

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

# 2-(2-Amino-5-methylthiazol-4-yl)phenol

#### Li-Min He,<sup>a</sup> Gao Cao<sup>a</sup> and Ai-Xi Hu<sup>b</sup>\*

<sup>a</sup>College of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, People's Republic of China, and <sup>b</sup>College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, People's Republic of China Correspondence e-mail: axhu0731@yahoo.com.cn

Received 21 July 2009; accepted 11 August 2009

Key indicators: single-crystal X-ray study; T = 173 K; mean  $\sigma$ (C–C) = 0.004 Å; R factor = 0.054; wR factor = 0.150; data-to-parameter ratio = 14.6.

In the title compound,  $C_{10}H_{10}N_2OS$ , the benzene ring is nearly co-planar with the thiazole ring, making a dihedral angle of 2.1 (2)°. The crystal structure is stabilized by intermolecular  $N-H\cdots O$  hydrogen bonds. An intramolecular  $O-H\cdots N$ hydrogen bond is also present.

#### **Related literature**

For background to 2-amino-4-arylthiazoles and their wideranging antifungal activity, see: Hu *et al.* (2008); Kazzouli *et al.* (2002); Holla *et al.* (2003). For a related structure, see: He *et al.* (2006).



#### **Experimental**

#### Crystal data

 $C_{10}H_{10}N_2OS$   $M_r = 206.27$ Orthorhombic, *Pbca*  a = 12.9391 (5) Å b = 10.3967 (4) Å c = 14.2938 (6) Å V = 1922.86 (13) Å<sup>3</sup> Z = 8 Mo K\alpha radiation  $\mu = 0.30 \text{ mm}^{-1}$ 

#### $0.48 \times 0.42 \times 0.39 \text{ mm}$

#### Data collection

T = 173 K

| Bruker SMART 1000 CCD                  | 11037 measured reflections             |
|----------------------------------------|----------------------------------------|
| diffractometer                         | 1881 independent reflections           |
| A happention connections multi coon    | $1706$ reflections with $L > 2\pi(I)$  |
| Absorption correction: multi-scan      | 1/06 reflections with $I > 2\sigma(I)$ |
| (SADABS; Sheldrick, 2004)              | $R_{\rm int} = 0.027$                  |
| $T_{\min} = 0.869, \ T_{\max} = 0.891$ |                                        |
|                                        |                                        |

#### Refinement

$$\begin{split} R[F^2 > 2\sigma(F^2)] &= 0.054 & 129 \text{ parameters} \\ wR(F^2) &= 0.150 & H\text{-atom parameters constrained} \\ S &= 0.98 & \Delta\rho_{\text{max}} &= 1.20 \text{ e } \text{\AA}^{-3} \\ 1881 \text{ reflections} & \Delta\rho_{\text{min}} &= -0.33 \text{ e } \text{\AA}^{-3} \end{split}$$

#### **Table 1** Hydrogen-bond geometry (Å, °).

| $D - H \cdot \cdot \cdot A$                                                | D-H  | $H \cdot \cdot \cdot A$ | $D \cdots A$ | $D - \mathbf{H} \cdots A$ |
|----------------------------------------------------------------------------|------|-------------------------|--------------|---------------------------|
| $\begin{array}{c} O1 - H1 \cdots N1 \\ N2 - H2B \cdots O1^{i} \end{array}$ | 0.84 | 1.77                    | 2.521 (3)    | 148                       |
|                                                                            | 0.88 | 2.25                    | 2.961 (3)    | 138                       |

Symmetry code: (i)  $-x + \frac{1}{2}, y - \frac{1}{2}, z$ .

Data collection: *SMART* (Bruker, 2001); cell refinement: *SAINT-Plus* (Bruker, 2003); data reduction: *SAINT-Plus*; program(s) used to solve structure: *SHELXTL* (Sheldrick, 2008); program(s) used to refine structure: *SHELXTL*; molecular graphics: *SHELXTL*; software used to prepare material for publication: *SHELXTL*.

This research was performed with the support of the startup fund for doctoral research of Guangdong Pharmaceutical University.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: XU2563).

#### References

Bruker (2001). *SMART*. Bruker AXS Inc., Madison, Wisconsin, USA. Bruker (2003). *SAINT-Plus*. Bruker AXS Inc., Madison, Wisconsin, USA. He, D.-H., Cao, G. & Hu, A.-X. (2006). Acta Cryst. E**62**, 05637–05638.

- Holla, B. S., Malini, K. V., Rao, B. S. N., Sarojini, B. K. & Kumari, N. S. (2003). *Eur. J. Med. Chem.* 38, 313–318.
- Hu, A.-X., Cao, G., Ma, Y.-Q., Zhang, J.-Y. & Ou, X.-M. (2008). Chin. J. Struct. Chem. 27, 1235–1239.
- Kazzouli, S. E., Berteina-Raboin, S., Mouaddibb, A. & Guillaumeta, G. (2002). *Tetrahedron Lett.*, 43, 3193–3196.
- Sheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

# supporting information

Acta Cryst. (2009). E65, o2161 [doi:10.1107/S160053680903164X]

# 2-(2-Amino-5-methylthiazol-4-yl)phenol

# Li-Min He, Gao Cao and Ai-Xi Hu

## S1. Comment

Compounds containing thiazole are found to exhibit a wide spectrum of biological activities and many of them are well known antiviral, antifungal agents and some are used as pesticides (Kazzouli *et al.*, 2002; Holla *et al.*, 2003; Hu *et al.*, 2008). The structure of 2-amino-4-arylthiazoles was reported before (He *et al.*, 2006). Herein we report the synthesis and crystal structure of the title compound.

The molecular structure of (I) is illustrated in Fig. 1. The molecules are linked by intermolecular hydrogen bonds (N–H···O) and intramolecular hydrogen bonds (O–H···N) (Table 1). The dihedral angle between the planes of thiazole and the benzene ring is 2.1 (2)°.

## S2. Experimental

A solution with 0.005 mol of thiourea and 0.005 mol of 2-bromo-1-(2-hydroxyphenyl)-1-propanone in 50 ml of ethanol was refluxed for 10 h. After finishing the reaction, added 10 ml ammonia and continues to stir the solution 2 h. Then the solution was cooled and the precipitate formed was filtered out, dried, giving white crystals of title compound, yield 60.3%. m.p. 388–389 K. The crystals for X-ray structure determination were obtained by slow evaporation of an ethanol solution at room temperature.

### **S3. Refinement**

The hydroxy H atom was positioned geometrically (O–H = 0.84 Å) and refined as riding  $[U_{iso}(H) = 1.5 U_{eq}(O)]$ . Methyl H atoms were positioned geometrically (C–H = 0.98 Å) and torsion angles refined to fit the electron density  $[U_{iso}(H) = 1.5 U_{eq}(C)]$ . Other H atoms were placed in calculated positions (N–H 0.88 Å and aromatic C–H = 0.95 Å) and refined as riding  $[U_{iso}(H) = 1.2 U_{eq}(C, N)]$ . The highest peak in the final difference Fourier map is 0.79 Å apart from H8 atom.



### Figure 1

The molecular structure of (I), showing the atom-labelling scheme and 50% probability displacement ellipsoid (arbitrary spheres for H atoms).

### 2-(2-Amino-5-methylthiazol-4-yl)phenol

#### Crystal data

C<sub>10</sub>H<sub>10</sub>N<sub>2</sub>OS  $M_r = 206.27$ Orthorhombic, *Pbca* Hall symbol: -P 2ac 2ab a = 12.9391 (5) Å b = 10.3967 (4) Å c = 14.2938 (6) Å V = 1922.86 (13) Å<sup>3</sup> Z = 8

#### Data collection

Bruker SMART 1000 CCD diffractometer Radiation source: fine-focus sealed tube Graphite monochromator ω scans F(000) = 864  $D_x = 1.425 \text{ Mg m}^{-3}$ Mo Ka radiation,  $\lambda = 0.71073 \text{ Å}$ Cell parameters from 7684 reflections  $\theta = 2.4-27.0^{\circ}$   $\mu = 0.30 \text{ mm}^{-1}$  T = 173 KBlock, yellow  $0.48 \times 0.42 \times 0.39 \text{ mm}$ 

Absorption correction: multi-scan (*SADABS*; Sheldrick, 2004)  $T_{min} = 0.869, T_{max} = 0.891$ 11037 measured reflections 1881 independent reflections 1706 reflections with  $I > 2\sigma(I)$ 

| $R_{\rm int} = 0.027$                                               | $k = -12 \rightarrow 12$ |
|---------------------------------------------------------------------|--------------------------|
| $\theta_{\rm max} = 26.0^{\circ}, \ \theta_{\rm min} = 2.9^{\circ}$ | $l = -17 \rightarrow 17$ |
| $h = -15 \rightarrow 14$                                            |                          |

| Refinement |
|------------|
|------------|

| 5                                               |                                                        |
|-------------------------------------------------|--------------------------------------------------------|
| Refinement on $F^2$                             | Secondary atom site location: difference Fourier       |
| Least-squares matrix: full                      | map                                                    |
| $R[F^2 > 2\sigma(F^2)] = 0.054$                 | Hydrogen site location: inferred from                  |
| $wR(F^2) = 0.150$                               | neighbouring sites                                     |
| S = 0.98                                        | H-atom parameters constrained                          |
| 1881 reflections                                | $w = 1/[\sigma^2(F_o^2) + (0.0885P)^2 + 3.3976P]$      |
| 129 parameters                                  | where $P = (F_o^2 + 2F_c^2)/3$                         |
| 0 restraints                                    | $(\Delta/\sigma)_{\rm max} < 0.001$                    |
| Primary atom site location: structure-invariant | $\Delta  ho_{ m max} = 1.20 \ { m e} \ { m \AA}^{-3}$  |
| direct methods                                  | $\Delta  ho_{\min} = -0.33 \text{ e}  \text{\AA}^{-3}$ |
|                                                 |                                                        |

#### Special details

**Experimental**. <sup>1</sup>H NMR (CDCl<sub>3</sub>, 400 MHz): 2.48 (s, 3H, CH<sub>3</sub>), 4.97 (br, 2H, NH<sub>2</sub>), 6.86–7.42(m, 4H, phenyl-H). **Geometry**. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

**Refinement**. Refinement of  $F^2$  against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on  $F^2$ , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative  $F^2$ . The threshold expression of  $F^2 > \sigma(F^2)$  is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on  $F^2$  are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

|      | x            | У            | Ζ            | $U_{ m iso}$ */ $U_{ m eq}$ |  |
|------|--------------|--------------|--------------|-----------------------------|--|
| S1   | 0.29069 (5)  | 0.23322 (6)  | 0.58881 (4)  | 0.0269 (2)                  |  |
| C1   | 0.2598 (2)   | 0.3782 (2)   | 0.64120 (16) | 0.0242 (5)                  |  |
| C2   | 0.43091 (18) | 0.4000 (2)   | 0.61774 (16) | 0.0232 (5)                  |  |
| C3   | 0.4199 (2)   | 0.2792 (2)   | 0.58181 (17) | 0.0266 (6)                  |  |
| C4   | 0.52468 (18) | 0.4802 (2)   | 0.62670 (16) | 0.0241 (5)                  |  |
| C5   | 0.52103 (19) | 0.6026 (2)   | 0.66966 (17) | 0.0263 (5)                  |  |
| C6   | 0.6103 (2)   | 0.6770 (3)   | 0.67875 (18) | 0.0315 (6)                  |  |
| H6   | 0.6066       | 0.7589       | 0.7081       | 0.038*                      |  |
| C7   | 0.7037 (2)   | 0.6329 (3)   | 0.64567 (19) | 0.0344 (6)                  |  |
| H7   | 0.7642       | 0.6840       | 0.6526       | 0.041*                      |  |
| C8   | 0.7095 (2)   | 0.5136 (3)   | 0.6021 (2)   | 0.0369 (7)                  |  |
| H8   | 0.7738       | 0.4829       | 0.5790       | 0.044*                      |  |
| C9   | 0.6212 (2)   | 0.4398 (3)   | 0.59266 (18) | 0.0314 (6)                  |  |
| H9   | 0.6261       | 0.3590       | 0.5620       | 0.038*                      |  |
| C10  | 0.4945 (2)   | 0.1822 (3)   | 0.5439 (2)   | 0.0413 (7)                  |  |
| H10A | 0.5252       | 0.2149       | 0.4859       | 0.062*                      |  |
| H10B | 0.4579       | 0.1016       | 0.5309       | 0.062*                      |  |
| H10C | 0.5491       | 0.1665       | 0.5899       | 0.062*                      |  |
| N1   | 0.33898 (16) | 0.45419 (19) | 0.65168 (14) | 0.0243 (5)                  |  |
| N2   | 0.16111 (17) | 0.4091 (2)   | 0.66472 (16) | 0.0316 (5)                  |  |
| H2A  | 0.1473       | 0.4850       | 0.6889       | 0.038*                      |  |
|      |              |              |              |                             |  |

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters  $(Å^2)$ 

# supporting information

| 112D | 0 1110       | 0 2521       | 0 6559       | 0.029*     |
|------|--------------|--------------|--------------|------------|
| H2B  | 0.1110       | 0.5551       | 0.0558       | 0.038*     |
| 01   | 0.43180 (14) | 0.65465 (18) | 0.70442 (15) | 0.0359 (5) |
| H1   | 0.3833       | 0.6015       | 0.6985       | 0.054*     |

Atomic displacement parameters  $(Å^2)$ 

|     | $U^{11}$    | $U^{22}$    | $U^{33}$    | $U^{12}$     | $U^{13}$     | $U^{23}$     |
|-----|-------------|-------------|-------------|--------------|--------------|--------------|
| S1  | 0.0270 (4)  | 0.0238 (4)  | 0.0301 (4)  | -0.0019 (2)  | -0.0005 (2)  | -0.0051 (2)  |
| C1  | 0.0263 (12) | 0.0229 (12) | 0.0234 (11) | -0.0001 (9)  | -0.0006 (9)  | -0.0005 (9)  |
| C2  | 0.0234 (12) | 0.0238 (12) | 0.0225 (11) | 0.0026 (9)   | 0.0002 (9)   | 0.0014 (9)   |
| C3  | 0.0258 (12) | 0.0266 (13) | 0.0274 (12) | 0.0006 (10)  | 0.0004 (9)   | -0.0009 (9)  |
| C4  | 0.0236 (12) | 0.0264 (12) | 0.0223 (11) | 0.0008 (9)   | -0.0014 (9)  | 0.0036 (9)   |
| C5  | 0.0243 (12) | 0.0270 (12) | 0.0277 (12) | 0.0022 (10)  | -0.0017 (9)  | 0.0022 (10)  |
| C6  | 0.0313 (14) | 0.0312 (13) | 0.0321 (13) | -0.0040 (11) | -0.0043 (11) | 0.0010 (10)  |
| C7  | 0.0285 (14) | 0.0421 (16) | 0.0328 (13) | -0.0106 (11) | -0.0026 (10) | 0.0045 (12)  |
| C8  | 0.0250 (14) | 0.0473 (17) | 0.0385 (14) | -0.0006 (12) | 0.0061 (11)  | 0.0019 (13)  |
| C9  | 0.0274 (13) | 0.0335 (14) | 0.0333 (13) | 0.0010 (11)  | 0.0047 (10)  | -0.0017 (11) |
| C10 | 0.0338 (15) | 0.0321 (15) | 0.0581 (18) | 0.0044 (12)  | 0.0047 (13)  | -0.0131 (13) |
| N1  | 0.0221 (10) | 0.0226 (10) | 0.0282 (10) | 0.0003 (8)   | 0.0016 (8)   | -0.0015 (8)  |
| N2  | 0.0228 (11) | 0.0298 (11) | 0.0422 (12) | -0.0017 (9)  | 0.0024 (9)   | -0.0075 (10) |
| 01  | 0.0242 (9)  | 0.0275 (10) | 0.0561 (12) | 0.0006 (7)   | -0.0007 (8)  | -0.0113 (9)  |

## Geometric parameters (Å, °)

| S1—C1             | 1.730 (2)              | С6—Н6                   | 0.9500            |  |
|-------------------|------------------------|-------------------------|-------------------|--|
| S1—C3             | 1.742 (3)              | C7—C8                   | 1.390 (4)         |  |
| C1—N1             | 1.302 (3)              | С7—Н7                   | 0.9500            |  |
| C1—N2             | 1.359 (3)              | C8—C9                   | 1.382 (4)         |  |
| C2—C3             | 1.364 (4)              | C8—H8                   | 0.9500            |  |
| C2—N1             | 1.403 (3)              | С9—Н9                   | 0.9500            |  |
| C2—C4             | 1.477 (3)              | C10—H10A                | 0.9800            |  |
| C3—C10            | 1.498 (4)              | C10—H10B                | 0.9800            |  |
| C4—C9             | 1.405 (3)              | C10—H10C                | 0.9800            |  |
| C4—C5             | 1.414 (4)              | N2—H2A                  | 0.8800            |  |
| C5—O1             | 1.368 (3)              | N2—H2B                  | 0.8800            |  |
| C5—C6             | 1.397 (4)              | O1—H1                   | 0.8400            |  |
| C6—C7             | 1.376 (4)              |                         |                   |  |
| C1 S1 C3          | 00.41 (12)             | С6 С7 Ц7                | 120.1             |  |
| C1 = S1 = CS      | 90.41(12)              | $C_0 - C_7 - H_7$       | 120.1             |  |
| N1 - C1 - N2      | 124.0(2)<br>112.30(10) | $C_{0} = C_{1} = C_{1}$ | 120.1<br>110.6(2) |  |
| N1 - C1 - S1      | 113.39 (19)            | $C_{1} = C_{0} = C_{2}$ | 119.0 (3)         |  |
| $N_2 = C_1 = S_1$ | 121.96 (19)            | $C/-C\delta-H\delta$    | 120.2             |  |
| C3—C2—N1          | 114.3 (2)              | C9—C8—H8                | 120.2             |  |
| C3—C2—C4          | 129.6 (2)              | C8—C9—C4                | 122.4 (3)         |  |
| N1—C2—C4          | 116.1 (2)              | С8—С9—Н9                | 118.8             |  |
| C2-C3-C10         | 133.6 (2)              | С4—С9—Н9                | 118.8             |  |
| C2—C3—S1          | 109.35 (19)            | C3—C10—H10A             | 109.5             |  |
| C10—C3—S1         | 117.0 (2)              | C3—C10—H10B             | 109.5             |  |

| C9—C4—C5     | 116.7 (2)  | H10A—C10—H10B | 109.5      |
|--------------|------------|---------------|------------|
| C9—C4—C2     | 122.1 (2)  | C3—C10—H10C   | 109.5      |
| C5—C4—C2     | 121.2 (2)  | H10A—C10—H10C | 109.5      |
| O1—C5—C6     | 116.4 (2)  | H10B—C10—H10C | 109.5      |
| O1—C5—C4     | 122.8 (2)  | C1—N1—C2      | 112.6 (2)  |
| C6—C5—C4     | 120.8 (2)  | C1—N2—H2A     | 120.0      |
| C7—C6—C5     | 120.6 (3)  | C1—N2—H2B     | 120.0      |
| С7—С6—Н6     | 119.7      | H2A—N2—H2B    | 120.0      |
| С5—С6—Н6     | 119.7      | C5—O1—H1      | 109.5      |
| C6—C7—C8     | 119.9 (2)  |               |            |
|              |            |               |            |
| C3—S1—C1—N1  | 0.48 (19)  | C9—C4—C5—C6   | -1.2 (3)   |
| C3—S1—C1—N2  | 177.9 (2)  | C2—C4—C5—C6   | 179.3 (2)  |
| N1-C2-C3-C10 | -175.7 (3) | O1—C5—C6—C7   | -179.8 (2) |
| C4—C2—C3—C10 | 3.6 (5)    | C4—C5—C6—C7   | 0.3 (4)    |
| N1-C2-C3-S1  | 1.0 (3)    | C5—C6—C7—C8   | 0.5 (4)    |
| C4—C2—C3—S1  | -179.6 (2) | C6—C7—C8—C9   | -0.2 (4)   |
| C1—S1—C3—C2  | -0.85 (19) | C7—C8—C9—C4   | -0.8 (4)   |
| C1—S1—C3—C10 | 176.5 (2)  | C5—C4—C9—C8   | 1.5 (4)    |
| C3—C2—C4—C9  | 3.0 (4)    | C2—C4—C9—C8   | -179.0 (2) |
| N1-C2-C4-C9  | -177.7 (2) | N2-C1-N1-C2   | -177.3 (2) |
| C3—C2—C4—C5  | -177.6 (2) | S1—C1—N1—C2   | 0.0 (3)    |
| N1-C2-C4-C5  | 1.8 (3)    | C3—C2—N1—C1   | -0.7 (3)   |
| C9—C4—C5—O1  | 178.9 (2)  | C4—C2—N1—C1   | 179.9 (2)  |
| C2—C4—C5—O1  | -0.6 (4)   |               |            |
|              |            |               |            |

## Hydrogen-bond geometry (Å, °)

| D—H···A                      | D—H  | H···A | D···· $A$ | D—H···A |
|------------------------------|------|-------|-----------|---------|
| 01—H1…N1                     | 0.84 | 1.77  | 2.521 (3) | 148     |
| N2—H2 $B$ ···O1 <sup>i</sup> | 0.88 | 2.25  | 2.961 (3) | 138     |

Symmetry code: (i) -x+1/2, y-1/2, z.