Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Titanium germanium antimonide, TiGeSb

Robert Lam and Arthur Mar*

Department of Chemistry, University of Alberta, Edmonton, AB, Canada T6G 2G2 Correspondence e-mail: arthur.mar@ualberta.ca

Received 5 August 2009; accepted 10 August 2009

Key indicators: single-crystal X-ray study; $T=295 \mathrm{~K}$; mean $\sigma(\mathrm{Ge}-\mathrm{Ti})=0.001 \AA$; R factor $=0.032 ; w R$ factor $=0.081$; data-to-parameter ratio $=18.1$.

TiGeSb adopts the PbFCl - or ZrSiS -type structure, with Ti atoms (4 mm symmetry) centred within monocapped square antiprisms generated by the stacking of denser square nets of Ge atoms ($\overline{4} m 2$ symmetry) alternating with less dense square nets of Sb atoms (4 mm symmetry).

Related literature

For PbFCl - or ZrSiS -type structures, see: Tremel \& Hoffmann (1987). For a previous report on TiGeSb , see: Dashjav \& Kleinke (2002). The $\mathrm{Ti}-\mathrm{Ge}-\mathrm{Sb}$ phase diagram at 670 K was reported by Kozlov \& Pavlyuk (2004). For the related ZrGeSb, see: Lam \& Mar (1997). For background to solid solutions in this class of compounds, see: Soheilnia et al. (2003); Kozlov \& Pavlyuk (2004). Metallic radii were taken from Pauling (1960).

Experimental

Crystal data

TiGeSb
$Z=2$
$M_{r}=242.24$
Tetragonal, $P 4 / \mathrm{nmm}$
$a=3.7022$ (5) \AA
$c=8.2137(12) \AA$
$V=112.58$ (3) \AA^{3}

Data collection

Enraf-Nonius CAD-4 diffractometer
Absorption correction: numerical (SHELXTL; Sheldrick, 2008)
$T_{\text {min }}=0.117, T_{\text {max }}=0.718$
1906 measured reflections

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.032 \quad 10$ parameters
$w R\left(F^{2}\right)=0.081$
$S=1.17$
181 reflections

181 independent reflections 178 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.125$
3 standard reflections frequency: 120 min intensity decay: none
$\Delta \rho_{\text {max }}=1.95 \mathrm{e}^{-3}$
$\Delta \rho_{\text {min }}=-2.53 \mathrm{e}^{-3}$

Table 1
Selected bond lengths (\AA).

$\mathrm{Ti}-\mathrm{Ge}$	$2.7570(10)$	$\mathrm{Ti}-\mathrm{Sb}$	$3.0129(14)$
$\mathrm{Ti}-\mathrm{Sb}^{\mathrm{i}}$	$2.8452(7)$	$\mathrm{Ge}-\mathrm{Ge}^{\mathrm{ii}}$	$2.6179(4)$

Symmetry codes: (i) $-x,-y,-z+1$; (ii) $-x+1,-y,-z$.

Data collection: CAD-4-PC (Enraf-Nonius, 1993); cell refinement: CAD-4-PC; data reduction: XCAD4 (Harms \& Wocadlo, 1995); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: $S H E L X T L$; molecular graphics: ATOMS (Dowty, 1999); software used to prepare material for publication: SHELXTL.

The Natural Sciences and Engineering Research Council of Canada supported this work.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: WM2247).

References

Dashjav, E. \& Kleinke, H. (2002). Z. Anorg. Allg. Chem. 628, 2176.
Dowty, E. (1999). ATOMS. Shape Software, Kingsport, Tennessee, USA.
Enraf-Nonius (1993). CAD-4-PC. Enraf-Nonius, Delft, The Netherlands. Harms, K. \& Wocadlo, S. (1995). XCAD4. University of Marburg, Germany. Kozlov, A. Yu. \& Pavlyuk, V. V. (2004). J. Alloys Compd, 367, 76-79. Lam, R. \& Mar, A. (1997). J. Solid State Chem. 134, 388-394.
Pauling, L. (1960). The Nature of the Chemical Bond, 3rd ed. Ithaca, NY: Cornell University Press.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Soheilnia, N., Assoud, A. \& Kleinke, H. (2003). Inorg. Chem. 42, 7319-7325.
Tremel, W. \& Hoffmann, M. (1987). J. Am. Chem. Soc. 109, 124-140.

supporting information

Acta Cryst. (2009). E65, i68 [doi:10.1107/S1600536809031559]

Titanium germanium antimonide, TiGeSb

Robert Lam and Arthur Mar

S1. Comment

After a report of the ternary antimonide ZrGeSb (Lam \& Mar, 1997), the corresponding Ti and Hf analogues were later described in a conference proceeding, but full crystallographic details have not been forthcoming (Dashjav \& Kleinke, 2002). The complete structure of TiGeSb , which is absent in the $\mathrm{Ti}-\mathrm{Ge}-\mathrm{Sb}$ phase diagram at 670 K (Kozlov \& Pavlyuk, 2004) but was prepared here at 1273 K , is presented. Common to many equiatomic compounds of the formulation MAB ($M=$ large transition-metal atom; $A, B=$ main group atoms), TiGeSb adopts the $\mathrm{PbFCl}-$ or $\mathrm{ZrSiS}-t y p e$ structure, among other names (Tremel \& Hoffmann, 1987). Square nets of each type of atom, with the Ge net being twice as dense as the other two, are stacked along the c axis (Fig. 1). The Zr atoms are nine-coordinate, centred within monocapped square antiprisms. The $\mathrm{Ge}-\mathrm{Ge}$ distances are $0.13 \AA$ longer than the sum of the Pauling metallic radii (2.48 $\AA \AA$; Pauling, 1960), indicative of weak polyanionic bonding. The solid solutions $\mathrm{ZrGe}_{x} \mathrm{Sb}_{1-x}$ and $\mathrm{HfGe}_{x} \mathrm{Sb}_{1-x}$ (up to $x=0.2$) form related orthorhombic PbCl_{2}-type structures (Soheilnia et al., 2003), whereas $\mathrm{TiGe}_{x} \mathrm{Sb}_{1-x}$ adopts a NiAs-type structure (Kozlov \& Pavlyuk, 2004).

S2. Experimental

A 0.25 g mixture of $\mathrm{Ti}(99.98 \%$, Cerac), $\mathrm{Ge}(99.999 \%$, Cerac), and $\mathrm{Sb}(99.995 \%$, Aldrich) powders in a 1:1:3 molar ratio was placed in an evacuated fused-silica tube. The tube was heated at 873 K for 2 d and 1273 K for 2 d . Silver plateshaped crystals were obtained, which were found by semiquantitative energy-dispersive X-ray (EDX) analysis to have a composition (at \%) of $32(2) \% \mathrm{Ti}, 35(2) \% \mathrm{Ge}$, and $33(2) \% \mathrm{Sb}$, in good agreement with the formula TiGeSb .

S3. Refinement

Analysis of Weissenberg photographs on a plate-shaped crystal, subsequently transferred to the four-circle diffractometer, established Laue symmetry $4 / \mathrm{mmm}$ and provided approximate cell parameters of $a=3.71 \AA$ and $c=8.22 \AA$. In the final Fourier map based on origin choice 2 of space group $P 4 / n m m$ the maximum peak and deepest hole are located $0.67 \AA$ and $0.02 \AA$, respectively, from the Sb atom.

Figure 1
Projection of the TiGeSb structure approximately along the a axis. Displacement ellipsoids are drawn at the 90% probability level.

titanium germanium antimonide

Crystal data

TiGeSb
$M_{r}=242.24$
Tetragonal, $P 4 / \mathrm{nmm}$
Hall symbol: -P 4a 2a
$a=3.7022$ (5) \AA
$c=8.2137(12) \AA$
$V=112.58(3) \AA^{3}$
$Z=2$
$F(000)=210$

Data collection

Enraf-Nonius CAD-4
diffractometer
Radiation source: fine-focus sealed tube
Graphite monochromator
$\theta / 2 \theta$ scans
Absorption correction: numerical
(SHELXTL; Sheldrick, 2008)
$D_{\mathrm{x}}=7.146 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 24 reflections
$\theta=11.0-23.3^{\circ}$
$\mu=28.18 \mathrm{~mm}^{-1}$
$T=295 \mathrm{~K}$
Plate, silver
$0.12 \times 0.11 \times 0.01 \mathrm{~mm}$
$T_{\text {min }}=0.117, T_{\text {max }}=0.718$
1906 measured reflections
181 independent reflections
178 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.125$
$\theta_{\text {max }}=34.8^{\circ}, \theta_{\text {min }}=2.5^{\circ}$
$h=-5 \rightarrow 5$
$k=-5 \rightarrow 5$
$l=-13 \rightarrow 13$

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.032$
$w R\left(F^{2}\right)=0.081$
$S=1.17$
181 reflections
10 parameters
0 restraints
Primary atom site location: structure-invariant direct methods

3 standard reflections every 120 min intensity decay: none

Secondary atom site location: difference Fourier map
$w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.044 P)^{2}+0.3679 P\right]$
where $P=\left(F_{0}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}<0.001$
$\Delta \rho_{\text {max }}=1.95$ e \AA^{-3}
$\Delta \rho_{\text {min }}=-2.53$ e \AA^{-3}
Extinction correction: SHELXTL (Sheldrick, 2008), $\mathrm{Fc}^{*}=\mathrm{kFc}\left[1+0.001 \mathrm{xFc}^{2} \lambda^{3} / \sin (2 \theta)\right]^{-1 / 4}$

Extinction coefficient: 0.038 (9)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two 1.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving 1.s. planes.
Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor $w R$ and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>\sigma\left(F^{2}\right)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F, and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^{2})

	x	y	z	$U_{\mathrm{iso}} * / U_{\mathrm{eq}}$
Ti	0.2500	0.2500	$0.24875(16)$	$0.0054(3)$
Ge	0.7500	0.2500	0.0000	$0.0063(3)$
Sb	0.2500	0.2500	$0.61556(6)$	$0.0063(3)$

Atomic displacement parameters (\hat{A}^{2})

	U^{11}	U^{22}	$U^{\beta 3}$	U^{12}	U^{13}	U^{23}
Ti	$0.0060(4)$	$0.0060(4)$	$0.0043(6)$	0.000	0.000	0.000
Ge	$0.0065(4)$	$0.0065(4)$	$0.0059(4)$	0.000	0.000	0.000
Sb	$0.0056(3)$	$0.0056(3)$	$0.0076(4)$	0.000	0.000	0.000

Geometric parameters ($\mathrm{A},{ }^{\circ}$)

Ti-Ge ${ }^{\text {i }}$	2.7570 (10)	Ge-Ge ${ }^{\text {ix }}$	2.6179 (3)
$\mathrm{Ti}-\mathrm{Ge}^{\text {ii }}$	2.7570 (10)	Ge-Tii	2.7570 (10)
$\mathrm{Ti}-\mathrm{Ge}^{\text {iii }}$	2.7570 (10)	$\mathrm{Ge}-\mathrm{Ti}^{\text {x }}$	2.7570 (10)
$\mathrm{Ti}-\mathrm{Ge}$	2.7570 (10)	$\mathrm{Ge}-\mathrm{Ti}^{\text {iii }}$	2.7570 (10)
$\mathrm{Ti}-\mathrm{Sb}^{\text {iv }}$	2.8452 (7)	$\mathrm{Sb}-\mathrm{Ti}^{\text {iv }}$	2.8452 (7)
$\mathrm{Ti}-\mathrm{Sb}^{\text {v }}$	2.8452 (7)	$\mathrm{Sb}-\mathrm{Ti}^{\text {v }}$	2.8452 (7)
$\mathrm{Ti}-\mathrm{Sb}^{\text {vi }}$	2.8452 (7)	$\mathrm{Sb}-\mathrm{Ti}^{\mathrm{ij}}$	2.8452 (7)
$\mathrm{Ti}-\mathrm{Sb}^{\text {vii }}$	2.8452 (7)	$\mathrm{Sb}-\mathrm{Ti}^{\text {iii }}$	2.8452 (7)
Ti-Sb	3.0129 (14)	$\mathrm{Sb}-\mathrm{Sb}^{v}$	3.2337 (7)
$\mathrm{Ge}-\mathrm{Ge}^{\text {viii }}$	2.6179 (4)	$\mathrm{Sb}-\mathrm{Sb}^{\text {iv }}$	3.2337 (7)

$\mathrm{Ge}-\mathrm{Ge}^{\mathrm{i}}$	2.6179 (4)
$\mathrm{Ge}-\mathrm{Ge}^{\text {iii }}$	2.6179 (4)
Ge $-\mathrm{Ti}-\mathrm{Ge}^{\text {ii }}$	56.69 (2)
Gei- $\mathrm{Ti}-\mathrm{Ge}^{\mathrm{iii}}$	84.35 (4)
Ge ${ }^{\text {ii }}-\mathrm{Ti}-\mathrm{Ge}^{\text {iii }}$	56.69 (2)
Ge ${ }^{\text {- }}$ - $\mathrm{Ti}-\mathrm{Ge}$	56.69 (2)
Ge ${ }^{\text {ii }}-\mathrm{Ti}-\mathrm{Ge}$	84.35 (4)
$\mathrm{Ge}^{\text {iii- }}$ - $\mathrm{Ti}-\mathrm{Ge}$	56.69 (2)
Ge - - $\mathrm{Ti}-\mathrm{Sb}^{\text {iv }}$	136.65 (2)
$\mathrm{Ge}^{\text {iii }}$ - $\mathrm{Ti}-\mathrm{Sb}^{\text {iv }}$	136.65 (2)
$\mathrm{Ge}^{\text {iii }}$ - $\mathrm{Ti}-\mathrm{Sb}^{\text {iv }}$	81.574 (14)
$\mathrm{Ge}-\mathrm{Ti}-\mathrm{Sb}^{\text {iv }}$	81.574 (14)
$\mathrm{Ge}^{\mathrm{i}}-\mathrm{Ti}-\mathrm{Sb}^{v}$	81.574 (14)
$\mathrm{Ge}^{\mathrm{ii}}-\mathrm{Ti}-\mathrm{Sb}^{\mathrm{v}}$	81.574 (14)
$\mathrm{Ge}^{\text {iiii }}$ - $\mathrm{Ti}-\mathrm{Sb}^{v}$	136.65 (2)
$\mathrm{Ge}-\mathrm{Ti}-\mathrm{Sb}^{v}$	136.65 (2)
$\mathrm{Sb}^{\mathrm{iv}}-\mathrm{Ti}-\mathrm{Sb}^{\text {v }}$	133.88 (5)
$\mathrm{Ge}^{\mathrm{i}}-\mathrm{Ti}-\mathrm{Sb}^{\text {vi }}$	136.65 (2)
$\mathrm{Ge}^{\mathrm{ii}}$ —Ti-Sb ${ }^{\text {vi }}$	81.574 (14)
Ge ${ }^{\text {iiii }}$ - $\mathrm{Ti}-\mathrm{Sb}^{\text {vi }}$	81.574 (14)
$\mathrm{Ge}-\mathrm{Ti}-\mathrm{Sb}^{\text {vi }}$	136.65 (2)
$\mathrm{Sb}^{\text {iv }}-\mathrm{Ti}-\mathrm{Sb}^{\text {vi }}$	81.17 (2)
$\mathrm{Sb}^{v}-\mathrm{Ti}-\mathrm{Sb}^{\text {vi }}$	81.17 (2)
$\mathrm{Ge}^{\text {i }}$ - $\mathrm{Ti}-\mathrm{Sb}^{\text {vii }}$	81.574 (14)
$\mathrm{Ge}^{\mathrm{ii}}$ - $\mathrm{Ti}-\mathrm{Sb}^{\text {vii }}$	136.65 (2)
Ge ${ }^{\text {iiii }}$-Ti—Sb ${ }^{\text {vii }}$	136.65 (2)
$\mathrm{Ge}-\mathrm{Ti}-\mathrm{Sb}^{\text {vii }}$	81.574 (14)
$\mathrm{Sb}^{\text {iv }}-\mathrm{Ti}-\mathrm{Sb}^{\text {vii }}$	81.17 (2)
$\mathrm{Sb}^{\text {v }}-\mathrm{Ti}-\mathrm{Sb}^{\text {vii }}$	81.17 (2)
$\mathrm{Sb}^{\text {vi}}-\mathrm{Ti}-\mathrm{Sb}^{\text {vii }}$	133.88 (5)
$\mathrm{Ge}^{\mathrm{i}}-\mathrm{Ti}-\mathrm{Sb}$	137.823 (19)
Ge ${ }^{\text {ii }}-\mathrm{Ti}-\mathrm{Sb}$	137.823 (19)
$\mathrm{Ge}^{\text {iii }}-\mathrm{Ti}-\mathrm{Sb}$	137.823 (19)
$\mathrm{Ge}-\mathrm{Ti}-\mathrm{Sb}$	137.823 (19)
$\mathrm{Sb}^{\text {iv }}-\mathrm{Ti}-\mathrm{Sb}$	66.94 (3)
$\mathrm{Sb}^{v}-\mathrm{Ti}-\mathrm{Sb}$	66.94 (3)
$\mathrm{Sb}^{\text {vi}}-\mathrm{Ti}-\mathrm{Sb}$	66.94 (3)
$\mathrm{Sb}^{\text {vii }}$-Ti-Sb	66.94 (3)
$\mathrm{Ge}^{\text {viii }}-\mathrm{Ge}-\mathrm{Ge}^{\mathrm{i}}$	180.0
Ge ${ }^{\text {viii }}$-Ge-Ge ${ }^{\text {eiii }}$	90.0
$\mathrm{Ge}-\mathrm{Ge}-\mathrm{Ge}^{\text {iii }}$	90.0
$\mathrm{Ge}^{\text {viii }}-\mathrm{Ge}-\mathrm{Ge}^{\mathrm{ix}}$	90.0
$\mathrm{Ge}-\mathrm{Ge}-\mathrm{Ge}^{\mathrm{ix}}$	90.0
$\mathrm{Ge}^{\mathrm{iii}}-\mathrm{Ge}-\mathrm{Ge}^{\mathrm{ix}}$	180.0
$\mathrm{Ge}^{\text {viii }}-\mathrm{Ge}-\mathrm{Ti}^{\text {i }}$	118.344 (11)
$\mathrm{Ge}-\mathrm{Ce}-\mathrm{Ti}^{\text {i }}$	61.656 (11)
$\mathrm{Ge}^{\text {iii }}-\mathrm{Ge}-\mathrm{Ti}^{\text {i }}$	118.344 (11)

$\mathrm{Sb}-\mathrm{Sb}^{\text {vii }}$	3.2337 (7)
$\mathrm{Sb}-\mathrm{Sb}^{\text {vi }}$	3.2337 (7)
$\mathrm{Ti}-\mathrm{Ge}-\mathrm{Ti}^{\mathrm{x}}$	123.31 (2)
$\mathrm{Ge}^{\text {viii }}-\mathrm{Ge}-\mathrm{Ti}$	118.344 (11)
$\mathrm{Ge}-\mathrm{Ge}-\mathrm{Ti}$	61.656 (11)
$\mathrm{Ge}^{\text {iii }}-\mathrm{Ge}-\mathrm{Ti}$	61.656 (11)
$\mathrm{Ge}^{\mathrm{ix}}-\mathrm{Ge}-\mathrm{Ti}$	118.344 (11)
$\mathrm{Ti}^{\mathbf{i}}-\mathrm{Ge}-\mathrm{Ti}$	123.31 (2)
Ti^{x} - $\mathrm{Ge}-\mathrm{Ti}$	84.35 (4)
$\mathrm{Ge}^{\text {viii }}-\mathrm{Ge}-\mathrm{Ti}^{\text {iiii }}$	61.656 (11)
$\mathrm{Ge}-\mathrm{Ge}-\mathrm{Ti}^{\text {iii }}$	118.344 (11)
Ge ${ }^{\text {iiii }}$-Ge-Tiiii	61.656 (11)
$\mathrm{Ge}^{\mathrm{ix}}$ - $\mathrm{Ge}-\mathrm{Ti}^{\text {iii }}$	118.344 (11)
$\mathrm{Ti}^{\mathbf{i}}-\mathrm{Ge}-\mathrm{Ti}^{\text {iii }}$	84.35 (4)
$\mathrm{Ti}^{\mathrm{x}}-\mathrm{Ge}-\mathrm{Ti}^{\text {iii }}$	123.31 (2)
$\mathrm{Ti}-\mathrm{Ge}-\mathrm{Tiii}$	123.31 (2)
Tiv ${ }^{\text {iv }} \mathrm{Sb}-\mathrm{Ti}^{\text {v }}$	133.88 (5)
$\mathrm{Ti}^{\text {iv }}-\mathrm{Sb}-\mathrm{Ti}^{\text {vi }}$	81.17 (2)
$\mathrm{Ti}^{\mathrm{v}}-\mathrm{Sb}-\mathrm{Ti}^{\text {vi }}$	81.17 (2)
$\mathrm{Ti}^{\text {iv }}-\mathrm{Sb}-\mathrm{Ti}^{\text {vii }}$	81.17 (2)
$\mathrm{Ti}^{\mathrm{v}}-\mathrm{Sb}-\mathrm{Ti}^{\text {vii }}$	81.17 (2)
Tivi- ${ }^{\text {vb }}-\mathrm{Ti}^{\text {vii }}$	133.88 (5)
$\mathrm{Ti}^{\text {iv }}-\mathrm{Sb}-\mathrm{Ti}$	113.06 (3)
Tiv- ${ }^{\text {v }}$ - -Ti	113.06 (3)
$\mathrm{Tv}^{\mathrm{vi}}-\mathrm{Sb}-\mathrm{Ti}$	113.06 (3)
Tivii $-\mathrm{Sb}-\mathrm{Ti}$	113.06 (3)
$\mathrm{Ti}^{\text {iv }}-\mathrm{Sb}-\mathrm{Sb}^{\text {v }}$	167.11 (4)
$\mathrm{Ti}^{\mathrm{v}}-\mathrm{Sb}-\mathrm{Sb}^{\text {v }}$	59.01 (3)
$\mathrm{Ti}^{\mathrm{vi}}-\mathrm{Sb}-\mathrm{Sb}^{v}$	103.295 (14)
Tivii- ${ }^{\text {vi }}$ - $-\mathrm{Sb}^{\text {v }}$	103.295 (14)
$\mathrm{Ti}-\mathrm{Sb}-\mathrm{Sb}^{v}$	54.051 (16)
Tiv ${ }^{\text {iv }}$ - $\mathrm{Sb}-\mathrm{Sb}^{\text {iv }}$	59.01 (3)
$\mathrm{Ti}^{\mathrm{v}}-\mathrm{Sb}-\mathrm{Sb}^{\text {iv }}$	167.11 (4)
Tivi- ${ }^{\text {vi }}$ - $\mathrm{Sb}^{\text {iv }}$	103.295 (14)
Tivii- ${ }^{\text {vb }}-\mathrm{Sb}^{\text {iv }}$	103.295 (14)
$\mathrm{Ti}-\mathrm{Sb}-\mathrm{Sb}^{\text {iv }}$	54.051 (16)
$\mathrm{Sb}^{\mathrm{v}}-\mathrm{Sb}-\mathrm{Sb}^{\text {iv }}$	108.10 (3)
$\mathrm{Ti}^{\text {iv }}-\mathrm{Sb}-\mathrm{Sb}^{\text {vii }}$	103.295 (14)
$\mathrm{Ti}^{\mathrm{v}}-\mathrm{Sb}-\mathrm{Sb}^{\text {vii }}$	103.295 (14)
Tivi- ${ }^{\text {vi }}$ - $-\mathrm{Sb}^{\text {vii }}$	167.11 (4)
Tivii- ${ }^{\text {vi }}$ - $\mathrm{Sb}^{\text {vii }}$	59.01 (3)
$\mathrm{Ti}-\mathrm{Sb}-\mathrm{Sb}^{\text {vii }}$	54.051 (16)
$\mathrm{Sb}^{\text {v }}-\mathrm{Sb}-\mathrm{Sb}^{\text {vii }}$	69.840 (16)
$\mathrm{Sb}^{\text {iv }}-\mathrm{Sb}-\mathrm{Sb}^{\text {vii }}$	69.840 (16)
$\mathrm{Ti}^{\text {iv }}-\mathrm{Sb}-\mathrm{Sb}^{\text {vi }}$	103.295 (14)
$\mathrm{Ti}^{\mathrm{v}}-\mathrm{Sb}-\mathrm{Sb}^{\text {vi }}$	103.295 (14)
$\mathrm{Ti}^{\text {vi}}-\mathrm{Sb}-\mathrm{Sb}^{\text {vi }}$	59.01 (3)

supporting information

$\mathrm{Ge}^{\mathrm{ix}}-\mathrm{Ge}-\mathrm{Ti}^{\mathrm{i}}$	$61.656(11)$	$\mathrm{Ti}^{\text {vii }}-\mathrm{Sb}-\mathrm{Sb}^{\text {vi }}$	$167.11(4)$
$\mathrm{Ge}^{\text {viii }}-\mathrm{Ge}-\mathrm{Ti}^{\mathrm{x}}$	$61.656(11)$	$\mathrm{Ti}-\mathrm{Sb}-\mathrm{Sb}^{\text {vi }}$	$54.051(16)$
$\mathrm{Ge}^{\mathrm{i}}-\mathrm{Ge}-\mathrm{Ti}^{\mathrm{x}}$	$118.344(11)$	$\mathrm{Sb}^{v} — \mathrm{Sb}-\mathrm{Sb}^{\text {vi }}$	$69.840(16)$
$\mathrm{Ge}^{\mathrm{iiii}}-\mathrm{Ge}-\mathrm{Ti}^{\mathrm{x}}$	$118.344(11)$	$\mathrm{Sb}^{\mathrm{iv}}-\mathrm{Sb}-\mathrm{Sb}^{\text {vi }}$	$69.840(16)$
$\mathrm{Ge}^{\mathrm{ix}}-\mathrm{Ge}-\mathrm{Ti}^{\mathrm{x}}$	$61.656(11)$	$\mathrm{Sb}^{\text {vii }}-\mathrm{Sb}-\mathrm{Sb}^{\text {vi }}$	$108.10(3)$

Symmetry codes: (i) $-x+1,-y,-z$; (ii) $x-1, y, z$; (iii) $-x+1,-y+1,-z$; (iv) $-x+1,-y+1,-z+1$; (v) $-x,-y,-z+1$; (vi) $-x,-y+1,-z+1$; (vii) $-x+1,-y,-z+1$; (viii) $-x+2,-y+1,-z$; (ix) $-x+2,-y,-z$; (x) $x+1, y, z$.

