Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

3-Methyl-1-propargylquinoxalin-2(1*H*)one

Hanane Benzeid,^a Youssef Ramli,^a Laure Vendier,^b El Mokhtar Essassi^a and Seik Weng Ng^c*

^aLaboratoire de Chimie Organique Hétérocyclique, Pôle de compétences Pharmacochimie, Université Mohammed V-Agdal, BP 1014 Avenue Ibn Batout, Rabat, Morocco, ^bLaboratoire de Chimie de Coordination, 205 Route de Narbonne, Toulouse Cedex 04, France, and ^cDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia

Correspondence e-mail: seikweng@um.edu.my

Received 14 August 2009; accepted 16 August 2009

Key indicators: single-crystal X-ray study; T = 180 K; mean σ (C–C) = 0.002 Å; R factor = 0.036; wR factor = 0.102; data-to-parameter ratio = 14.9.

The ten-membered fused ring of the title compound, $C_{12}H_{10}N_2O$, is essentially planar in the two independent molecules of the asymmetric unit (r.m.s. deviations = 0.012 and 0.015 Å).

Related literature

For the crystal structure of 1-ethyl-3-methylquinoxalin-2(1H)one, see: Benzeid *et al.* (2008). For the synthesis of the reactant 3-methyl-1*H*-quinoxalin-2-one, see: Nikolaenko & Munro (2004).

Experimental

Crystal data

C₁₂H₁₀N₂O $M_r = 198.22$ Monoclinic, $P2_1/n$ a = 21.124 (1) Å b = 4.3709 (2) Å c = 22.246 (1) Å $\beta = 105.354$ (6)°

Data collection

Oxford Diffraction Xcalibur diffractometer Absorption correction: multi-scan (*CrysAlis RED*; Oxford Diffraction, 2006) $T_{\rm min} = 0.985, T_{\rm max} = 0.991$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.036$ $wR(F^2) = 0.102$ S = 0.974058 reflections $V = 1980.7 (2) \text{ Å}^{3}$ Z = 8 Mo K\alpha radiation $\mu = 0.09 \text{ mm}^{-1}$ T = 180 K $0.20 \times 0.15 \times 0.08 \text{ mm}$

14275 measured reflections 4058 independent reflections 2428 reflections with $I > 2\sigma(I)$ $R_{\text{int}} = 0.046$

273 parameters H-atom parameters constrained $\Delta \rho_{max} = 0.19$ e Å⁻³ $\Delta \rho_{min} = -0.22$ e Å⁻³

Data collection: *CrysAlis CCD* (Oxford Diffraction, 2006); cell refinement: *CrysAlis RED* (Oxford Diffraction, 2006); data reduction: *CrysAlis RED*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *X-SEED* (Barbour, 2001); software used to prepare material for publication: *publCIF* (Westrip, 2009).

We thank Université Mohammed V-Agdal and the University of Malaya for supporting this study.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: XU2590).

References

Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.

Benzeid, H., Vendier, L., Ramli, Y., Garrigues, B. & Essassi, E. M. (2008). Acta Cryst. E64, o2234.

Nikolaenko, I. V. & Munro, O. Q. (2004). Acta Cryst. E60, 092-094.

- Oxford Diffraction (2006). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Westrip, S. P. (2009). publCIF. In preparation.

supporting information

Acta Cryst. (2009). E65, o2196 [doi:10.1107/S1600536809032498]

3-Methyl-1-propargylquinoxalin-2(1H)-one

Hanane Benzeid, Youssef Ramli, Laure Vendier, El Mokhtar Essassi and Seik Weng Ng

S1. Experimental

To a solution of 3-methylquinoxalin-2(1*H*)-one (Nikolaenko & Munro *et al.*, 2004) (1 g, 6.22 mmol) in DMF (20 ml) was added propargyl bromide (0.82 ml, 6.22 mmol), potassium carbonate (1 g, 7.46 mmol) and a catalytic quantity of tetra-*n*-butylammonium bromide. The mixture was stirred at room temperature for 24 h. The solution was filtered and the solvent removed under reduced pressure. The residue was recrystallized from ethanol to afford 3-methyl-1-(propargyl)quinoxalin-2(1*H*)-one as colorless crystals.

S2. Refinement

Carbon-bound H-atoms were placed in calculated positions (C—H 0.95 to 0.99 Å) and were included in the refinement in the riding model approximation, with U(H) set to 1.2 to 1.5U(C).

Figure 1

Thermal ellipsoid plot (Barbour, 2001) of the two independent molecules of $C_{12}H_{10}N_2O$ at the 70% probability level; hydrogen atoms are drawn as spheres of arbitrary radius.

3-Methyl-1-propargylquinoxalin-2(1*H*)-one

Crystal data	
$C_{12}H_{10}N_2O$	<i>b</i> = 4.3709 (2) Å
$M_r = 198.22$	c = 22.246 (1) Å
Monoclinic, $P2_1/n$	$\beta = 105.354 \ (6)^{\circ}$
Hall symbol: -P 2yn	V = 1980.7 (2) Å ³
a = 21.124 (1) Å	Z = 8

F(000) = 832 $D_x = 1.329 \text{ Mg m}^{-3}$ Mo K\alpha radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 5089 reflections $\theta = 2.7-32.2^{\circ}$

Data collection

Oxford Diffraction Xcalibur	14275 measured reflections
diffractometer	4058 independent reflections
Radiation source: fine-focus sealed tube	2428 reflections with $I > 2\sigma(I)$
Graphite monochromator	$R_{\rm int} = 0.046$
ω and φ scans	$\theta_{\rm max} = 26.4^{\circ}, \theta_{\rm min} = 2.8^{\circ}$
Absorption correction: multi-scan	$h = -22 \rightarrow 26$
(CrysAlis RED; Oxford Diffraction, 2006)	$k = -5 \rightarrow 5$
$T_{\min} = 0.985, \ T_{\max} = 0.991$	$l = -26 \rightarrow 27$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.036$	Hydrogen site location: inferred from
$wR(F^2) = 0.102$	neighbouring sites
S = 0.97	H-atom parameters constrained
4058 reflections	$w = 1/[\sigma^2(F_o^2) + (0.0539P)^2]$
273 parameters	where $P = (F_o^2 + 2F_c^2)/3$
0 restraints	$(\Delta/\sigma)_{\rm max} = 0.001$
Primary atom site location: structure-invariant	$\Delta \rho_{\rm max} = 0.19 \text{ e } \text{\AA}^{-3}$
direct methods	$\Delta ho_{ m min}$ = -0.22 e Å ⁻³

 $\mu = 0.09 \text{ mm}^{-1}$ T = 180 K

Parallelepiped, yellow

 $0.20 \times 0.15 \times 0.08 \text{ mm}$

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
01	0.30129 (6)	0.4482 (3)	0.53550 (5)	0.0423 (3)	
O2	0.53899 (5)	0.4210 (3)	0.84138 (5)	0.0423 (3)	
N1	0.24291 (6)	0.1336 (3)	0.46002 (5)	0.0259 (3)	
N2	0.36089 (6)	-0.0417 (3)	0.43668 (6)	0.0301 (3)	
N3	0.45992 (6)	0.5883 (3)	0.75752 (6)	0.0248 (3)	
N4	0.40956 (6)	0.9390 (3)	0.83838 (6)	0.0299 (3)	
C1	0.30011 (8)	0.2584 (4)	0.49493 (7)	0.0284 (4)	
C2	0.36032 (8)	0.1492 (4)	0.48043 (7)	0.0299 (4)	
C3	0.30152 (8)	-0.1552 (4)	0.40141 (7)	0.0265 (4)	
C4	0.30203 (9)	-0.3586 (4)	0.35363 (7)	0.0359 (4)	
H4	0.3427	-0.4141	0.3460	0.043*	
C5	0.24506 (10)	-0.4804 (4)	0.31742 (8)	0.0438 (5)	
Н5	0.2459	-0.6193	0.2848	0.053*	
C6	0.18630 (10)	-0.3990 (4)	0.32887 (8)	0.0441 (5)	
H6	0.1466	-0.4833	0.3038	0.053*	
C7	0.18398 (8)	-0.1987 (4)	0.37573 (8)	0.0342 (4)	
H7	0.1430	-0.1453	0.3830	0.041*	
C8	0.24165 (8)	-0.0749 (3)	0.41244 (7)	0.0250 (4)	
C9	0.18204 (8)	0.2356 (4)	0.47433 (8)	0.0324 (4)	
H9A	0.1884	0.4460	0.4914	0.039*	
H9B	0.1462	0.2416	0.4353	0.039*	

C10	0.16261 (7)	0.0368 (4)	0.51906 (7)	0.0285 (4)
C11	0.14630 (8)	-0.1151 (4)	0.55593 (8)	0.0356 (4)
H11	0.1331	-0.2379	0.5857	0.043*
C12	0.42291 (8)	0.2734 (5)	0.52009 (9)	0.0484 (5)
H12A	0.4594	0.2039	0.5040	0.073*
H12B	0.4294	0.2006	0.5630	0.073*
H12C	0.4212	0.4974	0.5194	0.073*
C13	0.49034 (7)	0.5800 (4)	0.81993 (7)	0.0284 (4)
C14	0.46119 (8)	0.7751 (4)	0.85929 (7)	0.0304 (4)
C15	0.37878 (7)	0.9314 (4)	0.77527 (7)	0.0248 (4)
C16	0.32214 (7)	1.1033 (4)	0.75256 (8)	0.0329 (4)
H16	0.3056	1.2241	0.7805	0.039*
C17	0.29004 (8)	1.1009 (4)	0.69069 (8)	0.0365 (4)
H17	0.2514	1.2194	0.6756	0.044*
C18	0.31410 (8)	0.9248 (4)	0.64995 (8)	0.0351 (4)
H18	0.2914	0.9213	0.6070	0.042*
C19	0.37008 (8)	0.7558 (4)	0.67064 (7)	0.0294 (4)
H19	0.3863	0.6373	0.6422	0.035*
C20	0.40306 (7)	0.7585 (3)	0.73351 (7)	0.0227 (3)
C21	0.48885 (8)	0.4108 (4)	0.71564 (7)	0.0323 (4)
H21A	0.5219	0.2677	0.7405	0.039*
H21B	0.4541	0.2881	0.6872	0.039*
C22	0.52007 (8)	0.6082 (4)	0.67891 (8)	0.0326 (4)
C23	0.54466 (9)	0.7662 (5)	0.64907 (8)	0.0429 (5)
H23	0.5646	0.8945	0.6248	0.051*
C24	0.49583 (9)	0.7818 (5)	0.92679 (8)	0.0503 (5)
H24A	0.5381	0.8860	0.9328	0.075*
H24B	0.5032	0.5719	0.9426	0.075*
H24C	0.4690	0.8918	0.9495	0.075*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
01	0.0525 (8)	0.0439 (7)	0.0306 (7)	0.0029 (6)	0.0113 (6)	-0.0077 (6)
O2	0.0237 (6)	0.0535 (8)	0.0453 (7)	0.0048 (6)	0.0016 (5)	0.0074 (7)
N1	0.0248 (7)	0.0277 (7)	0.0275 (7)	0.0052 (6)	0.0108 (6)	0.0035 (6)
N2	0.0285 (8)	0.0303 (7)	0.0341 (8)	0.0050 (7)	0.0130 (6)	0.0079 (7)
N3	0.0218 (7)	0.0273 (7)	0.0259 (7)	-0.0017 (6)	0.0076 (6)	-0.0022 (6)
N4	0.0257 (8)	0.0407 (8)	0.0237 (7)	-0.0059 (7)	0.0074 (6)	-0.0041 (7)
C1	0.0349 (10)	0.0295 (9)	0.0216 (9)	0.0026 (8)	0.0089 (7)	0.0055 (8)
C2	0.0287 (9)	0.0295 (9)	0.0304 (9)	0.0024 (8)	0.0056 (7)	0.0078 (8)
C3	0.0319 (9)	0.0251 (8)	0.0248 (9)	0.0068 (8)	0.0118 (7)	0.0082 (7)
C4	0.0519 (12)	0.0287 (9)	0.0323 (10)	0.0102 (9)	0.0202 (9)	0.0063 (8)
C5	0.0722 (15)	0.0324 (10)	0.0271 (10)	0.0005 (10)	0.0133 (10)	-0.0017 (8)
C6	0.0542 (13)	0.0368 (11)	0.0324 (10)	-0.0058 (10)	-0.0041 (9)	0.0046 (9)
C7	0.0323 (10)	0.0330 (10)	0.0341 (10)	0.0008 (8)	0.0035 (8)	0.0089 (8)
C8	0.0309 (9)	0.0223 (8)	0.0228 (8)	0.0040 (8)	0.0089 (7)	0.0061 (7)
C9	0.0301 (9)	0.0324 (9)	0.0394 (10)	0.0100 (8)	0.0173 (8)	0.0052 (8)

C10	0.0227 (8)	0.0355 (9)	0.0285 (9)	0.0043 (8)	0.0086 (7)	-0.0034 (8)
C11	0.0274 (9)	0.0492 (11)	0.0323 (10)	0.0023 (9)	0.0115 (8)	0.0025 (9)
C12	0.0335 (11)	0.0510 (12)	0.0554 (12)	-0.0012 (10)	0.0023 (9)	0.0028 (10)
C13	0.0192 (8)	0.0364 (10)	0.0276 (9)	-0.0079 (8)	0.0028 (7)	0.0023 (8)
C14	0.0250 (9)	0.0424 (10)	0.0236 (9)	-0.0082 (8)	0.0064 (7)	-0.0001 (8)
C15	0.0211 (8)	0.0293 (8)	0.0251 (9)	-0.0075 (7)	0.0083 (7)	-0.0020(7)
C16	0.0255 (9)	0.0325 (10)	0.0429 (11)	-0.0003 (8)	0.0130 (8)	-0.0012 (9)
C17	0.0232 (9)	0.0396 (11)	0.0440 (11)	0.0002 (8)	0.0041 (8)	0.0103 (9)
C18	0.0316 (10)	0.0416 (10)	0.0286 (9)	-0.0087 (9)	0.0017 (8)	0.0076 (9)
C19	0.0289 (9)	0.0354 (9)	0.0237 (9)	-0.0068 (8)	0.0067 (7)	-0.0012 (8)
C20	0.0177 (8)	0.0248 (8)	0.0253 (8)	-0.0055 (7)	0.0052 (6)	0.0010 (7)
C21	0.0355 (9)	0.0298 (9)	0.0347 (9)	0.0001 (8)	0.0144 (8)	-0.0050 (8)
C22	0.0273 (9)	0.0364 (10)	0.0374 (10)	0.0010 (8)	0.0144 (8)	-0.0074 (8)
C23	0.0389 (11)	0.0477 (11)	0.0493 (11)	0.0020 (9)	0.0244 (9)	-0.0007 (10)
C24	0.0372 (11)	0.0816 (15)	0.0279 (10)	-0.0060 (11)	0.0014 (8)	-0.0031 (10)

Geometric parameters (Å, °)

01—C1	1.2213 (18)	С9—Н9В	0.9900	
O2—C13	1.2277 (18)	C10-C11	1.176 (2)	
N1-C1	1.365 (2)	C11—H11	0.9500	
N1-C8	1.3917 (19)	C12—H12A	0.9800	
N1-C9	1.4732 (19)	C12—H12B	0.9800	
N2-C2	1.285 (2)	C12—H12C	0.9800	
N2—C3	1.383 (2)	C13—C14	1.469 (2)	
N3—C13	1.3673 (19)	C14—C24	1.486 (2)	
N3—C20	1.3934 (19)	C15—C16	1.390 (2)	
N3—C21	1.4643 (19)	C15—C20	1.396 (2)	
N4C14	1.285 (2)	C16—C17	1.364 (2)	
N4—C15	1.3826 (18)	C16—H16	0.9500	
C1—C2	1.472 (2)	C17—C18	1.384 (2)	
C2—C12	1.484 (2)	C17—H17	0.9500	
C3—C4	1.388 (2)	C18—C19	1.367 (2)	
C3—C8	1.395 (2)	C18—H18	0.9500	
C4—C5	1.367 (2)	C19—C20	1.388 (2)	
C4—H4	0.9500	C19—H19	0.9500	
C5—C6	1.378 (3)	C21—C22	1.460 (2)	
С5—Н5	0.9500	C21—H21A	0.9900	
С6—С7	1.372 (2)	C21—H21B	0.9900	
С6—Н6	0.9500	C22—C23	1.171 (2)	
C7—C8	1.385 (2)	C23—H23	0.9500	
С7—Н7	0.9500	C24—H24A	0.9800	
C9—C10	1.459 (2)	C24—H24B	0.9800	
С9—Н9А	0.9900	C24—H24C	0.9800	
C1—N1—C8	122.01 (13)	H12A—C12—H12B	109.5	
C1—N1—C9	116.60 (13)	C2—C12—H12C	109.5	
C8—N1—C9	121.38 (13)	H12A—C12—H12C	109.5	

C2—N2—C3	118.28 (14)	H12B—C12—H12C	109.5
C13—N3—C20	121.95 (13)	O2—C13—N3	121.98 (15)
C13—N3—C21	117.96 (13)	O2—C13—C14	122.47 (15)
C20—N3—C21	120.10 (13)	N3—C13—C14	115.55 (14)
C14—N4—C15	118.69 (14)	N4—C14—C13	123.89 (15)
01—C1—N1	122.25 (15)	N4—C14—C24	119.90 (16)
O1—C1—C2	122.16 (16)	C13—C14—C24	116.20 (15)
N1—C1—C2	115.59 (14)	N4—C15—C16	118.96 (14)
N2—C2—C1	123.96 (15)	N4—C15—C20	122.13 (14)
N2—C2—C12	120.14 (15)	C16—C15—C20	118.91 (14)
C1—C2—C12	115.90 (15)	C17—C16—C15	120.85 (16)
N2-C3-C4	118.32 (15)	C17—C16—H16	119.6
N2-C3-C8	122.53 (14)	C15—C16—H16	119.6
C4—C3—C8	119.15 (16)	C16—C17—C18	119.63 (16)
C5—C4—C3	121.12 (17)	С16—С17—Н17	120.2
C5—C4—H4	119.4	C18—C17—H17	120.2
C3—C4—H4	119.4	C19—C18—C17	120.99 (16)
C4—C5—C6	119.08 (17)	C19—C18—H18	119.5
C4—C5—H5	120.5	C17—C18—H18	119.5
C6—C5—H5	120.5	C18 - C19 - C20	119.59 (16)
C7—C6—C5	121.35 (17)	C18—C19—H19	120.2
С7—С6—Н6	119.3	C20—C19—H19	120.2
С5—С6—Н6	119.3	C19—C20—N3	122.26 (14)
C6-C7-C8	119.64 (17)	C19—C20—C15	120.01 (14)
С6—С7—Н7	120.2	N3—C20—C15	117.72 (13)
С8—С7—Н7	120.2	C22—C21—N3	111.69 (13)
C7—C8—N1	122.76 (14)	C22—C21—H21A	109.3
C7—C8—C3	119.66 (15)	N3—C21—H21A	109.3
N1—C8—C3	117.57 (14)	C22—C21—H21B	109.3
C10—C9—N1	112.71 (13)	N3—C21—H21B	109.3
С10—С9—Н9А	109.1	H21A—C21—H21B	107.9
N1—C9—H9A	109.1	C23—C22—C21	179.5 (2)
С10—С9—Н9В	109.1	С22—С23—Н23	180.0
N1—C9—H9B	109.1	C14—C24—H24A	109.5
Н9А—С9—Н9В	107.8	C14—C24—H24B	109.5
C11—C10—C9	177.82 (17)	H24A—C24—H24B	109.5
C10—C11—H11	180.0	C14—C24—H24C	109.5
C2—C12—H12A	109.5	H24A—C24—H24C	109.5
C2—C12—H12B	109.5	H24B—C24—H24C	109.5
C8—N1—C1—O1	177.78 (14)	C20—N3—C13—O2	177.17 (14)
C9—N1—C1—O1	-1.0 (2)	C21—N3—C13—O2	-2.8 (2)
C8—N1—C1—C2	-2.2 (2)	C20—N3—C13—C14	-3.2 (2)
C9—N1—C1—C2	179.07 (12)	C21—N3—C13—C14	176.86 (13)
C3—N2—C2—C1	-0.8 (2)	C15—N4—C14—C13	0.6 (2)
C3—N2—C2—C12	179.06 (15)	C15—N4—C14—C24	179.19 (15)
O1—C1—C2—N2	-177.42 (15)	O2—C13—C14—N4	-178.51 (16)
N1—C1—C2—N2	2.6 (2)	N3—C13—C14—N4	1.9 (2)

O1—C1—C2—C12	2.7 (2)	O2—C13—C14—C24	2.9 (2)
N1—C1—C2—C12	-177.34 (14)	N3-C13-C14-C24	-176.77 (15)
C2—N2—C3—C4	179.21 (13)	C14—N4—C15—C16	178.69 (15)
C2—N2—C3—C8	-1.3 (2)	C14—N4—C15—C20	-1.9 (2)
N2-C3-C4-C5	179.55 (15)	N4-C15-C16-C17	-179.62 (15)
C8—C3—C4—C5	0.0 (2)	C20-C15-C16-C17	0.9 (2)
C3—C4—C5—C6	-0.1 (2)	C15—C16—C17—C18	0.1 (3)
C4—C5—C6—C7	0.0 (3)	C16—C17—C18—C19	-0.8 (3)
C5—C6—C7—C8	0.0 (2)	C17—C18—C19—C20	0.6 (2)
C6—C7—C8—N1	178.84 (14)	C18-C19-C20-N3	179.23 (14)
C6—C7—C8—C3	0.0 (2)	C18—C19—C20—C15	0.4 (2)
C1—N1—C8—C7	-178.59 (15)	C13—N3—C20—C19	-176.69 (14)
C9—N1—C8—C7	0.1 (2)	C21—N3—C20—C19	3.2 (2)
C1—N1—C8—C3	0.3 (2)	C13—N3—C20—C15	2.1 (2)
C9—N1—C8—C3	178.99 (13)	C21—N3—C20—C15	-177.94 (13)
N2-C3-C8-C7	-179.48 (14)	N4-C15-C20-C19	179.38 (14)
C4—C3—C8—C7	0.0 (2)	C16—C15—C20—C19	-1.2 (2)
N2-C3-C8-N1	1.6 (2)	N4-C15-C20-N3	0.5 (2)
C4—C3—C8—N1	-178.93 (13)	C16-C15-C20-N3	180.00 (14)
C1—N1—C9—C10	-93.04 (17)	C13—N3—C21—C22	-107.74 (16)
C8—N1—C9—C10	88.22 (17)	C20—N3—C21—C22	72.32 (18)