organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

N,N-Bis(2,6-difluorobenzyl)-1,3,4-thiadiazol-2-amine

Hoong-Kun Fun,^a*‡ Wei-Ching Liew,^a B. Chandrakantha^b and Arun M. Isloor^c

^aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, ^bSyngene International Ltd, Biocon Park, Plot Nos. 2 & 3, Bommasandra 4th Phase, Jigani Link Rd, Bangalore 560 100, India, and ^cDepartment of Chemistry, National Institute of Technology-Karnataka, Surathkal, Mangalore 575 025, India

Correspondence e-mail: hkfun@usm.my

Received 11 August 2009; accepted 11 August 2009

Key indicators: single-crystal X-ray study; T = 100 K; mean σ (C–C) = 0.002 Å; R factor = 0.033; wR factor = 0.076; data-to-parameter ratio = 22.0.

In the title compound, $C_{16}H_{11}F_4N_3S$, the dihedral angles between the thiadiazole ring and the difluorobenzyl rings are 81.95 (7) and 81.96 (7)°, whereas the dihedral angle between the difluorobenzyl rings is 11.41 (7)°. In the crystal structure, $C-H\cdots N$ and $C-H\cdots F$ interactions link the molecules into two-dimensional arrays parallel to the *bc* plane.

Related literature

For the synthesis of pharmaceutically condensed heterocyclic thiadiazole derivatives as antimicrobials, see: Swamy *et al.* (2006). For the synthesis and anti-inflammatory, analgesic, ulcerogenic and lipid peroxidation activity of some new acetic acid derivatives, see: Amir & Shikha (2004). For new bis-aminomercaptotriazoles and bis-triazolothiadiazoles as possible anticancer agents, see: Holla *et al.* (2002). For the synthesis and biological evaluation of thiadiazole derivatives as a novel class of potential anti-tumor agents, see: Ibrahim (2009). For related structures, see: Wang *et al.* (2009*a,b*); Yin *et al.* (2008). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986).

Experimental

Crystal data

 $\begin{array}{l} C_{16}H_{11}F_4N_3S\\ M_r = 353.34\\ Orthorhombic, Pca2_1\\ a = 32.6678 \ (6) \ \text{\AA}\\ b = 5.8515 \ (1) \ \text{\AA}\\ c = 7.8140 \ (2) \ \text{\AA} \end{array}$

Data collection

Bruker SMART APEXII CCD area-detector diffractometer Absorption correction: multi-scan (SADABS; Bruker, 2005) T_{min} = 0.887, T_{max} = 0.965

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.033$ $wR(F^2) = 0.076$ S = 1.024796 reflections 218 parameters 1 restraint Z = 4Mo K α radiation $\mu = 0.26 \text{ mm}^{-1}$ T = 100 K $0.46 \times 0.33 \times 0.14 \text{ mm}$

V = 1493.69 (5) Å³

17980 measured reflections 4796 independent reflections 4299 reflections with $I > 2\sigma(I)$ $R_{\text{int}} = 0.027$

H-atom parameters constrained $\Delta \rho_{max} = 0.23 \text{ e} \text{ Å}^{-3}$ $\Delta \rho_{min} = -0.26 \text{ e} \text{ Å}^{-3}$ Absolute structure: Flack (1983), 1935 Friedel pairs Flack parameter: 0.20 (5)

Table 1 Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$C1-H1A\cdots N1^{i}$	0.93	2.58	3.392 (2)	146
$C3-H3B\cdots F3^{ii}$	0.97	2.47	3.0226 (16)	116
$C8-H8A\cdots F4^{iii}$	0.93	2.54	3.144 (2)	123
$C10-H10B\cdots N2^{iv}$	0.97	2.56	3.4191 (17)	148

Symmetry codes: (i) $-x + \frac{3}{2}$, y, $z - \frac{1}{2}$; (ii) x, y + 1, z; (iii) x, y - 1, z + 1; (iv) x, y - 1, z.

Data collection: *APEX2* (Bruker, 2005); cell refinement: *SAINT* (Bruker, 2005); data reduction: *SAINT*; program(s) used to solve structure: *SHELXTL* (Sheldrick, 2008); program(s) used to refine structure: *SHELXTL*; molecular graphics: *SHELXTL*; software used to prepare material for publication: *SHELXTL* and *PLATON* (Spek, 2009).

HKF and WCL thank Universiti Sains Malaysia (USM) for a Research University Golden Goose Grant (No. 1001/ PFIZIK/811012). WCL thanks USM for a USM Fellowship. AMI is grateful to the Director, NITK Surathkal, India, for providing research facilities.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: TK2527).

[‡] Thomson Reuters ResearcherID: A-3561-2009.

References

- Amir, M. & Shikha, K. (2004). Eur. J. Med. Chem. 39, 535-545.
- Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.
- Flack, H. D. (1983). Acta Cryst. A39, 876-881.
- Holla, B. S., Poorjary, K. N., Rao, B. S. & Shivananda, M. K. (2002). Eur. J. Med. Chem. 37, 511–517.
- Ibrahim, D. A. (2009). Eur. J. Med. Chem. 44, 2776-2781.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.
- Swamy, S. N., Basappa, B. S., Prabhuswamy, P. B., Doreswamy, B. H., Prasad, J. S. & Rangappa, K. S. (2006). *Eur. J. Med. Chem.* **41**, 531–538.
- Wang, Y., Wan, R., Han, F. & Wang, P. (2009a). Acta Cryst. E65, 01425.
- Wang, Y., Wan, R., Han, F. & Wang, P. (2009b). Acta Cryst. E65, o1761.
- Yin, L.-H., Wan, R., Wang, Y., Han, F. & Wang, J.-T. (2008). Acta Cryst. E64, o1884.

supporting information

Acta Cryst. (2009). E65, o2166-o2167 [doi:10.1107/S1600536809031675]

N,N-Bis(2,6-difluorobenzyl)-1,3,4-thiadiazol-2-amine

Hoong-Kun Fun, Wei-Ching Liew, B. Chandrakantha and Arun M. Isloor

S1. Comment

Heterocycles bearing 1,3,4-thiadiazole moieties represent an interesting class of compounds possessing a wide spectrum of biological activity (Swamy *et al.*, 2006) such as anti-inflammatory, anti-viral and anti-microbial properties (Amir & Shikha, 2004). Recently, 1,3,4-thiadiazoles have attracted particular attention due to their analgesic, ulcerogenic and lipidperoxidation activities (Holla *et al.*, 2002). In particular, the derivatives of variously substituted 1,3,4-thiadiazoles are also known to exhibit anti-depressant and anxiolitic agents (Ibrahim, 2009). Herein, the crystal structure of the title compound (I) is reported.

In (I), Fig. 1, the bond lengths and angles are comparable to related structures (Wang *et al.*, 2009*a* & *b*; Yin *et al.*, 2008). The dihedral angles between the thiadiazole ring (C1—C2/S1/N1—N2) and the difluorobenzyl rings [(C4—C9) and (C11—C16)] are 81.95 (7)° and 81.86 (7)°, respectively whereas the dihedral angle between the difluorobenzyl rings is 11.41 (7)°. These data indicate that all the three rings are twisted from each other.

The crystal packing (Fig. 2) is consolidated by C—H···N and C—H···F interactions (Table 1) that link molecules into two-dimensional arrays parallel to the *bc* plane.

S2. Experimental

Anhydrous potassium carbonate (5.4 g, 0.0395 mol) was added to a solution of 1,3,4-thiadiazole-2-amine (2 g, 0.0197 mol) in dry acetonitrile (25 ml). The reaction mixture was stirred for 15 min. 2,6-Difluorobenzyl bromide (8.18 g, 0.0395 mol) was added drop-wise to the mixture. After addition, the reaction mixture was stirred at room temperature for 18 h, filtered, and the filtrate was concentrated. The crude product was purified by column chromatography using 60–120 silica gel. The fraction eluted with 10% ethyl acetate in hexane was concentrated to produce (I) as a pale-yellow crystalline solid. Yield 5.0 g, 71.63%. *m.p.* 421–423 K.

S3. Refinement

C-bound H atoms were positioned geometrically [C—H = 0.93 and 0.97 Å] and refined using a riding model with $U_{iso}(H) = 1.2U_{eq}(C)$.

Figure 1

The molecular structure of (I), showing 50% probability displacement ellipsoids and the atom numbering scheme.

Figure 2

Crystal packing viewed along the *b*-axis. C-H…N and C-H…F interactions are shown as dashed lines.

N,N-Bis(2,6-difluorobenzyl)-1,3,4-thiadiazol-2-amine

C ₁₆ H ₁₁ F ₄ N ₃ S	F(000) = 720
$M_r = 353.34$	$D_x = 1.571 \text{ Mg m}^{-3}$
Orthorhombic, <i>Pca</i> 2 ₁	Mo K α radiation, $\lambda = 0.71073 \text{ Å}$
Hall symbol: P 2c -2ac	Cell parameters from 9387 reflections
a = 32.6678 (6) Å	$\theta = 2.9-33.7^{\circ}$
b = 5.8515 (1) Å	$\mu = 0.26 \text{ mm}^{-1}$
c = 7.8140 (2) Å	T = 100 K
V = 1493.69 (5) Å ³	Block, pale-yellow
Z = 4	$0.46 \times 0.33 \times 0.14 \text{ mm}$
Data collection Bruker SMART APEXII CCD area-detector diffractometer Radiation source: fine-focus sealed tube Graphite monochromator φ and ω scans Absorption correction: multi-scan (<i>SADABS</i> ; Bruker, 2005) $T_{\rm ext} = 0.887$, $T_{\rm ext} = 0.965$	17980 measured reflections 4796 independent reflections 4299 reflections with $I > 2\sigma(I)$ $R_{int} = 0.027$ $\theta_{max} = 32.5^{\circ}, \ \theta_{min} = 2.5^{\circ}$ $h = -48 \rightarrow 46$ $k = -8 \rightarrow 8$ $I = -11 \rightarrow 11$

Refinement

Refinement on F^2	Hydrogen site location: inferred from
Least-squares matrix: full	neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.033$	H-atom parameters constrained
$wR(F^2) = 0.076$	$w = 1/[\sigma^2(F_o^2) + (0.0345P)^2 + 0.2893P]$
S = 1.02	where $P = (F_o^2 + 2F_c^2)/3$
4796 reflections	$(\Delta/\sigma)_{\rm max} = 0.001$
218 parameters	$\Delta ho_{ m max} = 0.23 \ { m e} \ { m \AA}^{-3}$
1 restraint	$\Delta \rho_{\rm min} = -0.26 \text{ e } \text{\AA}^{-3}$
Primary atom site location: structure-invariant direct methods	Absolute structure: Flack (1983), 1935 Friedel pairs
Secondary atom site location: difference Fourier map	Absolute structure parameter: 0.20 (5)

Special details

Experimental. The crystal was placed in the cold stream of an Oxford Cyrosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
S1	0.794704 (10)	0.52906 (6)	-0.01577 (5)	0.02346 (8)
F1	0.79830 (2)	0.37874 (17)	0.48808 (16)	0.0338 (2)
F2	0.94005 (2)	0.27091 (16)	0.53340 (11)	0.0261 (2)
F3	0.92412 (3)	-0.07230 (15)	0.24104 (14)	0.0264 (2)
F4	0.91204 (3)	0.60294 (17)	-0.07755 (14)	0.0338 (2)
N1	0.78098 (4)	0.8994 (2)	0.14916 (18)	0.0236 (3)
N2	0.81456 (4)	0.8012 (2)	0.22916 (17)	0.0209 (2)
N3	0.85771 (4)	0.4805 (2)	0.21110 (16)	0.0190 (2)
C1	0.76794 (4)	0.7789 (3)	0.0214 (2)	0.0249 (3)
H1A	0.7458	0.8235	-0.0455	0.030*
C2	0.82545 (4)	0.6085 (2)	0.15657 (18)	0.0160 (2)
C3	0.87577 (4)	0.5273 (2)	0.3784 (2)	0.0187 (3)
H3A	0.8637	0.6655	0.4249	0.022*
H3B	0.9049	0.5537	0.3647	0.022*
C4	0.86929 (4)	0.3330 (2)	0.50333 (18)	0.0162 (2)
C5	0.83046 (4)	0.2629 (3)	0.5541 (2)	0.0213 (3)
C6	0.82293 (5)	0.0864 (3)	0.6657 (2)	0.0242 (3)
H6A	0.7963	0.0468	0.6955	0.029*
C7	0.85629 (5)	-0.0312 (3)	0.7328 (2)	0.0238 (3)
H7A	0.8520	-0.1523	0.8078	0.029*
C8	0.89596 (5)	0.0308 (3)	0.68863 (19)	0.0220 (3)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

H8A	0.9184	-0.0466	0.7334	0.026*	
C9	0.90109 (4)	0.2105 (2)	0.57631 (19)	0.0181 (3)	
C10	0.87024 (4)	0.2743 (2)	0.1207 (2)	0.0194 (3)	
H10A	0.8557	0.2656	0.0126	0.023*	
H10B	0.8627	0.1417	0.1882	0.023*	
C11	0.91598 (4)	0.2685 (2)	0.08670 (19)	0.0175 (3)	
C12	0.94120 (4)	0.0961 (2)	0.14585 (18)	0.0184 (3)	
C13	0.98273 (5)	0.0831 (3)	0.1130 (2)	0.0234 (3)	
H13A	0.9984	-0.0374	0.1548	0.028*	
C14	1.00032 (4)	0.2553 (3)	0.0158 (2)	0.0260 (3)	
H14A	1.0282	0.2512	-0.0072	0.031*	
C15	0.97688 (5)	0.4331 (3)	-0.0475 (2)	0.0272 (3)	
H15A	0.9886	0.5489	-0.1125	0.033*	
C16	0.93555 (4)	0.4336 (2)	-0.0113 (2)	0.0218 (3)	

Atomic displacement parameters (\mathring{A}^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
S1	0.01673 (15)	0.03179 (18)	0.02187 (15)	0.00300 (13)	-0.00547 (14)	-0.00224 (18)
F1	0.0139 (4)	0.0423 (5)	0.0451 (5)	0.0051 (4)	-0.0022 (4)	0.0137 (6)
F2	0.0124 (4)	0.0360 (5)	0.0298 (5)	0.0007 (3)	-0.0012 (3)	0.0101 (4)
F3	0.0237 (4)	0.0208 (4)	0.0345 (5)	0.0013 (3)	0.0037 (4)	0.0108 (4)
F4	0.0341 (5)	0.0282 (5)	0.0390 (5)	0.0040 (4)	-0.0034 (4)	0.0175 (4)
N1	0.0206 (6)	0.0248 (6)	0.0253 (6)	0.0062 (5)	-0.0010 (5)	0.0065 (5)
N2	0.0187 (6)	0.0213 (6)	0.0226 (6)	0.0044 (4)	-0.0020 (5)	0.0032 (5)
N3	0.0181 (5)	0.0192 (5)	0.0196 (5)	0.0039 (4)	-0.0049 (4)	-0.0013 (5)
C1	0.0165 (6)	0.0339 (8)	0.0243 (7)	0.0059 (6)	-0.0018 (5)	0.0044 (6)
C2	0.0127 (6)	0.0192 (6)	0.0161 (5)	-0.0015 (5)	-0.0012 (4)	0.0041 (5)
C3	0.0192 (6)	0.0172 (6)	0.0198 (6)	-0.0007(5)	-0.0054 (5)	0.0006 (5)
C4	0.0132 (5)	0.0177 (6)	0.0177 (6)	0.0003 (4)	-0.0022 (5)	0.0000 (5)
C5	0.0150 (6)	0.0230 (7)	0.0258 (7)	0.0015 (5)	-0.0015 (5)	0.0003 (6)
C6	0.0199 (7)	0.0277 (8)	0.0250 (7)	-0.0054 (6)	0.0019 (5)	0.0003 (6)
C7	0.0296 (8)	0.0218 (7)	0.0200 (7)	-0.0022 (6)	0.0024 (6)	0.0032 (6)
C8	0.0220 (7)	0.0233 (7)	0.0206 (7)	0.0039 (6)	-0.0031 (5)	0.0030 (6)
C9	0.0141 (6)	0.0208 (6)	0.0193 (6)	-0.0005 (5)	-0.0004 (5)	0.0001 (5)
C10	0.0167 (6)	0.0180 (6)	0.0235 (7)	0.0011 (5)	-0.0027 (5)	-0.0023 (6)
C11	0.0167 (6)	0.0176 (6)	0.0181 (6)	0.0001 (5)	-0.0012 (5)	0.0001 (5)
C12	0.0203 (6)	0.0164 (6)	0.0185 (6)	-0.0009 (5)	0.0014 (5)	0.0005 (5)
C13	0.0201 (7)	0.0243 (7)	0.0259 (7)	0.0049 (5)	0.0009 (5)	-0.0005 (6)
C14	0.0184 (6)	0.0345 (8)	0.0252 (8)	-0.0026 (6)	0.0044 (5)	-0.0024 (7)
C15	0.0278 (8)	0.0299 (8)	0.0238 (8)	-0.0075 (6)	0.0042 (6)	0.0053 (6)
C16	0.0252 (7)	0.0191 (6)	0.0211 (6)	0.0009 (5)	-0.0027 (6)	0.0058 (7)

Geometric parameters (Å, °)

S1—C1	1.7278 (16)	C6—C7	1.392 (2)
S1—C2	1.7431 (14)	С6—Н6А	0.9300
F1—C5	1.3527 (16)	C7—C8	1.389 (2)

F2—C9	1.3630 (15)	С7—Н7А	0.9300
F3—C12	1.3548 (17)	C8—C9	1.380 (2)
F4—C16	1.3566 (16)	C8—H8A	0.9300
N1—C1	1.295 (2)	C10—C11	1.5179 (19)
N1—N2	1.3872 (16)	C10—H10A	0.9700
N2—C2	1.3114 (19)	C10—H10B	0.9700
N3—C2	1.3613 (17)	C11—C12	1.3824 (19)
N3—C10	1.4570 (18)	C11—C16	1.388 (2)
N3—C3	1.4598 (19)	C12—C13	1.383 (2)
C1—H1A	0.9300	C13—C14	1.387 (2)
C3—C4	1.514 (2)	C13—H13A	0.9300
С3—НЗА	0.9700	C14—C15	1.383 (2)
С3—Н3В	0.9700	C14—H14A	0.9300
C4—C9	1.3848 (18)	C15—C16	1.380 (2)
C4—C5	1.3906 (19)	C15—H15A	0.9300
C5—C6	1.374 (2)		
C1—S1—C2	86.35 (7)	C9—C8—C7	118.05 (14)
C1—N1—N2	112.47 (13)	С9—С8—Н8А	121.0
C2—N2—N1	112.07 (13)	С7—С8—Н8А	121.0
C2—N3—C10	121.42 (12)	F2—C9—C8	117.87 (12)
C2—N3—C3	119.33 (12)	F2—C9—C4	117.72 (12)
C10—N3—C3	118.42 (11)	C8—C9—C4	124.41 (13)
N1-C1-S1	115.07 (11)	N3—C10—C11	112.32 (11)
N1—C1—H1A	122.5	N3—C10—H10A	109.1
S1—C1—H1A	122.5	C11—C10—H10A	109.1
N2—C2—N3	123.20 (13)	N3—C10—H10B	109.1
N2—C2—S1	114.03 (10)	C11—C10—H10B	109.1
N3—C2—S1	122.77 (11)	H10A—C10—H10B	107.9
N3—C3—C4	112.33 (11)	C12—C11—C16	114.68 (12)
N3—C3—H3A	109.1	C12—C11—C10	122.98 (12)
С4—С3—Н3А	109.1	C16—C11—C10	122.31 (13)
N3—C3—H3B	109.1	F3—C12—C11	117.97 (12)
C4—C3—H3B	109.1	F3—C12—C13	117.77 (13)
НЗА—СЗ—НЗВ	107.9	C11—C12—C13	124.25 (13)
C9—C4—C5	114.46 (13)	C12—C13—C14	117.94 (14)
C9—C4—C3	123.33 (11)	C12—C13—H13A	121.0
C5—C4—C3	122.21 (12)	C14—C13—H13A	121.0
F1—C5—C6	118.65 (13)	C15—C14—C13	120.85 (14)
F1—C5—C4	116.87 (13)	C15—C14—H14A	119.6
C6—C5—C4	124.48 (14)	C13—C14—H14A	119.6
C5—C6—C7	118.08 (14)	C16—C15—C14	118.03 (14)
С5—С6—Н6А	121.0	C16—C15—H15A	121.0
С7—С6—Н6А	121.0	C14—C15—H15A	121.0
C8—C7—C6	120.51 (14)	F4—C16—C15	118.49 (13)
С8—С7—Н7А	119.7	F4—C16—C11	117.26 (12)
С6—С7—Н7А	119.7	C15—C16—C11	124.24 (13)

C1—N1—N2—C2	0.11 (18)	C7—C8—C9—C4	-0.5 (2)
N2—N1—C1—S1	0.64 (17)	C5—C4—C9—F2	-179.53 (12)
C2—S1—C1—N1	-0.89 (12)	C3—C4—C9—F2	0.5 (2)
N1—N2—C2—N3	179.58 (13)	C5—C4—C9—C8	0.9 (2)
N1—N2—C2—S1	-0.80 (15)	C3—C4—C9—C8	-179.07 (14)
C10—N3—C2—N2	-176.38 (13)	C2-N3-C10-C11	131.34 (14)
C3—N3—C2—N2	14.2 (2)	C3—N3—C10—C11	-59.13 (17)
C10—N3—C2—S1	4.04 (19)	N3—C10—C11—C12	121.31 (15)
C3—N3—C2—S1	-165.40 (10)	N3—C10—C11—C16	-60.72 (19)
C1—S1—C2—N2	0.94 (11)	C16—C11—C12—F3	-179.37 (13)
C1—S1—C2—N3	-179.44 (13)	C10-C11-C12-F3	-1.3 (2)
C2—N3—C3—C4	113.44 (14)	C16—C11—C12—C13	0.1 (2)
C10—N3—C3—C4	-56.32 (16)	C10-C11-C12-C13	178.17 (14)
N3—C3—C4—C9	118.26 (15)	F3—C12—C13—C14	-179.93 (14)
N3—C3—C4—C5	-61.69 (18)	C11—C12—C13—C14	0.6 (2)
C9—C4—C5—F1	179.22 (13)	C12—C13—C14—C15	-0.6 (2)
C3—C4—C5—F1	-0.8 (2)	C13—C14—C15—C16	-0.1 (2)
C9—C4—C5—C6	-0.6 (2)	C14—C15—C16—F4	-177.79 (14)
C3—C4—C5—C6	179.38 (14)	C14-C15-C16-C11	0.9 (2)
F1C5C6C7	-179.92 (14)	C12—C11—C16—F4	177.85 (13)
C4—C5—C6—C7	-0.1 (2)	C10-C11-C16-F4	-0.3 (2)
C5—C6—C7—C8	0.6 (2)	C12—C11—C16—C15	-0.9 (2)
C6—C7—C8—C9	-0.3 (2)	C10-C11-C16-C15	-178.99 (15)
C7—C8—C9—F2	179.95 (13)		

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H…A	D····A	D—H···A
C1—H1A····N1 ⁱ	0.93	2.58	3.392 (2)	146
C3—H3 <i>A</i> …N2	0.97	2.36	2.8155 (18)	108
C3—H3 <i>B</i> …F2	0.97	2.41	2.8508 (15)	107
C3—H3 <i>B</i> …F3 ⁱⁱ	0.97	2.47	3.0226 (16)	116
C8—H8A····F4 ⁱⁱⁱ	0.93	2.54	3.144 (2)	123
C10—H10A…S1	0.97	2.53	3.0738 (14)	115
C10—H10B…F3	0.97	2.40	2.8453 (16)	107
C10—H10 <i>B</i> ····N2 ^{iv}	0.97	2.56	3.4191 (17)	148

Symmetry codes: (i) -*x*+3/2, *y*, *z*-1/2; (ii) *x*, *y*+1, *z*; (iii) *x*, *y*-1, *z*+1; (iv) *x*, *y*-1, *z*.