organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

5,7-Dimethoxyisobenzofuran-1(3H)-one

Ming-Xue Sun,^a Xu Li,^b Wen-Yong Liu^a and Kai Xiao^a*

^aLaboratory of Toxicology & Pharmacology, Faculty of Naval Medicine, Second Military Medical University, Shanghai 200433, People's Republic of China, and ^bSchool of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China Correspondence e-mail: kaixiaocn@gmail.com

Received 17 July 2009; accepted 6 August 2009

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.004 Å; R factor = 0.052; wR factor = 0.131; data-to-parameter ratio = 12.5.

The asymmetric unit of the title compound, $C_{10}H_{10}O_4$, which has been isolated from rhizoma Polygonum Cuspidatum, a Chinese folk medicine, contains two crystallographically independent molecules. The molecules are essentially planar, with a maximum deviation of 0.061 (2) Å from the best planes. The crystal packing is stabilized by weak intermolecular C– $H \cdots O$ hydrogen-bonding interactions, with a stacking direction of the molecules parallel to [101].

Related literature

For the synthesis of 5,7-dimethoxyphthalide, see: Talapatra & Monoj (1980); Dang *et al.* (1999); Orito *et al.* (1995). For the title compound as an intermediate, see: Zuo *et al.* (2008); Lee *et al.* (2001). For the title compound as a byproduct, see: Fürstner *et al.* (2000).

$\beta = 104.322 \ (6)^{\circ}$
$V = 1791.5 (11) \text{ Å}^3$
Z = 8
Mo $K\alpha$ radiation

Data collection

Bruker SMART APEX CCD areadetector diffractometer Absorption correction: multi-scan (SADABS; Sheldrick, 1996) $T_{min} = 0.987, T_{max} = 0.989$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.052$ 258 parameters $wR(F^2) = 0.131$ H-atom parameters constrainedS = 0.93 $\Delta \rho_{max} = 0.18$ e Å⁻³3216 reflections $\Delta \rho_{min} = -0.19$ e Å⁻³

 $\mu = 0.11 \text{ mm}^{-1}$ T = 293 K

 $R_{\rm int} = 0.062$

 $0.12 \times 0.12 \times 0.10$ mm

7489 measured reflections

3216 independent reflections

1766 reflections with $I > 2\sigma(I)$

Table 1Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdots A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$C6A - H6A \cdots O1B^{i}$	0.93	2.51	3.397 (3)	161
$C6B - H6B \cdots O1A^{iii}$	0.97	2.53 2.44	3.337 (3) 3.325 (3)	140 159

Symmetry codes: (i) x + 1, y, z; (ii) -x, -y + 1, -z + 1; (iii) x, y, z + 1.

Data collection: *SMART* (Bruker, 2000); cell refinement: *SAINT* (Bruker, 2000); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXTL* and *PLATON* (Spek, 2009).

The authors acknowledge financial support from the National Natural Science Foundation of China (20872179) and the Science and Technology Commission of Shanghai Municipality (STCSM) (08DZ1971504).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: WM2246).

References

- Bruker (2000). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Dang, Q., Brown, B. S., Poelje, P. D., Colby, T. J. & Erion, M. D. (1999). Bioorg. Med. Chem. Lett. 9, 1505–1510.

Fürstner, A., Thiel, O. R., Kindler, N. & Bartkowska, B. (2000). J. Org. Chem. 65, 7990–7995.

Lee, Y., Fujiwara, Y., Ujita, K., Nagatomo, M., Ohata, H. & Shimizu, I. (2001). Bull. Chem. Soc. Jpn, **74**, 1437–1443.

Orito, K., Miyazawa, M. & Suginome, H. (1995). *Tetrahedron*, **51**, 2489–2496. Sheldrick, G. M. (1996). *SADABS*. University of Göttingen, Germany.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.

Spek, A. L. (2009). Acta Cryst. D65, 148–155.

Talapatra, B. & Monoj, K. R. (1980). Indian J. Chem. Sect. B, 19, 927-929.

Zuo, L., Yao, S. Y. & Duan, W. H. (2008). Chin. J. Org. Chem. 28, 1982-1985.

supporting information

Acta Cryst. (2009). E65, o2146 [doi:10.1107/S1600536809031183]

5,7-Dimethoxyisobenzofuran-1(3H)-one

Ming-Xue Sun, Xu Li, Wen-Yong Liu and Kai Xiao

S1. Comment

The compound 5, 7-dimethoxyphthalide has been previously reported. It could be obtained by different synthetic strategies, e.g. from 5,7-dihydroxyphthalide (Talapatra & Monoj, 1980), 6-iodo-3-methoxybenzyl alcohols (Dang *et al.*, 1999) or 3,5-dimethoxybenzyl alcohol (Orito *et al.*,1995). It could act as an intermediate product in the process of synthesizing some significant compounds, such as 5,7-dimethoxy-4-methylphthalide and 5,7-dihydroxy-4-methyl-phthalide (Zuo *et al.*, 2008), or mycophenolic acid and its analogs (Lee *et al.*, 2001). It was also reported as a byproduct in the synthesis of zearalenone and lasiodiplodin (Fürstner *et al.*, 2000). However, no structural details were provided. In this study, 5,7-dimethoxyphthalide was isolated from the rhizoma *Polygonum cuspidatum* as colorless prismatic crystals.

The molecule (Fig. 1) is essentially planar with a maximum deviation of 0.061 (2) Å from the best planes. The crystal packing is stabilized by weak intermolecular C—H···O hydrogen-bonding interactions with a stacking direction of the molecules parallel to [101] (Fig. 2).

S2. Experimental

The slices of the dried roots of *P. cuspidatum* (10 kg) were extracted with 60% aqueous acetone 3 times (24 h each) at room temperature. The solvent was evaporated in vacuo and some hydrophobic substances precipitated which were filtered off. The filtrate was concentrated to a suitable volume, then chromatographed on a Sephadex LH-20 column eluted with H₂O, aqueous MeOH (10%-70%) and 50% acetone successively to give five fractions. The fraction eluated by 10% MeOH was subjected to MCI gel chromatography eluted with gradient aqueous MeOH solvent. The 30% aqueous MeOH eluate from the MCI column afforded the compound 5,7-dimethoxyphthalide as an amorphous powder. The powder was recrystallized in acetone and produced colourless prismatic crystals.

S3. Refinement

The H atoms were refined at calculated positions riding on the parent carbon atoms (C–H = 0.95-0.99 Å) with isotropic displacement parameters $U_{iso}(H) = 1.2U(Ceq)$ or $1.5U(-CH_3)$. All CH₃ hydrogen atoms were allowed to rotate but not to tip.

Figure 1

The molecular structure of 5,7-dimethoxyphthalide, showing the atom-labelling scheme. H atoms are shown as small spheres of arbitrary radius. Displacement ellipsoids are drawn at the 50% probability level.

Figure 2

Molecular packing in the crystal, viewed along the b axis. Dashed lines indicate intermolecular C—H···O hydrogen bonds.

5,7-Dimethoxyisobenzofuran-1(3H)-one

Crystal data

 $C_{10}H_{10}O_4$ $M_r = 194.18$ Monoclinic, $P2_1/c$ Hall symbol: -P 2ybc a = 8.532 (3) Å b = 25.877 (10) Å c = 8.374 (3) Å $\beta = 104.322$ (6)° V = 1791.5 (11) Å³ Z = 8

Data collection

Bruker SMART APEX CCD area-detector diffractometer Radiation source: fine-focus sealed tube Graphite monochromator φ and ω scans Absorption correction: multi-scan (*SADABS*; Sheldrick, 1996) $T_{\min} = 0.987, T_{\max} = 0.989$

Refinement

Refinement on F^2 Hydrogen site location: inferred from Least-squares matrix: full neighbouring sites $R[F^2 > 2\sigma(F^2)] = 0.052$ H-atom parameters constrained $wR(F^2) = 0.131$ $w = 1/[\sigma^2(F_0^2) + (0.053P)^2]$ S = 0.93where $P = (F_0^2 + 2F_c^2)/3$ 3216 reflections $(\Delta/\sigma)_{\rm max} < 0.001$ 258 parameters $\Delta \rho_{\rm max} = 0.18 \ {\rm e} \ {\rm \AA}^{-3}$ $\Delta \rho_{\rm min} = -0.19 \ {\rm e} \ {\rm \AA}^{-3}$ 0 restraints Extinction correction: SHELXL97 (Sheldrick, Primary atom site location: structure-invariant direct methods 2008), Fc^{*}=kFc[1+0.001xFc² $\lambda^{3}/sin(2\theta)$]^{-1/4} Secondary atom site location: difference Fourier Extinction coefficient: 0.0026 (5) map

Special details

Experimental. The powder of 5,7-dimethoxyphthalide was solved in acetone and produced colorless crystal. **Geometry**. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. **Refinement**. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

F(000) = 816

 $\theta = 2.6 - 21.3^{\circ}$

 $\mu = 0.11 \text{ mm}^{-1}$

Prism. colourless

 $0.12 \times 0.12 \times 0.10$ mm

7489 measured reflections 3216 independent reflections

 $\theta_{\rm max} = 25.2^{\circ}, \ \theta_{\rm min} = 1.6^{\circ}$

1766 reflections with $I > 2\sigma(I)$

T = 293 K

 $R_{\rm int} = 0.062$

 $h = -7 \rightarrow 10$

 $k = -30 \rightarrow 31$

 $l = -10 \rightarrow 8$

 $D_{\rm x} = 1.440 {\rm Mg} {\rm m}^{-3}$

Mo $K\alpha$ radiation, $\lambda = 0.71073$ Å Cell parameters from 715 reflections

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
O1A	0.3975 (2)	0.42391 (7)	0.1615 (2)	0.0627 (6)
O2A	0.2605 (3)	0.35976 (8)	0.0110 (2)	0.0674 (6)

O3A	0.4002 (2)	0.25798 (7)	0.1709 (2)	0.0571 (6)
O4A	0.8571 (2)	0.28610 (7)	0.6142 (2)	0.0628 (6)
C1A	0.3670 (4)	0.37248 (11)	0.1270 (3)	0.0518 (8)
C2A	0.4830 (3)	0.34270 (10)	0.2496 (3)	0.0417 (6)
C3A	0.5069 (3)	0.28902 (10)	0.2724 (3)	0.0470 (7)
C4A	0.6341 (3)	0.27237 (10)	0.3971 (3)	0.0471 (7)
H4A	0.6529	0.2372	0.4141	0.057*
C5A	0.7359 (3)	0.30831 (11)	0.4992 (3)	0.0487 (7)
C6A	0.7112 (3)	0.36054 (10)	0.4795 (3)	0.0486 (7)
H6A	0.7780	0.3842	0.5478	0.058*
C7A	0.5835 (3)	0.37640 (10)	0.3545 (3)	0.0452 (7)
C8A	0.5296 (3)	0.43027 (10)	0.3046 (3)	0.0542 (8)
H8A1	0.4942	0.4478	0.3920	0.065*
H8A2	0.6164	0.4500	0.2782	0.065*
C9A	0.4125 (4)	0.20351 (11)	0.2069 (4)	0.0644 (9)
H9A1	0.5177	0.1914	0.2025	0.097*
H9A2	0.3312	0.1853	0.1270	0.097*
H9A3	0.3968	0.1976	0.3150	0.097*
C10A	0.9664 (4)	0.31963 (13)	0.7237 (4)	0.0764 (10)
H10A	1.0202	0.3415	0.6614	0.115*
H10B	1.0451	0.2994	0.7999	0.115*
H10C	0.9072	0.3406	0.7833	0.115*
O1B	-0.0885(2)	0.46776 (7)	0.6553 (2)	0.0582 (5)
O2B	-0.2380(2)	0.53224 (8)	0.5190 (2)	0.0674 (6)
O3B	-0.0891(2)	0.63386 (7)	0.6714 (2)	0.0551 (5)
O4B	0.3667 (2)	0.60524 (7)	1.1150 (2)	0.0539 (5)
C1B	-0.1230(3)	0.51938 (12)	0.6263 (3)	0.0522 (8)
C2B	-0.0013(3)	0.54864 (11)	0.7460 (3)	0.0454 (7)
C3B	0.0172 (3)	0.60196 (10)	0.7725 (3)	0.0415 (7)
C4B	0.1434 (3)	0.61849 (10)	0.8969 (3)	0.0440 (7)
H4B	0.1590	0.6537	0.9162	0.053*
C5B	0.2488 (3)	0.58354 (10)	0.9954 (3)	0.0420 (6)
C6B	0.2297(3)	0.53046 (10)	0.9714 (3)	0.0418 (6)
H6B	0.2988	0.5069	1.0375	0.050*
C7B	0.1032(3)	0.51477 (9)	0.8449 (3)	0.0403 (6)
C8B	0.0538 (3)	0.46110 (10)	0.7869 (3)	0.0522(7)
H8B1	0.1386	0.4442	0.7477	0.063*
H8B2	0.0302	0.4406	0.8750	0.063*
C9B	-0.0723(4)	0.68778 (10)	0.7035 (4)	0.0620 (8)
H9B1	-0.0863	0.6948	0.8117	0.093*
H9B2	-0.1527	0.7062	0.6232	0.093*
H9B3	0.0335	0.6988	0.6973	0.093*
C10B	0.4778 (3)	0.57130 (11)	1.2222 (3)	0.0589 (8)
H10D	0.4192	0.5485	1.2769	0.088*
H10E	0.5531	0.5913	1.3028	0.088*
H10F	0.5356	0.5514	1.1587	0.088*

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
01A	0.0734 (15)	0.0519 (13)	0.0597 (13)	0.0139 (11)	0.0105 (11)	0.0112 (10)
O2A	0.0663 (14)	0.0782 (15)	0.0517 (13)	0.0101 (12)	0.0029 (11)	0.0066 (11)
O3A	0.0585 (13)	0.0487 (13)	0.0580 (12)	0.0039 (10)	0.0028 (10)	-0.0025 (10)
O4A	0.0558 (12)	0.0596 (13)	0.0618 (13)	0.0065 (10)	-0.0066 (11)	-0.0011 (10)
C1A	0.055 (2)	0.059 (2)	0.0442 (18)	0.0101 (16)	0.0194 (16)	0.0078 (15)
C2A	0.0409 (16)	0.0434 (16)	0.0435 (16)	0.0030 (13)	0.0157 (13)	0.0015 (13)
C3A	0.0446 (17)	0.0492 (18)	0.0479 (18)	-0.0023 (14)	0.0129 (14)	-0.0027 (14)
C4A	0.0491 (17)	0.0413 (16)	0.0515 (17)	0.0026 (13)	0.0132 (15)	-0.0009 (13)
C5A	0.0420 (17)	0.0535 (19)	0.0498 (17)	0.0078 (14)	0.0095 (14)	0.0018 (14)
C6A	0.0468 (18)	0.0459 (17)	0.0530 (18)	-0.0022 (13)	0.0120 (15)	-0.0059 (13)
C7A	0.0444 (17)	0.0441 (17)	0.0520 (17)	0.0035 (13)	0.0215 (14)	0.0037 (14)
C8A	0.064 (2)	0.0491 (18)	0.0544 (18)	0.0077 (14)	0.0233 (16)	0.0054 (14)
C9A	0.069 (2)	0.0492 (19)	0.071 (2)	-0.0037 (15)	0.0088 (17)	-0.0008 (15)
C10A	0.068 (2)	0.078 (2)	0.069 (2)	0.0022 (18)	-0.0115 (18)	-0.0118 (18)
O1B	0.0522 (13)	0.0547 (13)	0.0659 (13)	-0.0078 (10)	0.0111 (10)	-0.0179 (10)
O2B	0.0443 (12)	0.0910 (16)	0.0590 (13)	-0.0001 (12)	-0.0020 (10)	-0.0168 (11)
O3B	0.0514 (12)	0.0544 (13)	0.0538 (12)	0.0078 (10)	0.0018 (9)	0.0017 (10)
O4B	0.0504 (12)	0.0478 (11)	0.0521 (12)	0.0024 (9)	-0.0089 (10)	-0.0010 (9)
C1B	0.0381 (18)	0.067 (2)	0.0520 (19)	-0.0063 (15)	0.0115 (15)	-0.0141 (15)
C2B	0.0382 (16)	0.0581 (18)	0.0409 (16)	-0.0021 (14)	0.0117 (13)	-0.0038 (14)
C3B	0.0381 (16)	0.0455 (17)	0.0410 (16)	0.0036 (13)	0.0098 (13)	0.0033 (13)
C4B	0.0428 (16)	0.0402 (16)	0.0474 (16)	-0.0020 (13)	0.0080 (14)	0.0000 (13)
C5B	0.0386 (16)	0.0485 (18)	0.0387 (15)	-0.0018 (13)	0.0090 (13)	-0.0029 (13)
C6B	0.0381 (16)	0.0438 (16)	0.0437 (16)	0.0047 (12)	0.0107 (13)	0.0030 (12)
C7B	0.0417 (16)	0.0397 (16)	0.0431 (15)	0.0003 (13)	0.0175 (13)	-0.0005 (13)
C8B	0.0486 (18)	0.0493 (18)	0.0581 (18)	-0.0027 (14)	0.0118 (14)	-0.0050 (14)
C9B	0.064 (2)	0.050 (2)	0.068 (2)	0.0100 (15)	0.0074 (16)	0.0063 (15)
C10B	0.0473 (19)	0.062 (2)	0.0578 (19)	0.0068 (15)	-0.0056 (15)	-0.0028 (15)

Atomic displacement parameters $(Å^2)$

Geometric parameters (Å, °)

O1A—C1A	1.373 (3)	O1B—C1B	1.376 (3)	
O1A—C8A	1.437 (3)	O1B—C8B	1.434 (3)	
O2A—C1A	1.200 (3)	O2B—C1B	1.202 (3)	
O3A—C3A	1.346 (3)	O3B—C3B	1.357 (3)	
O3A—C9A	1.440 (3)	O3B—C9B	1.422 (3)	
O4A—C5A	1.355 (3)	O4B—C5B	1.354 (3)	
O4A-C10A	1.428 (3)	O4B—C10B	1.434 (3)	
C1A—C2A	1.458 (4)	C1B—C2B	1.463 (4)	
C2A—C7A	1.377 (3)	C2B—C7B	1.372 (3)	
C2A—C3A	1.410 (4)	C2B—C3B	1.400 (4)	
C3A—C4A	1.376 (3)	C3B—C4B	1.368 (3)	
C4A—C5A	1.408 (4)	C4B—C5B	1.393 (3)	
C4A—H4A	0.9300	C4B—H4B	0.9300	
C5A—C6A	1.371 (4)	C5B—C6B	1.392 (4)	

C6A—C7A	1.374 (3)	C6B—C7B	1.373 (3)
С6А—Н6А	0.9300	C6B—H6B	0.9300
C7A—C8A	1.495 (3)	C7B—C8B	1.497 (3)
C8A—H8A1	0.9700	C8B—H8B1	0.9700
C8A—H8A2	0.9700	C8B—H8B2	0.9700
С9А—Н9А1	0.9599	C9B—H9B1	0.9599
С9А—Н9А2	0.9599	C9B—H9B2	0.9599
С9А—Н9А3	0.9599	C9B—H9B3	0.9599
C10A—H10A	0.9599	C10B—H10D	0.9599
C10A—H10B	0.9599	C10B—H10E	0.9599
C10A - H10C	0 9599	C10B—H10F	0.9599
	0.7077		0.9099
C1A—O1A—C8A	110.8 (2)	C1B—O1B—C8B	110.8 (2)
C3A—O3A—C9A	116.7 (2)	C3B—O3B—C9B	117.3 (2)
C5A—O4A—C10A	117.5 (2)	C5B—O4B—C10B	117.7 (2)
02A— $C1A$ — $01A$	120.2(3)	02B-C1B-O1B	120.0(3)
O^2A — C^1A — C^2A	132.1(3)	02B-C1B-C2B	132.7(3)
O1A - C1A - C2A	107.7(2)	01B-C1B-C2B	107.3(2)
C7A - C2A - C3A	107.7(2) 1194(2)	C7B-C2B-C3B	107.3(2) 120.2(2)
C7A - C2A - C1A	108.8(2)	C7B $C2B$ $C1B$	120.2(2) 100.1(3)
$C_{A} = C_{A} = C_{A}$	131.8(3)	C_{1B} C_{2B} C_{1B}	109.1(3) 130.6(3)
$O_{3A} - C_{3A} - C_{4A}$	125.1(3)	O3B-C3B-C4B	124.3(2)
$O_{3A} = C_{3A} = C_{4A}$	125.1(3) 116.7(2)	$O_{3B} = C_{3B} = C_{4B}$	124.5(2) 1180(2)
$C_{AA} = C_{AA} = C_{AA} = C_{AA}$	110.7(2) 118.2(2)	$C_{AB} = C_{AB} = C_{AB}$	117.0(2)
$C_{4A} = C_{5A} = C_{2A}$	110.2(2) 1204(3)	C4B = C3B = C2B	117.7(2) 121.2(2)
$C_{3A} = C_{4A} = C_{5A}$	120.4 (3)	$C_{3B} = C_{4B} = C_{3B}$	121.3(2)
$C_{3A} - C_{4A} - H_{4A}$	119.0	C_{3D} C_{4D} C	119.4
$C_{JA} = C_{A} = H_{A}$	119.0	$C_{3}D - C_{4}D - H_{4}D$	119.4 122.7(2)
O4A = C5A = C6A	124.8(3)	O4B = C5B = C4B	123.7(2)
$C_{A} = C_{A} = C_{A}$	113.3(2)	C4B = C5B = C4B	114.9(2)
C5A = C(A = C7A)	121.0(3)	COB - COB - CAB	121.3(2)
C5A = C6A = U(A)	117.1(2)	C/B = C0B = C3B	110.4 (2)
C3A = C6A = H6A	121.5		121.8
C/A - CoA - HoA	121.5	C3B - C6B - H6B	121.8
C6A - C7A - C2A	123.3(2)	$C_2B - C_7B - C_0B$	123.1 (2)
C6A - C/A - C8A	128.5 (3)	$C_2B - C_1B - C_8B$	107.9 (2)
$C_2A - C_7A - C_8A$	108.2 (2)		129.0 (2)
OIA - C8A - C/A	104.5 (2)		104.8 (2)
OIA—C8A—H8AI	110.9		110.8
C/A—C8A—H8A1	110.9	С/В—С8В—Н8В1	110.8
OIA—C8A—H8A2	110.9	01B—C8B—H8B2	110.8
C7A—C8A—H8A2	110.9	C7B—C8B—H8B2	110.8
H8A1—C8A—H8A2	108.9	H8B1—C8B—H8B2	108.9
U3A—C9A—H9A1	109.5	03B—C9B—H9B1	109.5
03A—C9A—H9A2	109.5	O3B—C9B—H9B2	109.5
Н9А1—С9А—Н9А2	109.5	H9B1—C9B—H9B2	109.5
03А—С9А—Н9А3	109.5	O3B—C9B—H9B3	109.5
Н9А1—С9А—Н9А3	109.5	H9B1—C9B—H9B3	109.5
H9A2—C9A—H9A3	109.5	H9B2—C9B—H9B3	109.5

O4A-C10A-H10A	109.5	O4B—C10B—H10D	109.5
O4A—C10A—H10B	109.5	O4B-C10B-H10E	109.5
H10A—C10A—H10B	109.5	H10D-C10B-H10E	109.5
O4A—C10A—H10C	109.5	O4B-C10B-H10F	109.5
H10A—C10A—H10C	109.5	H10D-C10B-H10F	109.5
H10B—C10A—H10C	109.5	H10E—C10B—H10F	109.5
C8A—O1A—C1A—O2A	-179.8 (2)	C8B-01B-C1B-02B	179.5 (2)
C8A—O1A—C1A—C2A	-0.5 (3)	C8B—O1B—C1B—C2B	-1.5 (3)
O2A—C1A—C2A—C7A	178.2 (3)	O2B—C1B—C2B—C7B	178.6 (3)
O1A—C1A—C2A—C7A	-1.0 (3)	O1B—C1B—C2B—C7B	-0.3 (3)
O2A—C1A—C2A—C3A	-0.6 (5)	O2B—C1B—C2B—C3B	0.5 (5)
O1A—C1A—C2A—C3A	-179.8 (3)	O1B—C1B—C2B—C3B	-178.5 (2)
C9A—O3A—C3A—C4A	6.2 (4)	C9B—O3B—C3B—C4B	-3.4 (4)
C9A—O3A—C3A—C2A	-172.6 (2)	C9B—O3B—C3B—C2B	177.8 (2)
C7A—C2A—C3A—O3A	177.0 (2)	C7B—C2B—C3B—O3B	180.0 (2)
C1A—C2A—C3A—O3A	-4.3 (4)	C1B—C2B—C3B—O3B	-2.0 (4)
C7A—C2A—C3A—C4A	-1.9 (4)	C7B—C2B—C3B—C4B	1.1 (4)
C1A—C2A—C3A—C4A	176.8 (3)	C1B—C2B—C3B—C4B	179.1 (2)
O3A—C3A—C4A—C5A	-178.2 (2)	O3B—C3B—C4B—C5B	-179.5 (2)
C2A—C3A—C4A—C5A	0.6 (4)	C2B—C3B—C4B—C5B	-0.7 (4)
C10A—O4A—C5A—C6A	0.5 (4)	C10B—O4B—C5B—C6B	0.2 (4)
C10A—O4A—C5A—C4A	-179.9 (2)	C10B—O4B—C5B—C4B	179.1 (2)
C3A—C4A—C5A—O4A	-178.9 (2)	C3B—C4B—C5B—O4B	-179.2 (2)
C3A—C4A—C5A—C6A	0.7 (4)	C3B—C4B—C5B—C6B	-0.2 (4)
O4A—C5A—C6A—C7A	179.0 (2)	O4B—C5B—C6B—C7B	179.6 (2)
C4A—C5A—C6A—C7A	-0.6 (4)	C4B—C5B—C6B—C7B	0.8 (4)
C5A—C6A—C7A—C2A	-0.8 (4)	C3B—C2B—C7B—C6B	-0.6 (4)
C5A—C6A—C7A—C8A	-179.5 (3)	C1B—C2B—C7B—C6B	-179.0 (2)
C3A—C2A—C7A—C6A	2.1 (4)	C3B—C2B—C7B—C8B	-179.8 (2)
C1A—C2A—C7A—C6A	-176.9 (2)	C1B—C2B—C7B—C8B	1.8 (3)
C3A—C2A—C7A—C8A	-178.9 (2)	C5B—C6B—C7B—C2B	-0.4 (4)
C1A—C2A—C7A—C8A	2.1 (3)	C5B—C6B—C7B—C8B	178.7 (2)
C1A—O1A—C8A—C7A	1.7 (3)	C1B—O1B—C8B—C7B	2.5 (3)
C6A—C7A—C8A—O1A	176.6 (2)	C2B—C7B—C8B—O1B	-2.6 (3)
C2A-C7A-C8A-01A	-2.3 (3)	C6B—C7B—C8B—O1B	178.2 (2)

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	D····A	<i>D</i> —H··· <i>A</i>
$C6A$ —H6 A ···O1 B^{i}	0.93	2.51	3.397 (3)	161
$C8A$ — $H8A1$ ···O $2B^{ii}$	0.97	2.53	3.337 (3)	140
C6 <i>B</i> —H6 <i>B</i> ····O1 <i>A</i> ⁱⁱⁱ	0.93	2.44	3.325 (3)	159

Symmetry codes: (i) *x*+1, *y*, *z*; (ii) –*x*, –*y*+1, –*z*+1; (iii) *x*, *y*, *z*+1.