maeda, N., Katsuragi-Ogino, R., Koyama, M., Nakajima, M., Tatsuoka, T., Ohno, T. & Inoue, T. (2005). Bioorg. Med. Chem. Lett. 15, 2990-2993

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

supporting information

Acta Cryst. (2009). E65, o2408 [doi:10.1107/S160053680903517X]

Pyridine-4-carboximidamidate chloride

Ping Fan, Lei Wang and Huidong Zhang

S1. Comment

The title compound, also known as isonicotinamidine hydrochloride, served as a key intermediate in the synthesis of pharmacologically active compounds. It had attracted a great deal of interest during recent years. A series of new piperidinyl- and 1,2,3,6-tetrahydropyridinylpyrimidine derivatives was synthesized by using isonicotinamidine as an important intermediate. Isonicotinamidine has a unique structure and exists in the form of hydrochloride or acetate (Chudinov *et al.*, 2005; Kamei *et al.*, 2005).

The title compound is an organic salt (Fig. 1). In the cation, dihedral angle between the pyridyl ring and the plane confined by N2, N3 and C6 is 42.1°. Each isonicotinamidine cation is connected to two other cations by N—H···N hydrogen bonds, and to two Cl⁻ anions by N—H···Cl hydrogen bonds (Fig. 2), to form two dimensional layers including one-dimensional zigzag chains (Fig. 3). Weak C—H···Cl interactions [C···Cl = 3.556 (2) Å] link these layers to provide a three-dimensional supramolecular network.

S2. Experimental

The title compound was prepared according to the method of Kamei *et al.* (2005). Block-shaped crystals suitable for X-ray diffraction were obtained from ethanol/acetone.

S3. Refinement

H atoms were located from difference maps and freely refined.

Figure 1

View of (I), showing atomic labels and displacement ellipsoids drawn at 30% probability level.

Figure 2 N—H···N and N—H···Cl hydrogen bonds in the crystal.

Figure 3

View of the hydrogen bonded one-dimensional chain along b axis.

Pyridine-4-carboximidamidate chloride

Crystal data

C₆H₈N₃⁺·Cl⁻ $M_r = 157.60$ Orthorhombic, *Pbca* Hall symbol: -P 2ac 2ab a = 7.3928 (13) Å b = 10.4467 (16) Å c = 18.925 (3) Å V = 1461.6 (4) Å³ Z = 8 F(000) = 656 $D_x = 1.432 \text{ Mg m}^{-3}$ Mo Ka radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 542 reflections $\theta = 2.3-22.8^{\circ}$ $\mu = 0.44 \text{ mm}^{-1}$ T = 293 KBlock, colourless $0.37 \times 0.32 \times 0.21 \text{ mm}$ Data collection

Bruker SMART CCD area-detector	1949 measured reflections
diffractometer	1435 independent reflections
Radiation source: fine-focus sealed tube	1215 reflections with $I > 2\sigma(I)$
Graphite monochromator	$R_{int} = 0.018$
φ and ω scans	$\theta_{max} = 26.0^{\circ}, \theta_{min} = 2.2^{\circ}$
Absorption correction: multi-scan	$h = -9 \rightarrow 1$
(<i>SADABS</i> ; Bruker, 2001)	$k = -1 \rightarrow 12$
$T_{\min} = 0.853, T_{\max} = 0.911$	$l = -23 \rightarrow 1$
Refinement	
Refinement on F^2	Hydrogen site location: inferred from
Least-squares matrix: full	neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.033$	All H-atom parameters refined
$wR(F^2) = 0.092$	$w = 1/[\sigma^2(F_o^2) + (0.0416P)^2 + 0.5489P]$
S = 1.04	where $P = (F_o^2 + 2F_c^2)/3$
1435 reflections	$(\Delta/\sigma)_{max} = 0.001$
124 parameters	$\Delta\rho_{max} = 0.23$ e Å ⁻³
0 restraints	$\Delta\rho_{min} = -0.18$ e Å ⁻³
Primary atom site location: structure-invariant	Extinction correction: <i>SHELXL97</i> (Sheldrick,
direct methods	2008), Fc*=kFc[1+0.001xFc^2\lambda^3/sin(2\theta)]^{-1/4}
Secondary atom site location: difference Fourier	Extinction coefficient: 0.0056 (15)
map	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
N1	0.0852 (2)	0.38353 (14)	0.75509 (8)	0.0367 (4)	
C1	0.0499 (3)	0.36114 (17)	0.82329 (10)	0.0367 (4)	
Cl1	0.15740 (8)	0.91636 (4)	1.05546 (2)	0.0432 (2)	
N2	0.0353 (2)	0.79417 (15)	0.89141 (9)	0.0369 (4)	
C2	0.0593 (3)	0.45387 (17)	0.87518 (9)	0.0341 (4)	
N3	0.1766 (3)	0.66264 (17)	0.97084 (9)	0.0428 (4)	
C3	0.1026 (2)	0.57807 (15)	0.85578 (9)	0.0285 (4)	
C4	0.1401 (3)	0.60305 (17)	0.78520 (9)	0.0337 (4)	
C5	0.1315 (3)	0.50297 (18)	0.73774 (9)	0.0376 (4)	
C6	0.1052 (2)	0.68338 (16)	0.90895 (9)	0.0310 (4)	
H4	0.171 (3)	0.6863 (18)	0.7679 (10)	0.033 (5)*	
H1	0.015 (3)	0.275 (2)	0.8348 (11)	0.044 (6)*	
H2	0.032 (3)	0.4327 (18)	0.9204 (11)	0.041 (5)*	
Н5	0.159 (3)	0.519 (2)	0.6925 (12)	0.048 (6)*	
H2B	0.037 (3)	0.854 (2)	0.9202 (13)	0.060 (7)*	
H2A	-0.016 (3)	0.803 (2)	0.8500 (12)	0.050 (6)*	
H3B	0.229 (4)	0.590 (2)	0.9833 (12)	0.056 (7)*	
H3A	0.184 (3)	0.732 (2)	1.0012 (14)	0.061 (7)*	

Atomic displacement parameters (\mathring{A}^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}	
N1	0.0452 (9)	0.0312 (8)	0.0338 (8)	0.0019 (7)	0.0001 (7)	-0.0051 (7)	
C1	0.0439 (11)	0.0261 (9)	0.0400 (10)	-0.0002 (8)	-0.0007 (9)	0.0007 (7)	

supporting information

Cl1	0.0580 (3)	0.0357 (3)	0.0359 (3)	0.0007 (2)	-0.0055 (2)	-0.00566 (18)
N2	0.0484 (10)	0.0262 (8)	0.0360 (9)	0.0009 (7)	0.0006 (8)	-0.0043 (7)
C2	0.0436 (11)	0.0306 (9)	0.0280 (9)	0.0035 (8)	0.0027 (8)	0.0019 (7)
N3	0.0613 (12)	0.0348 (9)	0.0323 (8)	0.0070 (8)	-0.0090 (8)	-0.0067 (7)
C3	0.0313 (9)	0.0266 (8)	0.0277 (8)	0.0021 (7)	-0.0020 (7)	-0.0021 (7)
C4	0.0421 (10)	0.0280 (9)	0.0310 (9)	-0.0020 (8)	0.0003 (8)	0.0024 (7)
C5	0.0488 (12)	0.0377 (10)	0.0264 (9)	-0.0002 (8)	0.0022 (8)	-0.0012 (8)
C6	0.0348 (9)	0.0280 (9)	0.0300 (9)	-0.0018 (7)	0.0031 (7)	-0.0020 (7)

Geometric parameters (Å, °)

N1—C5	1.335 (2)	N3—C6	1.303 (2)
N1-C1	1.337 (2)	N3—H3B	0.89 (2)
C1—C2	1.381 (3)	N3—H3A	0.93 (3)
C1—H1	0.96 (2)	C3—C4	1.389 (2)
N2—C6	1.310(2)	C3—C6	1.491 (2)
N2—H2B	0.83 (3)	C4—C5	1.380 (3)
N2—H2A	0.88 (2)	C4—H4	0.958 (19)
C2—C3	1.386 (2)	С5—Н5	0.90 (2)
С2—Н2	0.91 (2)		
C5—N1—C1	116.80 (15)	C2—C3—C4	118.47 (16)
N1—C1—C2	123.63 (17)	C2—C3—C6	120.99 (15)
N1-C1-H1	115.7 (12)	C4—C3—C6	120.52 (15)
C2-C1-H1	120.6 (12)	C5—C4—C3	118.33 (17)
C6—N2—H2B	119.8 (17)	С5—С4—Н4	118.5 (11)
C6—N2—H2A	119.2 (15)	C3—C4—H4	123.2 (11)
H2B—N2—H2A	121 (2)	N1C5C4	124.05 (17)
C1—C2—C3	118.68 (16)	N1—C5—H5	118.2 (15)
С1—С2—Н2	119.3 (13)	C4—C5—H5	117.7 (15)
С3—С2—Н2	122.0 (13)	N3—C6—N2	122.31 (17)
C6—N3—H3B	123.9 (15)	N3—C6—C3	119.28 (16)
C6—N3—H3A	116.9 (16)	N2—C6—C3	118.41 (16)
H3B—N3—H3A	119 (2)		

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	Н…А	D··· A	D—H…A
N2—H2A····N1 ⁱ	0.88 (2)	2.22 (2)	3.058 (2)	160 (2)
N3—H3 <i>A</i> …Cl1	0.93 (2)	2.19 (2)	3.100 (2)	167 (2)
N2—H2 <i>B</i> ···Cl1	0.83 (2)	2.79 (2)	3.476 (2)	142 (2)
N3—H3 <i>B</i> ····Cl1 ⁱⁱ	0.89 (2)	2.41 (2)	3.270 (2)	161 (2)
C5—H5···Cl1 ⁱⁱⁱ	0.90 (2)	2.68 (2)	3.556 (2)	166 (2)

Symmetry codes: (i) -x, y+1/2, -z+3/2; (ii) -x+1/2, y-1/2, z; (iii) x, -y+3/2, z-1/2.