

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

N-(3,4-Dichlorophenyl)thiourea

Hai-Bo Shi,^{a,b} Wei-Xiao Hu^a* and Yan-Fang Lin^a

^aCollege of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310032, People's Republic of China, and ^bZhejiang Pharmaceutical College, Ningbo 315100, People's Republic of China Correspondence e-mail: huyang@mail.hz.zj.cn

Received 26 August 2009; accepted 3 September 2009

Key indicators: single-crystal X-ray study; T = 291 K; mean σ (C–C) = 0.005 Å; R factor = 0.084; wR factor = 0.236; data-to-parameter ratio = 12.8.

In the title compound, $C_7H_6Cl_2N_2S$, the benzene ring and the mean plane of the thiourea fragment [-N-C(=S)-N] make a dihedral angle of 66.77 (3)°. Intermolecular $N-H\cdots S$ and $N-H\cdots Cl$ hydrogen bonds link the molecules into a three-dimensional network.

Related literature

For the synthesis of the title compound, see: Liu *et al.* (1994). For details of the biological activity of thiazole and its derivatives, see: Holla *et al.* (2003).

Experimental

Crystal data

C ₇ H ₆ Cl ₂ N ₂ S
$M_r = 221.10$
Triclinic, P1
a = 5.8168 (19) Å
b = 8.489 (3) Å
c = 9.771 (3) Å

$\alpha = 107.042 \ (4)^{\circ}$
$\beta = 94.468 \ (4)^{\circ}$
$\gamma = 94.778 \ (4)^{\circ}$
V = 457.0 (3) Å ³
Z = 2
Mo $K\alpha$ radiation

 $0.15 \times 0.10 \times 0.08 \; \rm mm$

1882 measured reflections

 $R_{\rm int} = 0.062$

1562 independent reflections

1410 reflections with $I > 2\sigma(I)$

 $\mu = 0.88 \text{ mm}^{-1}$ T = 291 K

Data collection

Bruker SMART APEX CCD area-detector diffractometer Absorption correction: multi-scan (*SADABS*; Sheldrick, 1996) $T_{\rm min} = 0.879, T_{\rm max} = 0.933$

Refinement

$$\begin{split} R[F^2 > 2\sigma(F^2)] &= 0.084 & \text{H atoms treated by a mixture of} \\ wR(F^2) &= 0.236 & \text{independent and constrained} \\ S &= 1.10 & \text{refinement} \\ 1562 \text{ reflections} & \Delta\rho_{\text{max}} &= 0.75 \text{ e } \text{ Å}^{-3} \\ 122 \text{ parameters} & \Delta\rho_{\text{min}} &= -0.76 \text{ e } \text{ Å}^{-3} \\ 3 \text{ restraints} \end{split}$$

Table 1Hydrogen-bond geometry (Å, °).

publication: SHELXTL.

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$\overline{N7-H7X\cdots S9^{i}}$ $N10-H10Y\cdots C11^{ii}$	0.86 (3) 0.87 (3)	2.51 (2) 2.80 (2)	3.342 (3) 3.646 (3)	161 (4) 163 (4)
N10-H10Y···Cl1 ⁱⁱ	0.87 (3)	2.80 (2)	3.646 (3)	163 (4

Data collection: *SMART* (Bruker, 2005); cell refinement: *SAINT* (Bruker, 2005); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics:

SHELXTL (Sheldrick, 2008); software used to prepare material for

The authors are very grateful to the Natural Science Foundation of Ningbo City for financial support (grant No. 2009 A610185).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BG2297).

References

Bruker (2005). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.

Holla, B. S., Maline, K. V., Rao, B. S., Sarojini, B. K. & Kumari, N. S. (2003). *Eur. J. Med. Chem.* 38, 313–318.

Liu, B., Gao, H. Q. & Zhou, X. J. (1994). *Hua Xue Tong Bao*, **5**, 42–43. Sheldrick, G. M. (1996). *SADABS*. University of Göttingen, Germany.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

supporting information

Acta Cryst. (2009). E65, o2401 [doi:10.1107/S1600536809035569]

N-(3,4-Dichlorophenyl)thiourea

Hai-Bo Shi, Wei-Xiao Hu and Yan-Fang Lin

S1. Comment

Thiazoles and their derivatives are found to be associated with various biological activities such as antibacterial, antifungal, anti-inflammatory activities (Holla *et al.*, 2003). The title compound, *N*-(3,4-dichlorophenyl) thiourea(I), is an important intermediate in the synthesis of thiazole and their derivatives. In our work, we present its crystal structure. In Fig.1, the benzene ring of (I) is twisted out of the mean plane through the -N7-C8(=S9)-N10 group by a diherdral angle of 66.77 (3)°. Weak intermolecular N-H···S and N-H···Cl hydrogen bonds (Table 1) link the molecules into a three-dimensional network.

S2. Experimental

The title compound was obtained by refluxing 3,4-dichloroaniline(48.6 g, 0.3 mol), 36% aqueous HCl(30.4 g,0.3 mol) and ammonium thiocyanate(22.8 g, 0.3 mol) in water for 7 hr, then a white precipitate was observed and filtered. The solid was recrystallized from alcohol to give the pure product. This was dissolved in THF, and the solution evaporated gradually at room temperature to afford single crystals of (I).(m.p. 489–490 K). MS(m/z,%): 220 (M^+ , 90), 187 (15), 178 (16), 161 (98), 126 (7), 99 (10), 74 (8), 60 (55).

S3. Refinement

Atoms H7X, H10X and H10Y were located in difference Fourier maps and refined isotropically with the N—H bond restraint of 0.87 (2) Å. Other H atoms were placed in calculated positions with C—H = 0.93 Å, and refined in riding mode, with $U_{iso}(H) = 1.2 U_{eq}(C)$.

Figure 1

The structure of (I), shown with 30% probability displacement ellipsoids.

Figure 2

N-H···S and N-H···Cl interactions (dotted line) in the title compound.

N-(3,4-Dichlorophenyl)thiourea

Crystal data	
$C_7H_6Cl_2N_2S$	c = 9.771 (3) Å
$M_r = 221.10$	$\alpha = 107.042 \ (4)^{\circ}$
Triclinic, $P\overline{1}$	$\beta = 94.468 \ (4)^{\circ}$
Hall symbol: -P 1	$\gamma = 94.778 \ (4)^{\circ}$
a = 5.8168 (19) Å	V = 457.0 (3) Å ³
b = 8.489 (3) Å	Z = 2

F(000) = 224 $D_x = 1.607 \text{ Mg m}^{-3}$ Mo K\alpha radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 843 reflections $\theta = 2.5-27.0^{\circ}$

Data collection

Bruker SMART APEX CCD area-detector diffractometer Radiation source: fine-focus sealed tube Graphite monochromator φ and ω scans Absorption correction: multi-scan (*SADABS*; Sheldrick, 1996) $T_{\min} = 0.879, T_{\max} = 0.933$

Refinement

Refinement on F^2	Hydrogen site location: inferred from
Least-squares matrix: full	neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.084$	H atoms treated by a mixture of independent
$wR(F^2) = 0.236$	and constrained refinement
<i>S</i> = 1.10	$w = 1/[\sigma^2(F_o^2) + (0.1955P)^2]$
1562 reflections	where $P = (F_o^2 + 2F_c^2)/3$
122 parameters	$(\Delta/\sigma)_{\rm max} < 0.001$
3 restraints	$\Delta ho_{ m max} = 0.75 \ { m e} \ { m \AA}^{-3}$
Primary atom site location: structure-invariant	$\Delta ho_{ m min}$ = -0.76 e Å ⁻³
direct methods	Extinction correction: SHELXL97 (Sheldrick,
Secondary atom site location: difference Fourier	2008), $Fc^* = kFc[1+0.001xFc^2\lambda^3/sin(2\theta)]^{-1/4}$
map	Extinction coefficient: 0.13 (4)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

 $\mu = 0.88 \text{ mm}^{-1}$

Prism, orange

 $0.15 \times 0.10 \times 0.08 \text{ mm}$

1882 measured reflections 1562 independent reflections

 $\theta_{\text{max}} = 25.0^{\circ}, \ \theta_{\text{min}} = 2.2^{\circ}$

1410 reflections with $I > 2\sigma(I)$

T = 291 K

 $R_{\rm int} = 0.062$

 $h = -6 \rightarrow 3$

 $k = -9 \rightarrow 10$

 $l = -11 \rightarrow 11$

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (2	A^2)
--	-------	---

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
Cl1	0.19736 (17)	0.43998 (14)	0.66939 (11)	0.0560 (6)	
C12	-0.27770 (17)	0.21189 (14)	0.62155 (11)	0.0565 (6)	
C1	0.1662 (6)	0.1685 (4)	0.2584 (4)	0.0365 (9)	
C2	0.2383 (6)	0.2836 (4)	0.3921 (4)	0.0398 (9)	
H2	0.3777	0.3512	0.4062	0.048*	
C3	0.1023 (6)	0.2971 (4)	0.5034 (4)	0.0374 (9)	
C4	-0.1046 (6)	0.1948 (4)	0.4830 (4)	0.0388 (9)	
C5	-0.1748 (6)	0.0795 (5)	0.3507 (4)	0.0480 (11)	
Н5	-0.3127	0.0103	0.3372	0.058*	
C6	-0.0398 (7)	0.0669 (4)	0.2380 (4)	0.0446 (9)	

supporting information

H6	-0.0879	-0.0101	0.1485	0.054*	
N7	0.3073 (6)	0.1521 (3)	0.1444 (3)	0.0424 (9)	
H7X	0.371 (7)	0.061 (4)	0.113 (5)	0.071 (15)*	
C8	0.3732 (6)	0.2709 (4)	0.0853 (4)	0.0353 (8)	
S9	0.58001 (18)	0.24215 (10)	-0.03037 (11)	0.0493 (6)	
N10	0.2718 (6)	0.4075 (4)	0.1191 (4)	0.0508 (10)	
H10X	0.308 (7)	0.486 (5)	0.083 (5)	0.055 (12)*	
H10Y	0.159 (5)	0.422 (6)	0.173 (4)	0.054 (12)*	

)
)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C11	0.0546 (8)	0.0620 (8)	0.0427 (7)	0.0057 (5)	0.0146 (5)	0.0001 (5)
Cl2	0.0577 (8)	0.0636 (9)	0.0549 (8)	0.0087 (5)	0.0328 (5)	0.0209 (6)
C1	0.0534 (19)	0.0253 (16)	0.0377 (19)	0.0123 (14)	0.0214 (15)	0.0137 (14)
C2	0.0404 (18)	0.0334 (18)	0.050(2)	0.0026 (14)	0.0167 (15)	0.0160 (16)
C3	0.0453 (19)	0.0341 (18)	0.0375 (19)	0.0122 (14)	0.0132 (14)	0.0139 (15)
C4	0.0433 (19)	0.0396 (19)	0.042 (2)	0.0106 (15)	0.0200 (15)	0.0195 (16)
C5	0.048 (2)	0.043 (2)	0.051 (2)	-0.0046 (16)	0.0107 (18)	0.0127 (18)
C6	0.060(2)	0.0344 (19)	0.039 (2)	0.0023 (15)	0.0123 (16)	0.0087 (15)
N7	0.064 (2)	0.0251 (15)	0.0460 (18)	0.0146 (13)	0.0319 (14)	0.0136 (13)
C8	0.0489 (19)	0.0257 (16)	0.0338 (18)	0.0059 (13)	0.0167 (14)	0.0091 (13)
S9	0.0722 (9)	0.0288 (7)	0.0572 (8)	0.0151 (5)	0.0417 (6)	0.0175 (5)
N10	0.072 (2)	0.0312 (17)	0.064 (2)	0.0175 (15)	0.0434 (17)	0.0239 (15)

Geometric parameters (Å, °)

Cl1—C3	1.733 (4)	C5—C6	1.386 (5)	_
Cl2—C4	1.729 (4)	С5—Н5	0.9300	
C1—C6	1.382 (5)	С6—Н6	0.9300	
C1—C2	1.391 (5)	N7—C8	1.345 (4)	
C1—N7	1.416 (5)	N7—H7X	0.87 (2)	
C2—C3	1.378 (6)	C8—N10	1.312 (5)	
C2—H2	0.9300	C8—S9	1.698 (4)	
C3—C4	1.389 (5)	N10—H10X	0.86 (3)	
C4—C5	1.380 (6)	N10—H10Y	0.87 (3)	
C6—C1—C2	120.1 (3)	С6—С5—Н5	120.0	
C6-C1-N7	120.0 (3)	C1—C6—C5	120.0 (3)	
C2—C1—N7	120.0 (3)	C1—C6—H6	120.0	
C3—C2—C1	119.7 (3)	С5—С6—Н6	120.0	
С3—С2—Н2	120.1	C8—N7—C1	126.3 (3)	
C1—C2—H2	120.1	C8—N7—H7X	114 (3)	
C2—C3—C4	120.2 (3)	C1—N7—H7X	119 (3)	
C2—C3—Cl1	118.9 (3)	N10-C8-N7	118.0 (3)	
C4—C3—Cl1	120.9 (3)	N10-C8-S9	121.7 (3)	
C5—C4—C3	119.9 (3)	N7—C8—S9	120.4 (3)	
C5—C4—Cl2	119.5 (3)	C8—N10—H10X	121 (3)	

C3—C4—Cl2 C4—C5—C6 C4—C5—H5	120.6 (3) 120.0 (3) 120.0	C8—N10—H10Y H10X—N10—H10Y	123 (3) 116 (4)	
C6-C1-C2-C3 $N7-C1-C2-C3$ $C1-C2-C3-C4$ $C1-C2-C3-C11$ $C2-C3-C4-C5$ $C11-C3-C4-C5$ $C2-C3-C4-C12$ $C11-C3-C4-C12$ $C11-C3-C4-C12$ $C3-C4-C12$ $C3-C4-C12$	$\begin{array}{c} -0.7 (5) \\ -178.9 (3) \\ 0.9 (5) \\ 179.3 (3) \\ -0.2 (5) \\ -178.7 (3) \\ -179.5 (2) \\ 2.1 (4) \\ -0.5 (5) \end{array}$	Cl2—C4—C5—C6 C2—C1—C6—C5 N7—C1—C6—C5 C4—C5—C6—C1 C6—C1—N7—C8 C2—C1—N7—C8 C1—N7—C8—N10 C1—N7—C8—S9	178.7 (3) 0.0 (5) 178.1 (3) 0.6 (5) 121.2 (4) -60.7 (5) -11.2 (5) 169.3 (3)	

Hydrogen-bond geometry (Å, °)

<i>D</i> —H··· <i>A</i>	D—H	H···A	D····A	<i>D</i> —H··· <i>A</i>
N7—H7X···S9 ⁱ	0.86 (3)	2.51 (2)	3.342 (3)	161 (4)
N10—H10Y····Cl1 ⁱⁱ	0.87 (3)	2.80 (2)	3.646 (3)	163 (4)

Symmetry codes: (i) -*x*+1, -*y*, -*z*; (ii) -*x*, -*y*+1, -*z*+1.