Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Tetra- μ-oxido-tetrakis\{dioxido[3-(2-pyridyl)-1H-pyrazole]molybdenum(VI)\}

Dacheng Li, ${ }^{\text {a }}$ Ying Liu, ${ }^{\text {a }}$ Peihai Wei, ${ }^{\text {b }}$ Bo $\mathrm{Hu}^{\text {b }}$ and Xiutang Zhang ${ }^{\text {a,b* }}$
${ }^{\text {a }}$ College of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, People's Republic of China, and ${ }^{\text {b }}$ Advanced Material Institute of Research, Department of Chemistry and Chemical Engineering, ShanDong Institute of Education, Jinan 250013, People's Republic of China
Correspondence e-mail: xiutangzhang@yahoo.com.cn
Received 28 July 2009; accepted 11 August 2009
Key indicators: single-crystal X-ray study; $T=298 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.006 \AA$; R factor $=0.024 ; w R$ factor $=0.064 ;$ data-to-parameter ratio $=12.1$.

In the title compound, $\left[\mathrm{Mo}_{4} \mathrm{O}_{12}\left(\mathrm{C}_{8} \mathrm{H}_{7} \mathrm{~N}_{3}\right)_{4}\right]$, the $\mathrm{Mo}^{\mathrm{VI}}$ ion has a distorted octahedral coordination completed by two terminal O atoms, two μ-oxide atoms and two N atoms from one 3-(2-pyridyl)- $1 H$-pyrazole ligand. It is noteworthy that in the tetranuclear unit ($\overline{4}$ symmetry), any three $\mathrm{Mo}^{\mathrm{VI}}$ atoms define a plane, and the fourth lies 1.8 (1) \AA out of that plane. The degree of linearity of the oxide bridges between two Mo atoms is $175.38(13)^{\circ}$. Moreover, the $\mathrm{N}-\mathrm{H}$ group forms an intramolecular hydrogen bond (four per molecule).

Related literature

For the properties and potential medical applications of polyoxometalate clusters, see: Pope \& Müller (1991); Khenkin \& Neumann (2008); Zhang et al. (2006, 2007, 2009). For MoO and Mo-N distances, see: Rana et al. (2003). For general background, see: Mezei et al. (2007).

Experimental

Crystal data

$\left[\mathrm{Mo}_{4} \mathrm{O}_{12}\left(\mathrm{C}_{8} \mathrm{H}_{7} \mathrm{~N}_{3}\right)_{4}\right]$
$M_{r}=1156.42$
Tetragonal, $P 4_{2} / n$ 。
$a=14.4412$ (16) \AA
$c=9.094$ (2) A
$V=1896.6(5) \AA^{3}$

$$
Z=2
$$

Mo $K \alpha$ radiation
$\mu=1.37 \mathrm{~mm}^{-1}$
$T=298 \mathrm{~K}$
$0.12 \times 0.10 \times 0.08 \mathrm{~mm}$

Data collection

Bruker APEXII CCD area-detector diffractometer
Absorption correction: multi-scan (SADABS; Bruker, 2001)
$T_{\text {min }}=0.853, T_{\text {max }}=0.898$
7579 measured reflections 1675 independent reflections 1316 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.036$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.024$
$w R\left(F^{2}\right)=0.064$
$S=1.00$
1675 reflections
139 parameters
1 restraint

H atoms treated by a mixture of independent and constrained refinement
$\Delta \rho_{\text {max }}=0.35 \mathrm{e}_{\AA^{-3}}$
$\Delta \rho_{\text {min }}=-0.35 \mathrm{e}^{-3}$

Table 1
Hydrogen-bond geometry ($\mathrm{A},{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 2-\mathrm{H} 1 A \cdots \mathrm{O}^{\mathrm{i}}$	$0.94(5)$	$1.86(5)$	$2.783(4)$	$168(4)$

Symmetry code: (i) $y,-x+\frac{3}{2},-z+\frac{1}{2}$.

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINTPlus (Bruker, 2001); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

Financial support from the Natural Science Foundation of China (grant No. 20171028, 20325105), the National Ministry of Science and Technology of China (grant No. 2001CB610507) and the Ministry of Education of China, Shandong University, is gratefully acknowledged.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: ZQ2001).

References

Bruker (2001). SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
Bruker (2004). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.
Khenkin, A. M. \& Neumann, R. (2008). J. Am. Chem. Soc. 130, 14474-14476.
Mezei, G., Zaleski, C. M. \& Pecoraro, V. L. (2007). Chem. Rev. 107, 4933-5003.
Pope, M. T. \& Müller, A. (1991). Angew. Chem. Int. Ed. Engl. 30, 34-38.
Rana, A., Dinda, R., Ghosh, S. \& Blake, A. J. (2003). Polyhedron, 22, 30753082.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Zhang, X. T., Dou, J. M., Wang, D. Q., Zhou, Y., Zhang, Y. X., Li, R. J., Yan, S. S., Ni, Z. H. \& Jiang, J. Z. (2007). Cryst. Growth Des. 7, 1699-1705.

Zhang, X. T., Dou, J. M., Wei, P. H., Li, D. C., Li, B., Shi, C. W. \& Hu, B. (2009). Inorg. Chim. Acta, 362, 3325-3332.
Zhang, X. T., Wang, D. Q., Dou, J. M., Yan, S. S., Yao, X. X. \& Jang, J. Z. (2006). Inorg. Chem. 45, 10629-10635.

supporting information

Acta Cryst. (2009). E65, m1074 [doi:10.1107/S1600536809031717]

Tetra- μ-oxido-tetrakis\{dioxido[3-(2-pyridyl)-1H-pyrazole]molybdenum(VI)\}
 Dacheng Li, Ying Liu, Peihai Wei, Bo Hu and Xiutang Zhang

S1. Comment

The design and synthesis of polyoxometalate clusters has attracted continuous research interest not only because of their appealing structural and topological novelty, but also due to their unusual optical, electronic, magnetic, and catalytic properties, as well as their potential medical application (Pope et al.; Khenkin et al.; Zhang et al. (2007); Zhang et al. (2006); Zhang et al. (2009). In the present paper, we describe the synthesis and structural characterization of tetrakis(μ -oxo)-bis(3-(2-pyridyl)pyrazole)molybdenum(vi)).
In the asymmetric unit of complex I, there exhibit one 3-(2-pyridyl)pyrazole ligand and one molybdenum oxide $\mathrm{Mo}^{\mathrm{VI}} \mathrm{O}_{3}$, Fig. 1. The $\mathrm{Mo}^{\mathrm{VI}}$ ion surrounded by one 3-(2-pyridyl)pyrazole ligand is hexa-coordinated by four oxygen atoms and two nitrogen atoms, with distorted octahedral coordination sphere. The bond distances of Mo-O and Mo-N are in the normal range compared to the reported complexes containing the $\mathrm{N}-\mathrm{Mo}-\mathrm{O}$ atoms (Rana et al.). It is worthy noting that the simple basic $\mathrm{Mo}_{3} \mathrm{HL}$ units are assembled to form one 8-MC-4 complex, which could be described as 'folded' with two adjacent Mo_{3} planes forming a dihedral angle of about 38.65°. Moreover, the $\mathrm{N}-\mathrm{H}$ group forms a very nice intramolecular hydrogen bond (4 per molecule), shown in Fig. 2.

S2. Experimental

A mixture of 3-(2-pyridyl)pyrazole (1 mmoL) and molybdenum trioxide (1 mmoL) in 10 ml distilled water sealed in a 25 ml Teflon-lined stainless steel autoclave was kept at 433 K for three days. Colourless crystals suitable for an X-ray experiment were obtained. Anal. Calc. for $\mathrm{C}_{32} \mathrm{H}_{28} \mathrm{Mo}_{4} \mathrm{~N}_{12} \mathrm{O}_{12}$: C 33.22, H 1.90, N 14.53\%; Found: C 33.13, H 1.79, N 14.32%.

S3. Refinement

All hydrogen atoms bound to carbon were refined using a riding model with $\mathrm{C}-\mathrm{H}=0.93 \AA$ and $U_{\text {iso }}=1.2 U_{\text {eq }}(\mathrm{C})$ for aromatic atoms. The H atom on nitrogen was located from difference density maps and was refined with a distance restraint of $\mathrm{N}-\mathrm{H}=0.97$ (1) \AA.

Figure 1
A view of the title compound with the unique atom-labelling scheme. Displacement ellipsoids are drawn at the 30\% probability level.

Figure 2
The packing diagram of the title compound with the hydrogen bonds of $\mathrm{N} 2-\mathrm{H} 1 \mathrm{~A} \cdots \mathrm{O} 2$.

Tetra- μ-oxido-tetrakis\{dioxido[3-(2-pyridyl)-1H-pyrazole]molybdenum(VI)\}

Crystal data

$\left[\mathrm{Mo}_{4} \mathrm{O}_{12}\left(\mathrm{C}_{8} \mathrm{H}_{7} \mathrm{~N}_{3}\right)_{4}\right]$
$M_{r}=1156.42$
Tetragonal, $P 4_{2} / n$
Hall symbol: -P 4bc
$a=14.4412(16) \AA$
$c=9.094(2) \AA$
$V=1896.6(5) \AA^{3}$
$Z=2$
$F(000)=1136$

Data collection

Bruker APEXII CCD area-detector diffractometer
Radiation source: fine-focus sealed tube
Graphite monochromator
φ and ω scans
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
$T_{\text {min }}=0.853, T_{\text {max }}=0.898$
$D_{\mathrm{x}}=2.025 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 1675 reflections
$\theta=2.0-25.0^{\circ}$
$\mu=1.37 \mathrm{~mm}^{-1}$
$T=298 \mathrm{~K}$
Block, colourless
$0.12 \times 0.10 \times 0.08 \mathrm{~mm}$

7579 measured reflections
1675 independent reflections
1316 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.036$
$\theta_{\text {max }}=25.0^{\circ}, \theta_{\text {min }}=2.0^{\circ}$
$h=-17 \rightarrow 16$
$k=-12 \rightarrow 17$
$l=-9 \rightarrow 10$

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.024$
$w R\left(F^{2}\right)=0.064$
$S=1.00$
1675 reflections
139 parameters
1 restraint
Primary atom site location: structure-invariant direct methods

> Secondary atom site location: difference Fourier map
> Hydrogen site location: inferred from neighbouring sites
> H atoms treated by a mixture of independent and constrained refinement
> $w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0295 P)^{2}+2.0306 P\right]$ where $P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$
> $(\Delta / \sigma)_{\text {max }}=0.001$
> $\Delta \rho_{\text {max }}=0.35$ e \AA^{-3}
> $\Delta \rho_{\text {min }}=-0.35 \mathrm{e}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving 1.s. planes.
Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor $w R$ and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>\sigma\left(F^{2}\right)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F, and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\AA^{2})

	x	y	z	$U_{\text {iso }} / U_{\text {eq }}$
Mo1	$0.642839(18)$	$0.904662(19)$	$0.19761(3)$	$0.02233(12)$
N1	$0.61994(19)$	$0.90081(18)$	$0.4404(3)$	$0.0257(6)$
N2	$0.6811(2)$	$0.8938(2)$	$0.5516(3)$	$0.0311(7)$
N3	$0.4862(2)$	$0.8976(2)$	$0.2532(3)$	$0.0314(7)$
O1	$0.76035(15)$	$0.88536(16)$	$0.2362(2)$	$0.0302(5)$
O2	$0.61894(17)$	$0.86807(17)$	$0.0193(3)$	$0.0359(6)$
O3	$0.63381(18)$	$1.02324(17)$	$0.1907(3)$	$0.0370(6)$
C1	$0.6375(3)$	$0.8821(3)$	$0.6815(4)$	$0.0345(9)$
H1	0.6656	0.8765	0.7731	0.041^{*}
C2	$0.5439(3)$	$0.8800(2)$	$0.6536(4)$	$0.0354(9)$
H2A	0.4963	0.8726	0.7215	0.042^{*}
C3	$0.5355(2)$	$0.8917(2)$	$0.4995(4)$	$0.0283(8)$
C4	$0.4595(2)$	$0.8907(2)$	$0.3953(4)$	$0.0321(8)$
C5	$0.3667(3)$	$0.8828(2)$	$0.4346(5)$	$0.0413(10)$
H5	0.3492	0.8796	0.5329	0.050^{*}
C6	$0.3014(3)$	$0.8798(3)$	$0.3248(5)$	$0.0519(11)$
H6	0.2391	0.8724	0.3477	0.062^{*}
C7	$0.3291(3)$	$0.8878(3)$	$0.1802(5)$	$0.0504(11)$
H7	0.2853	0.8870	0.1054	0.060^{*}
C8	$0.4208(3)$	$0.8969(3)$	$0.1471(5)$	$0.0423(10)$
H8	0.4386	0.9027	0.051^{*}	
H1A	$0.746(3)$	$0.894(3)$	$0.540(5)$	0.080^{*}

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Mo1	$0.02453(18)$	$0.02550(18)$	$0.01698(17)$	$0.00112(12)$	$0.00115(11)$	$0.00047(12)$
N1	$0.0347(15)$	$0.0237(14)$	$0.0187(14)$	$0.0010(12)$	$-0.0011(12)$	$-0.0010(11)$
N2	$0.0367(17)$	$0.0338(16)$	$0.0227(16)$	$0.0002(14)$	$0.0014(13)$	$-0.0026(13)$
N3	$0.0298(16)$	$0.0315(16)$	$0.0328(16)$	$0.0037(13)$	$-0.0038(13)$	$-0.0050(13)$
O1	$0.0245(12)$	$0.0387(14)$	$0.0273(13)$	$0.0000(11)$	$0.0026(10)$	$0.0028(11)$
O2	$0.0466(15)$	$0.0403(14)$	$0.0209(13)$	$-0.0016(12)$	$-0.0022(11)$	$0.0006(11)$
O3	$0.0448(15)$	$0.0294(13)$	$0.0368(15)$	$0.0040(11)$	$0.0047(12)$	$0.0037(11)$
C1	$0.044(2)$	$0.039(2)$	$0.0201(19)$	$0.0018(17)$	$0.0019(16)$	$0.0017(16)$
C2	$0.041(2)$	$0.034(2)$	$0.031(2)$	$0.0022(17)$	$0.0135(17)$	$0.0045(16)$
C3	$0.0357(19)$	$0.0203(17)$	$0.0289(19)$	$0.0051(14)$	$0.0086(16)$	$-0.0006(14)$
C4	$0.036(2)$	$0.0216(17)$	$0.039(2)$	$0.0017(15)$	$0.0111(17)$	$0.0006(16)$
C5	$0.034(2)$	$0.035(2)$	$0.055(3)$	$0.0049(17)$	$0.0090(19)$	$0.0055(19)$
C6	$0.033(2)$	$0.055(3)$	$0.067(3)$	$0.0006(19)$	$0.002(2)$	$0.003(2)$
C7	$0.033(2)$	$0.067(3)$	$0.051(3)$	$0.005(2)$	$-0.010(2)$	$-0.007(2)$
C8	$0.036(2)$	$0.046(2)$	$0.044(2)$	$0.0043(18)$	$-0.0021(18)$	$-0.0070(19)$

Geometric parameters ($\AA,{ }^{\circ}$)

Mo1-O3	1.719 (2)	$\mathrm{C} 1-\mathrm{C} 2$	1.375 (5)
$\mathrm{Mo} 1-\mathrm{O} 2$	1.740 (2)	C1-H1	0.9300
$\mathrm{Mol-O1}$	1.755 (2)	$\mathrm{C} 2-\mathrm{C} 3$	1.416 (5)
$\mathrm{Mol-} \mathrm{Ol}^{\text {i }}$	2.207 (2)	$\mathrm{C} 2-\mathrm{H} 2 \mathrm{~A}$	0.9300
Mo1-N1	2.233 (3)	C3-C4	1.449 (5)
Mo1-N3	2.320 (3)	C4-C5	1.392 (5)
N1-C3	1.340 (4)	C5-C6	1.374 (6)
N1-N2	1.346 (4)	C5-H5	0.9300
N2-C1	1.349 (4)	C6-C7	1.379 (6)
N2-H1A	0.94 (5)	C6-H6	0.9300
N3-C8	1.350 (5)	C7-C8	1.364 (6)
N3-C4	1.353 (5)	C7-H7	0.9300
$\mathrm{O} 1-\mathrm{Mol}^{1 i}$	2.207 (2)	C8-H8	0.9300
$\mathrm{O} 3-\mathrm{Mo} 1-\mathrm{O} 2$	104.69 (12)	$\mathrm{N} 2-\mathrm{C} 1-\mathrm{C} 2$	107.4 (3)
$\mathrm{O} 3-\mathrm{Mo1-O1}$	103.82 (11)	$\mathrm{N} 2-\mathrm{C} 1-\mathrm{H} 1$	126.3
$\mathrm{O} 2-\mathrm{Mo} 1-\mathrm{O} 1$	109.26 (11)	C2-C1-H1	126.3
$\mathrm{O} 3-\mathrm{Mo} 1-\mathrm{O1}{ }^{\text {i }}$	159.53 (10)	C1-C2-C3	105.4 (3)
$\mathrm{O} 2-\mathrm{Mol}-\mathrm{Ol}^{\mathrm{i}}$	86.03 (10)	$\mathrm{C} 1-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~A}$	127.3
$\mathrm{O} 1-\mathrm{Mol-O1}{ }^{\text {i }}$	88.51 (13)	$\mathrm{C} 3-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~A}$	127.3
$\mathrm{O} 3-\mathrm{Mo} 1-\mathrm{N} 1$	92.85 (10)	N1-C3-C2	109.3 (3)
$\mathrm{O} 2-\mathrm{Mo} 1-\mathrm{N} 1$	152.17 (11)	N1-C3-C4	115.3 (3)
$\mathrm{O} 1-\mathrm{Mo} 1-\mathrm{N} 1$	86.65 (10)	C2-C3-C4	135.3 (3)
$\mathrm{O} 1{ }^{\text {i }}$ - Mol- 1	71.30 (9)	N3-C4-C5	121.7 (4)
$\mathrm{O} 3-\mathrm{Mo} 1-\mathrm{N} 3$	88.74 (11)	N3-C4-C3	114.1 (3)
$\mathrm{O} 2-\mathrm{Mo} 1-\mathrm{N} 3$	89.78 (11)	C5-C4-C3	124.2 (3)
$\mathrm{O} 1-\mathrm{Mo} 1-\mathrm{N} 3$	153.15 (10)	C6-C5-C4	118.4 (4)

$\mathrm{O} 1-\mathrm{Mo} 1-\mathrm{N} 3$	$73.68(9)$	$\mathrm{C} 6-\mathrm{C} 5-\mathrm{H} 5$	120.8
$\mathrm{~N} 1-\mathrm{Mo} 1-\mathrm{N} 3$	$68.85(10)$	$\mathrm{C} 4-\mathrm{C} 5-\mathrm{H} 5$	120.8
$\mathrm{C} 3-\mathrm{N} 1-\mathrm{N} 2$	$106.7(3)$	$\mathrm{C} 5-\mathrm{C} 6-\mathrm{C} 7$	$119.5(4)$
$\mathrm{C} 3-\mathrm{N} 1-\mathrm{Mo} 1$	$122.3(2)$	$\mathrm{C} 5-\mathrm{C} 6-\mathrm{H} 6$	120.3
$\mathrm{~N} 2-\mathrm{N} 1-\mathrm{Mo} 1$	$130.4(2)$	$\mathrm{C} 7-\mathrm{C} 6-\mathrm{H} 6$	120.3
$\mathrm{~N} 1-\mathrm{N} 2-\mathrm{C} 1$	$111.2(3)$	$\mathrm{C} 8-\mathrm{C} 7-\mathrm{C} 6$	$120.0(4)$
$\mathrm{N} 1-\mathrm{N} 2-\mathrm{H} 1 \mathrm{~A}$	$124(3)$	$\mathrm{C} 8-\mathrm{C} 7-\mathrm{H} 7$	120.0
$\mathrm{C} 1-\mathrm{N} 2-\mathrm{H} 1 \mathrm{~A}$	$124(3)$	$\mathrm{C} 6-\mathrm{C} 7-\mathrm{H} 7$	120.0
$\mathrm{C} 8-\mathrm{N} 3-\mathrm{C} 4$	$118.9(3)$	$\mathrm{N} 3-\mathrm{C} 8-\mathrm{C} 7$	$121.4(4)$
$\mathrm{C} 8-\mathrm{N} 3-\mathrm{Mo1}$	$121.8(3)$	$\mathrm{N} 3-\mathrm{C} 8-\mathrm{H} 8$	119.3
$\mathrm{C} 4-\mathrm{N} 3-\mathrm{Mo1}$	$119.3(2)$	$\mathrm{C} 7-\mathrm{C} 8-\mathrm{H} 8$	119.3
$\mathrm{Mo} 1-\mathrm{O} 1-\mathrm{Mo1}$			

Symmetry codes: (i) $-y+3 / 2, x,-z+1 / 2$; (ii) $y,-x+3 / 2,-z+1 / 2$.

Hydrogen-bond geometry ($A,{ }^{\circ}$)

$D — \mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 2 — \mathrm{H} 1 A \cdots \mathrm{O} 2^{\mathrm{ii}}$	$0.94(5)$	$1.86(5)$	$2.783(4)$	$168(4)$

Symmetry code: (ii) $y,-x+3 / 2,-z+1 / 2$.

