Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

N-(3,4-Dichlorophenyl)thiourea

Hai-Bo Shi, ${ }^{\text {a,b }}$ Wei-Xiao $\mathrm{Hu}^{\text {a }}$ and Yan-Fang Lin ${ }^{\text {a }}$
${ }^{\text {a }}$ College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310032, People's Republic of China, and ${ }^{\text {b }}$ Zhejiang Pharmaceutical College, Ningbo 315100, People's Republic of China
Correspondence e-mail: huyang@mail.hz.zj.cn

Received 26 August 2009; accepted 3 September 2009

Key indicators: single-crystal X-ray study; $T=291 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.005 \AA$; R factor $=0.084 ; w R$ factor $=0.236 ;$ data-to-parameter ratio $=12.8$.

In the title compound, $\mathrm{C}_{7} \mathrm{H}_{6} \mathrm{Cl}_{2} \mathrm{~N}_{2} \mathrm{~S}$, the benzene ring and the mean plane of the thiourea fragment $[-\mathrm{N}-\mathrm{C}(=\mathrm{S})-\mathrm{N}]$ make a dihedral angle of 66.77 (3) ${ }^{\circ}$. Intermolecular $\mathrm{N}-\mathrm{H} \cdots \mathrm{S}$ and $\mathrm{N}-\mathrm{H} \cdots \mathrm{Cl}$ hydrogen bonds link the molecules into a threedimensional network.

Related literature

For the synthesis of the title compound, see: Liu et al. (1994). For details of the biological activity of thiazole and its derivatives, see: Holla et al. (2003).

Experimental

Crystal data

$\mathrm{C}_{7} \mathrm{H}_{6} \mathrm{Cl}_{2} \mathrm{~N}_{2} \mathrm{~S}$
$\alpha=107.042(4)^{\circ}$
$M_{r}=221.10$
Triclinic, $P \overline{1}$
$a=5.8168$ (19) \AA
$b=8.489$ (3) A
$c=9.771$ (3) \AA
$\beta=94.468$ (4) ${ }^{\circ}$
$\gamma=94.778(4)^{\circ}$
$V=457.0(3) \AA^{3}$
$Z=2$
Mo $K \alpha$ radiation

$$
\mu=0.88 \mathrm{~mm}^{-1}
$$

$$
T=291 \mathrm{~K}
$$

Data collection
Bruker SMART APEX CCD area-detector diffractometer
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) $T_{\text {min }}=0.879, T_{\text {max }}=0.933$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.084$
$w R\left(F^{2}\right)=0.236$
$S=1.10$
1562 reflections
122 parameters
3 restraints

H atoms treated by a mixture of independent and constrained refinement
$0.15 \times 0.10 \times 0.08 \mathrm{~mm}$

1882 measured reflections 1562 independent reflections 1410 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.062$
refinement
$\Delta \rho_{\max }=0.75$ e \AA^{-3}
$\Delta \rho_{\text {min }}=-0.76 \mathrm{e}^{-3}$

Table 1
Hydrogen-bond geometry ($\mathrm{A},{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 7-\mathrm{H} 7 X \cdots \mathrm{~S} 9^{\mathrm{i}}$	$0.86(3)$	$2.51(2)$	$3.342(3)$	$161(4)$
$\mathrm{N} 10-\mathrm{H} 10 Y \cdots \mathrm{Cl} 1^{\mathrm{ii}}$	$0.87(3)$	$2.80(2)$	$3.646(3)$	$163(4)$

Symmetry codes: (i) $-x+1,-y,-z$; (ii) $-x,-y+1,-z+1$.

Data collection: SMART (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

The authors are very grateful to the Natural Science Foundation of Ningbo City for financial support (grant No. 2009 A610185).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BG2297).

References

Bruker (2005). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
Holla, B. S., Maline, K. V., Rao, B. S., Sarojini, B. K. \& Kumari, N. S. (2003). Eur. J. Med. Chem. 38, 313-318.
Liu, B., Gao, H. Q. \& Zhou, X. J. (1994). Hua Xue Tong Bao, 5, 42-43. Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany. Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

supporting information

Acta Cryst. (2009). E65, o2401 [doi:10.1107/S1600536809035569]

N -(3,4-Dichlorophenyl)thiourea

Hai-Bo Shi, Wei-Xiao Hu and Yan-Fang Lin

S1. Comment

Thiazoles and their derivatives are found to be associated with various biological activities such as antibacterial, antifungal, anti-inflammatory activities(Holla et al., 2003).The title compound, N-(3,4-dichlorophenyl)thiourea(I), is an important intermediate in the synthesis of thiazole and their derivatives. In our work, we present its crystal structure. In Fig.1, the benzene ring of (I) is twisted out ofthe mean plane through the $-\mathrm{N} 7-\mathrm{C} 8(=\mathrm{S} 9)-\mathrm{N} 10$ group by a diherdral angle of $66.77(3)^{\circ}$. Weak intermolecular $\mathrm{N}-\mathrm{H} \cdots \mathrm{S}$ and $\mathrm{N}-\mathrm{H} \cdots \mathrm{Cl}$ hydrogen bonds (Table 1) link the molecules into a three-dimensional network.

S2. Experimental

The title compound was obtained by refluxing 3,4-dichloroaniline ($48.6 \mathrm{~g}, 0.3 \mathrm{~mol}), 36 \%$ aqueous $\mathrm{HCl}(30.4 \mathrm{~g}, 0.3 \mathrm{~mol})$ and ammonium thiocyanate $(22.8 \mathrm{~g}, 0.3 \mathrm{~mol})$ in water for 7 hr , then a white precipitate was observed and filtered. The solid was recrystallized from alcohol to give the pure product. This was dissolved in THF, and the solution evaporated gradually at room temperature to afford single crystals of (I).(m.p. 489-490 K). MS(m/z, \%): $220\left(M^{+}, 90\right), 187(15), 178$ (16), 161 (98), 126 (7), 99 (10), 74 (8), 60 (55).

S3. Refinement

Atoms H7X, H10X and H10Y were located in difference Fourier maps and refined isotropically with the $\mathrm{N}-\mathrm{H}$ bond restraint of 0.87 (2) \AA. Other H atoms were placed in calculated positions with $\mathrm{C}-\mathrm{H}=0.93 \AA$, and refined in riding mode, with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$.

Figure 1
The structure of (I), shown with 30% probability displacement ellipsoids.

Figure 2
$\mathrm{N}-\mathrm{H} \cdots \mathrm{S}$ and $\mathrm{N}-\mathrm{H} \cdots \mathrm{Cl}$ interactions (dotted line) in the title compound.

N-(3,4-Dichlorophenyl)thiourea

Crystal data

$\mathrm{C}_{7} \mathrm{H}_{6} \mathrm{Cl}_{2} \mathrm{~N}_{2} \mathrm{~S}$
$M_{r}=221.10$
Triclinic, $P \overline{1}$
Hall symbol: -P 1
$a=5.8168(19) \AA$
$b=8.489(3) \AA$

$$
\begin{aligned}
& c=9.771(3) \AA \\
& \alpha=107.042(4)^{\circ} \\
& \beta=94.468(4)^{\circ} \\
& \gamma=94.778(4)^{\circ} \\
& V=457.0(3) \AA^{3} \\
& Z=2
\end{aligned}
$$

$F(000)=224$
$D_{\mathrm{x}}=1.607 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 843 reflections
$\theta=2.5-27.0^{\circ}$

Data collection

Bruker SMART APEX CCD area-detector diffractometer
Radiation source: fine-focus sealed tube
Graphite monochromator
φ and ω scans
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
$T_{\text {min }}=0.879, T_{\text {max }}=0.933$
$\mu=0.88 \mathrm{~mm}^{-1}$
$T=291 \mathrm{~K}$
Prism, orange
$0.15 \times 0.10 \times 0.08 \mathrm{~mm}$

1882 measured reflections
1562 independent reflections
1410 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.062$
$\theta_{\text {max }}=25.0^{\circ}, \theta_{\text {min }}=2.2^{\circ}$
$h=-6 \rightarrow 3$
$k=-9 \rightarrow 10$
$l=-11 \rightarrow 11$

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.084$
$w R\left(F^{2}\right)=0.236$
$S=1.10$
1562 reflections
122 parameters
3 restraints
Primary atom site location: structure-invariant direct methods
Secondary atom site location: difference Fourier map

Hydrogen site location: inferred from neighbouring sites
H atoms treated by a mixture of independent and constrained refinement
$w=1 /\left[\sigma^{2}\left(F_{0}{ }^{2}\right)+(0.1955 P)^{2}\right]$
where $P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}<0.001$
$\Delta \rho_{\text {max }}=0.75$ e \AA^{-3}
$\Delta \rho_{\text {min }}=-0.76 \mathrm{e}^{-3}$
Extinction correction: SHELXL97 (Sheldrick, 2008), $\mathrm{Fc}^{*}=\mathrm{kFc}\left[1+0.001 \mathrm{xFc}^{2} \lambda^{3} / \sin (2 \theta)\right]^{-1 / 4}$

Extinction coefficient: 0.13 (4)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor $w R$ and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>\sigma\left(F^{2}\right)$ is used only for calculating R-factors (gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F, and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\AA^{2})

	x	y	z	$U_{\text {iso }} * / U_{\text {eq }}$
C11	$0.19736(17)$	$0.43998(14)$	$0.66939(11)$	$0.0560(6)$
C12	$-0.27770(17)$	$0.21189(14)$	$0.62155(11)$	$0.0565(6)$
C1	$0.1662(6)$	$0.1685(4)$	$0.2584(4)$	$0.0365(9)$
C2	$0.2383(6)$	$0.2836(4)$	$0.3921(4)$	$0.0398(9)$
H2	0.3777	0.3512	0.4062	0.048^{*}
C3	$0.1023(6)$	$0.2971(4)$	$0.5034(4)$	$0.0374(9)$
C4	$-0.1046(6)$	$0.1948(4)$	$0.4830(4)$	$0.0388(9)$
C5	$-0.1748(6)$	$0.0795(5)$	$0.3507(4)$	$0.0480(11)$
H5	-0.3127	0.0103	0.3372	0.058^{*}
C6	$-0.0398(7)$	$0.0669(4)$	$0.2380(4)$	$0.0446(9)$

H6	-0.0879	-0.0101	0.1485	0.054^{*}
N7	$0.3073(6)$	$0.1521(3)$	$0.1444(3)$	$0.0424(9)$
H7X	$0.371(7)$	$0.061(4)$	$0.113(5)$	$0.071(15)^{*}$
C8	$0.3732(6)$	$0.2709(4)$	$0.0853(4)$	$0.0353(8)$
S9	$0.58001(18)$	$0.24215(10)$	$-0.03037(11)$	$0.0493(6)$
N10	$0.2718(6)$	$0.4075(4)$	$0.1191(4)$	$0.0508(10)$
H10X	$0.308(7)$	$0.486(5)$	$0.083(5)$	$0.055(12)^{*}$
H10Y	$0.159(5)$	$0.422(6)$	$0.173(4)$	$0.054(12)^{*}$

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C11	$0.0546(8)$	$0.0620(8)$	$0.0427(7)$	$0.0057(5)$	$0.0146(5)$	$0.0001(5)$
C12	$0.0577(8)$	$0.0636(9)$	$0.0549(8)$	$0.0087(5)$	$0.0328(5)$	$0.0209(6)$
C1	$0.0534(19)$	$0.0253(16)$	$0.0377(19)$	$0.0123(14)$	$0.0214(15)$	$0.0137(14)$
C2	$0.0404(18)$	$0.0334(18)$	$0.050(2)$	$0.0026(14)$	$0.0167(15)$	$0.0160(16)$
C3	$0.0453(19)$	$0.0341(18)$	$0.0375(19)$	$0.0122(14)$	$0.0132(14)$	$0.0139(15)$
C4	$0.0433(19)$	$0.0396(19)$	$0.042(2)$	$0.0106(15)$	$0.0200(15)$	$0.0195(16)$
C5	$0.048(2)$	$0.043(2)$	$0.051(2)$	$-0.0046(16)$	$0.0107(18)$	$0.0127(18)$
C6	$0.060(2)$	$0.0344(19)$	$0.039(2)$	$0.0023(15)$	$0.0123(16)$	$0.0087(15)$
N7	$0.064(2)$	$0.0251(15)$	$0.0460(18)$	$0.0146(13)$	$0.0319(14)$	$0.0136(13)$
C8	$0.0489(19)$	$0.0257(16)$	$0.0338(18)$	$0.0059(13)$	$0.0167(14)$	$0.0091(13)$
S9	$0.0722(9)$	$0.0288(7)$	$0.0572(8)$	$0.0151(5)$	$0.0417(6)$	$0.0175(5)$
N10	$0.072(2)$	$0.0312(17)$	$0.064(2)$	$0.0175(15)$	$0.0434(17)$	$0.0239(15)$

Geometric parameters ($\AA,{ }^{\circ}$)

$\mathrm{Cl1}-\mathrm{C} 3$	1.733 (4)	C5-C6	1.386 (5)
C12-C4	1.729 (4)	C5-H5	0.9300
C1-C6	1.382 (5)	C6-H6	0.9300
C1-C2	1.391 (5)	N7-C8	1.345 (4)
$\mathrm{C} 1-\mathrm{N} 7$	1.416 (5)	N7-H7X	0.87 (2)
C2-C3	1.378 (6)	C8-N10	1.312 (5)
C2-H2	0.9300	C8-S9	1.698 (4)
C3-C4	1.389 (5)	N10-H10X	0.86 (3)
C4-C5	1.380 (6)	N10-H10Y	0.87 (3)
C6- $\mathrm{C} 1-\mathrm{C} 2$	120.1 (3)	C6-C5-H5	120.0
C6- $\mathrm{C} 1-\mathrm{N} 7$	120.0 (3)	C1-C6-C5	120.0 (3)
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{N} 7$	120.0 (3)	C1-C6-H6	120.0
C3-C2-C1	119.7 (3)	C5-C6-H6	120.0
C3-C2-H2	120.1	C8-N7-C1	126.3 (3)
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{H} 2$	120.1	C8-N7-H7X	114 (3)
C2-C3-C4	120.2 (3)	C1-N7-H7X	119 (3)
C2-C3-Cl1	118.9 (3)	N10-C8-N7	118.0 (3)
C4-C3-Cl1	120.9 (3)	N10-C8-S9	121.7 (3)
C5-C4-C3	119.9 (3)	N7-C8-S9	120.4 (3)
C5-C4-Cl2	119.5 (3)	C8-N10-H10X	121 (3)

$\mathrm{C} 3-\mathrm{C} 4-\mathrm{Cl} 2$	$120.6(3)$	$\mathrm{C} 8-\mathrm{N} 10-\mathrm{H} 10 \mathrm{Y}$	$123(3)$
$\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 6$	$120.0(3)$	$\mathrm{H} 10 \mathrm{X}-\mathrm{N} 10-\mathrm{H} 10 \mathrm{Y}$	$116(4)$
$\mathrm{C} 4-\mathrm{C} 5-\mathrm{H} 5$	120.0		
$\mathrm{C} 6-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	$-0.7(5)$	$\mathrm{C} 12-\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 6$	$178.7(3)$
$\mathrm{N} 7-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	$-178.9(3)$	$\mathrm{C} 2-\mathrm{C} 1-\mathrm{C} 6-\mathrm{C} 5$	$0.0(5)$
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$	$0.9(5)$	$\mathrm{N} 7-\mathrm{C} 1-\mathrm{C} 6-\mathrm{C} 5$	$178.1(3)$
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{Cl} 1$	$\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 6-\mathrm{C} 1$	$0.6(5)$	
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5$	$-0.2(3)$	$\mathrm{C} 6-\mathrm{C} 1-\mathrm{N} 7-\mathrm{C} 8$	$121.2(4)$
$\mathrm{C} 11-\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5$	$-178.7(3)$	$\mathrm{C} 2-\mathrm{C} 1-\mathrm{N} 7-\mathrm{C} 8$	$-60.7(5)$
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4-\mathrm{Cl} 2$	$\mathrm{C} 1-\mathrm{N} 7-\mathrm{C} 8-\mathrm{N} 10$	$-11.2(5)$	
$\mathrm{Cl} 1-\mathrm{C} 3-\mathrm{C} 4-\mathrm{Cl} 2$	$\mathrm{C} 1-\mathrm{N} 7-\mathrm{C} 8-\mathrm{S} 9$	$169.3(3)$	
$\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 6$			

Hydrogen-bond geometry ($A,{ }^{\circ}$)

$D — \mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 7 — \mathrm{H} 7 X_{\cdots} \cdot \mathrm{S} 9^{\mathrm{i}}$	$0.86(3)$	$2.51(2)$	$3.342(3)$	$161(4)$
$\mathrm{N} 10 — \mathrm{H} 10 Y \cdots \mathrm{Cl1}^{\mathrm{ii}}$	$0.87(3)$	$2.80(2)$	$3.646(3)$	$163(4)$

Symmetry codes: (i) $-x+1,-y,-z$; (ii) $-x,-y+1,-z+1$.

