

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

N-(2-Hydroxyethyl)-2-[2-(hydroxyimino)propanamido]ethanaminium 2-(hydroxyimino)propanoate

Turganbay S. Iskenderov,^a* Valentina A. Kalibabchuk,^b Irina A. Golenya,^c Nikolay M. Dudarenko^c and Natalia I. Usenko^c

^aKarakalpakian University, Department of Chemistry, Universitet Keshesi 1, 742012 Nukus, Uzbekistan, ^bO. O. Bohomolets National Medical University, Department of General Chemistry, Shevchenko Blvd. 13, 01601 Kiev, Ukraine, and ^cKiev National Taras Shevchenko University, Department of Chemistry, Volodymyrska Str. 64, 01601 Kiev, Ukraine

Correspondence e-mail: turgiskend@freemail.ru

Received 21 July 2009; accepted 27 July 2009

Key indicators: single-crystal X-ray study; T = 120 K; mean σ (C–C) = 0.003 Å; R factor = 0.044; wR factor = 0.088; data-to-parameter ratio = 15.4.

The cation of the title salt, $C_7H_{16}N_3O_3^+C_3H_4NO_3^-$, the oxime group is *trans* with respect to the amide–carbonyl group. The components of the structure are united into a three-dimensional network by an extensive system of $O-H\cdots O$ and $N-H\cdots O$ hydrogen bonds.

Related literature

For background to oximes in coordination chemistry, see: Kukushkin *et al.* (1996); Chaudhuri (2003). For polynuclear species arising from bridging and/or functionalized oximes, see: Cervera *et al.* (1997); Costes *et al.* (1998); Moroz *et al.* (2008); Onindo *et al.* (1995); Sliva *et al.* (1997*a,b*); Gumienna-Kontecka *et al.* (2000). For oximes stabilizing high oxidation states, see: Kanderal *et al.* (2005); Fritsky *et al.* (2006). For related structures, see: Duda *et al.* (1997); Fritsky *et al.* (1999); Fritsky (1999); Mokhir *et al.* (2002). For the synthesis, see: Lau & Gutsche (1978).

Experimental

Crystal data

c = 20.606 (4) Å
$\beta = 96.99 \ (3)^{\circ}$
V = 1338.6 (4) Å ³
Z = 4
Mo $K\alpha$ radiation

organic compounds

 $0.30 \times 0.24 \times 0.20 \text{ mm}$

8410 measured reflections

 $R_{\rm int} = 0.049$

3090 independent reflections

1887 reflections with $I > 2\sigma(I)$

 $\mu = 0.12 \text{ mm}^{-1}$ T = 120 K

Data collection

Nonius KappaCCD diffractometer Absorption correction: multi-scan (North *et al.*, 1968) $T_{min} = 0.957, T_{max} = 0.979$

Refinement

 $\begin{array}{ll} R[F^2 > 2\sigma(F^2)] = 0.044 & \text{H atoms treated by a mixture of} \\ wR(F^2) = 0.088 & \text{independent and constrained} \\ S = 0.92 & \text{refinement} \\ 3090 \text{ reflections} & \Delta\rho_{\max} = 0.20 \text{ e } \text{\AA}^{-3} \\ 201 \text{ parameters} & \Delta\rho_{\min} = -0.25 \text{ e } \text{\AA}^{-3} \end{array}$

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
O3−H3O···O5 ⁱ	0.90 (2)	1.78 (2)	2.677 (2)	173 (2)
$O4-H4O\cdots O2^{ii}$	0.95 (2)	1.63 (2)	2.5733 (18)	172.3 (19)
O6−H6O···O2	0.87 (2)	2.25 (2)	3.101 (2)	163.4 (18)
$N3-H3N\cdots O6^{ii}$	0.86 (2)	2.11 (2)	2.940 (2)	162.6 (18)
$N4-H4N\cdotsO1^{iii}$	0.970 (19)	1.93 (2)	2.838 (2)	155.1 (15)
$N4-H5N\cdotsO1^{iv}$	0.895 (18)	1.921 (19)	2.796 (2)	165.1 (17)
		2		

Symmetry codes: (i) $-x - 1, y - \frac{1}{2}, -z + \frac{3}{2}$; (ii) -x, -y, -z + 2; (iii) x + 1, y, z; (iv) -x - 1, -y, -z + 2.

Data collection: *COLLECT* (Bruker, 2004); cell refinement: *DENZO/SCALEPACK* (Otwinowski & Minor, 1997); data reduction: *DENZO/SCALEPACK*; program(s) used to solve structure: *SIR2004* (Burla *et al.*, 2005); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *ORTEP-3 for Windows* (Farrugia, 1997); software used to prepare material for publication: *SHELXL97*.

The authors thank the Ministry of Education and Science of Ukraine for financial support (grant No. F28/241–2009).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: TK2512).

References

Bruker (2004). COLLECT. Bruker AXS Inc., Madison, Wisconsin, USA.

- Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381–388.
- Cervera, B., Ruiz, R., Lloret, F., Julve, M., Cano, J., Faus, J., Bois, C. & Mrozinski, J. (1997). J. Chem. Soc. Dalton Trans. pp. 395–401.
- Chaudhuri, P. (2003). Coord. Chem. Rev. 243, 143-168.
- Costes, J.-P., Dahan, F., Dupuis, A. & Laurent, J.-P. (1998). J. Chem. Soc. Dalton Trans. pp. 1307–1314.
- Duda, A. M., Karaczyn, A., Kozłowski, H., Fritsky, I. O., Głowiak, T., Prisyazhnaya, E. V., Sliva, T. Yu. & Świątek-Kozłowska, J. (1997). J. Chem. Soc. Dalton Trans. pp. 3853–3859.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Fritsky, I. O. (1999). J. Chem. Soc. Dalton Trans. pp. 825-826.
- Fritsky, I. O., Karaczyn, A., Kozłowski, H., Głowiak, T. & Prisyazhnaya, E. V. (1999). Z. Naturforsch. Teil B, 54, 456–460.
- Fritsky, I. O., Kozłowski, H., Kanderal, O. M., Haukka, M., Świątek-Kozłowska, J., Gumienna-Kontecka, E. & Meyer, F. (2006). *Chem. Commun.* pp. 4125–4127.
- Gumienna-Kontecka, E., Berthon, G., Fritsky, I. O., Wieczorek, R., Latajka, Z. & Kozłowski, H. (2000). J. Chem. Soc. Dalton Trans. pp. 4201–4208.

- Kanderal, O. M., Kozłowski, H., Dobosz, A., Świątek-Kozłowska, J., Meyer, F. & Fritsky, I. O. (2005). *Dalton Trans.* pp. 1428–1437.
- Kukushkin, V. Yu., Tudela, D. & Pombeiro, A. J. L. (1996). Coord. Chem. Rev. 156, 333–362.
- Lau, H.-P. & Gutsche, C. D. (1978). J. Am. Chem. Soc. 100, 1857-1869.
- Mokhir, A. A., Gumienna-Kontecka, E., Świątek-Kozłowska, J., Petkova, E. G., Fritsky, I. O., Jerzykiewicz, L., Kapshuk, A. A. & Sliva, T. Yu. (2002). *Inorg. Chim. Acta*, **329**, 113–121.
- Moroz, Y. S., Kulon, K., Haukka, M., Gumienna-Kontecka, E., Kozłowski, H., Meyer, F. & Fritsky, I. O. (2008). *Inorg. Chem.* 47, 5656–5665.
- North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.
- Onindo, C. O., Sliva, T. Yu., Kowalik-Jankowska, T., Fritsky, I. O., Buglyo, P., Pettit, L. D., Kozłowski, H. & Kiss, T. (1995). *J. Chem. Soc. Dalton Trans.* pp. 3911–3915.
- Otwinowski, Z. & Minor, W. (1997). *Methods in Enzymology*, Vol. 276, *Macromolecular Crystallography*, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Sliva, T. Yu., Duda, A. M., Głowiak, T., Fritsky, I. O., Amirkhanov, V. M., Mokhir, A. A. & Kozłowski, H. (1997a). J. Chem. Soc. Dalton Trans. pp. 273–276.
- Sliva, T. Yu., Kowalik-Jankowska, T., Amirkhanov, V. M., Głowiak, T., Onindo, C. O., Fritsky, I. O. & Kozłowski, H. (1997b). J. Inorg. Biochem. 65, 287–294.

supporting information

Acta Cryst. (2009). E65, o2077-o2078 [doi:10.1107/S1600536809029778]

N-(2-Hydroxyethyl)-2-[2-(hydroxyimino)propanamido]ethanaminium 2-(hydroxyimino)propanoate

Turganbay S. Iskenderov, Valentina A. Kalibabchuk, Irina A. Golenya, Nikolay M. Dudarenko and Natalia I. Usenko

S1. Comment

Oximes are classical type of chelating ligands traditionally widely used in coordination and analytical chemistry (Kukushkin *et al.*, 1996; Chaudhuri, 2003). They are also important bridging ligands extensively used in molecular magnetism for obtaining of polynuclear complexes (Cervera *et al.*, 1997; Costes *et al.*, 1998; Moroz *et al.*, 2008). The presence of an additional donor function in the vicinity to the oxime group may result in important increase of chelating efficiency and ability to form polynuclear species. For example, amide derivatives of 2-hydroxyiminopropanoic acid were shown to act as highly efficient chelators with respect to Cu(II), Ni(II) and Al(III) (Onindo *et al.*, 1995; Sliva *et al.*, 1997a; Sliva, *et al.*, 1997b; Gumienna-Kontecka *et al.*, 2000). Recently, owing to their strong σ -donor capacity, open-chain tetradentate oxime and amide ligands were shown to efficiently stabilize unusual oxidation states of metal ions, such as Cu³⁺ and Ni³⁺ (Kanderal *et al.*, 2005; Fritsky *et al.*, 2006). The present investigation is dedicated to the study of the molecular structure of the title compound (I), which is a new polynucleative ligand containing several donor functions: oxime, amine, amide and alcohol.

The structure of (I) is ionic and and comprises cations of *N*-[2-(2-hydroxy-ethylammonium)ethyl]-2-hydroxyiminopropanamide and 2-(hydroxyimino)propanoate anions (Fig. 1). The cation has a Γ -shaped conformation and consists of two nearly planar CH₃C(=NOH)C(O)NHCH₂ and CH₂CH₂NH₂CH₂ fragments. The dihedral plane between their mean planes, defined by the non-hydrogen atoms, is 75.8 (1)°. The hydroxyl group is situated nearly perpendicular to the CH₂CH₂NH₂CH₂ moiety: the torsion angle N4/C9/C10/O6 is 60.2 (2)°. The observed conformation of the CH₃C(=NOH)C(O)NHCH₂ moiety is the same as that observed in the structure of *N*,*N*'-bis(2-hydroxyiminopropionylpropane)-1,2-diamine and its homologues (Duda *et al.*, 1997; Fritsky, Karaczyn *et al.*, 1999). The oxime group is trans to the amide-carbonyl. It is noted that the CH₃C(=NOH)C(O)NHCH₂ moiety deviates somewhat from planarity because of a twisting of the oxime and amide groups along the C5—C6 bond. The dihedral angle between the corresponding least square planes is 9.5 (1)°. The C=N, C=O, N—O, C—N bond lengths are typical for 2-hydroxyiminopropanoic acid and its amide derivatives (Duda *et al.*, 1997; Fritsky, 1999; Mokhir *et al.*, 2002).

The elements of the structure are united into a 3-D network by extensive system of the O—H…O and N—H…O hydrogen bonds (Table 1).

S2. Experimental

Ethyl 2-(hydroxyimino)propanoate (1.31 g, 0.01 mol) was dissolved in methanol (50 ml) to which 2-((2-aminoethyl)amino)ethanol (1.04 g, 0.01 mol) was added. The mixture was set aside for 24 h at room temperature, then the solvent was removed on a rotary evaporator. Recrystallization of the crude product from water afforded the pure (I) in the form of single crystals. Ethyl 2-(hydroxyimino)propanoate was prepared according to the reported method (Lau & Gutsche, 1978).

S3. Refinement

The O—H and N—H hydrogen atoms were located from the difference Fourier map, and refined with $U_{iso} = 1.5$ U_{eq} (parent atom). The remaining H atoms were positioned geometrically and were constrained to ride on their parent atoms with C—H = 0.96–0.97 Å, and with $U_{iso} = 1.2-1.5 U_{eq}$ (parent atom).

Figure 1

A view of compound (I), with displacement ellipsoids shown at the 50% probability level. H atoms are drawn as spheres of arbitrary radii. Hydrogen bonds are indicated by dashed lines.

N-(2-Hydroxyethyl)-2-[2-(hydroxyimino)propanamido]ethanaminium 2-(hydroxyimino)propanoate

Crystal data	
$C_7H_{16}N_3O_3^+ \cdot C_3H_4NO_3^-$	F(000) = 624
$M_r = 292.30$	$D_{\rm x} = 1.450 {\rm ~Mg} {\rm ~m}^{-3}$
Monoclinic, $P2_1/c$	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
Hall symbol: -P 2ybc	Cell parameters from 1078 reflections
a = 9.355 (2) Å	$\theta = 3.2 - 27.5^{\circ}$
b = 6.996 (1) Å	$\mu=0.12~\mathrm{mm^{-1}}$
c = 20.606 (4) Å	T = 120 K
$\beta = 96.99 \ (3)^{\circ}$	Block, colourless
$V = 1338.6 (4) Å^3$	$0.30 \times 0.24 \times 0.20 \text{ mm}$
Z = 4	
Data collection	
Nonius KappaCCD	$T_{\min} = 0.957, T_{\max} = 0.979$
diffractometer	8410 measured reflections
Radiation source: fine-focus sealed tube	3090 independent reflections
Horizontally mounted graphite crystal	1887 reflections with $I > 2\sigma(I)$
monochromator	$R_{\rm int} = 0.049$
Detector resolution: 9 pixels mm ⁻¹	$\theta_{\text{max}} = 28.4^{\circ}, \ \theta_{\text{min}} = 3.1^{\circ}$
φ scans and ω scans with κ offset	$h = -12 \rightarrow 9$
Absorption correction: multi-scan	$k = -8 \rightarrow 9$
(North <i>et al.</i> , 1968)	$l = -23 \rightarrow 26$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.044$	Hydrogen site location: inferred from
$wR(F^2) = 0.088$	neighbouring sites
S = 0.92	H atoms treated by a mixture of independent
3090 reflections	and constrained refinement
201 parameters	$w = 1/[\sigma^2(F_o^2) + (0.0375P)^2]$
0 restraints	where $P = (F_{o}^{2} + 2F_{c}^{2})/3$
Primary atom site location: structure-invariant	$(\Delta/\sigma)_{\rm max} = 0.002$
direct methods	$\Delta ho_{ m max} = 0.20 \ { m e} \ { m \AA}^{-3}$
	$\Delta \rho_{\rm min} = -0.25 \text{ e} \text{ Å}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. **Refinement**. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
01	-0.84446 (13)	-0.16641 (17)	0.98706 (6)	0.0158 (3)	
O2	-0.60613 (13)	-0.22237 (19)	1.00166 (6)	0.0180 (3)	
03	-0.84727 (14)	-0.3817 (2)	0.80265 (6)	0.0181 (3)	
H3O	-0.939 (2)	-0.373 (3)	0.7840 (10)	0.027*	
04	0.55821 (13)	0.0801 (2)	0.88257 (6)	0.0193 (3)	
H4O	0.583 (2)	0.126 (3)	0.9258 (10)	0.029*	
05	0.12037 (13)	0.11505 (19)	0.75400 (6)	0.0179 (3)	
O6	-0.27505 (15)	-0.2615 (2)	1.00518 (6)	0.0211 (3)	
H6O	-0.369 (2)	-0.261 (3)	0.9960 (9)	0.032*	
N1	-0.85445 (16)	-0.3060 (2)	0.86557 (7)	0.0146 (4)	
N2	0.41206 (16)	0.1204 (2)	0.87427 (7)	0.0153 (4)	
N3	0.13295 (17)	0.1750 (2)	0.86292 (8)	0.0139 (4)	
H3N	0.189 (2)	0.184 (3)	0.8990 (9)	0.021*	
N4	-0.10824 (17)	-0.0767 (2)	0.90998 (7)	0.0121 (4)	
H4N	-0.008(2)	-0.108 (3)	0.9240 (9)	0.018*	
H5N	-0.139 (2)	-0.009 (3)	0.9426 (9)	0.018*	
C1	-0.7283 (2)	-0.2267 (3)	0.96857 (9)	0.0139 (4)	
C2	-0.73259 (19)	-0.3166 (3)	0.90150 (9)	0.0125 (4)	
C3	-0.59762 (19)	-0.4002 (3)	0.88233 (9)	0.0162 (4)	
H3A	-0.6191	-0.4704	0.8423	0.024*	
H3C	-0.5558	-0.4846	0.9162	0.024*	
H3B	-0.5309	-0.2995	0.8762	0.024*	
C4	0.4116 (2)	-0.0067 (3)	0.76127 (9)	0.0203 (5)	
H4A	0.5142	-0.0162	0.7719	0.030*	

H4B	0.3899	0.0728	0.7234	0.030*	
H4C	0.3720	-0.1319	0.7523	0.030*	
C5	0.3476 (2)	0.0790 (3)	0.81755 (9)	0.0124 (4)	
C6	0.1903 (2)	0.1255 (3)	0.80944 (9)	0.0142 (4)	
C7	-0.01883 (19)	0.2223 (3)	0.86077 (9)	0.0160 (4)	
H7A	-0.0450	0.3120	0.8254	0.019*	
H7B	-0.0345	0.2847	0.9013	0.019*	
C8	-0.1158 (2)	0.0483 (3)	0.85087 (9)	0.0143 (4)	
H8A	-0.2145	0.0903	0.8394	0.017*	
H8B	-0.0887	-0.0260	0.8145	0.017*	
C9	-0.19929 (19)	-0.2503 (3)	0.89620 (8)	0.0143 (4)	
H9A	-0.1580	-0.3293	0.8646	0.017*	
H9B	-0.2948	-0.2118	0.8770	0.017*	
C10	-0.2118 (2)	-0.3664 (3)	0.95673 (9)	0.0171 (4)	
H10A	-0.2698	-0.4789	0.9449	0.021*	
H10B	-0.1167	-0.4091	0.9750	0.021*	

Atomic displacement parameters (\mathring{A}^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
01	0.0160 (7)	0.0177 (8)	0.0139 (7)	0.0013 (6)	0.0025 (5)	-0.0025 (6)
O2	0.0156 (8)	0.0239 (8)	0.0132 (7)	0.0003 (6)	-0.0028 (6)	-0.0031 (6)
03	0.0161 (8)	0.0264 (8)	0.0114 (7)	0.0014 (7)	-0.0003 (6)	-0.0043 (6)
O4	0.0112 (7)	0.0286 (9)	0.0177 (8)	0.0035 (6)	-0.0002 (6)	-0.0047 (6)
05	0.0154 (7)	0.0250 (8)	0.0127 (7)	0.0001 (6)	-0.0003 (6)	0.0020 (6)
06	0.0173 (8)	0.0311 (9)	0.0157 (7)	-0.0033 (7)	0.0057 (6)	-0.0020 (6)
N1	0.0193 (9)	0.0160 (9)	0.0089 (8)	-0.0016 (7)	0.0030 (7)	-0.0017 (7)
N2	0.0095 (8)	0.0173 (9)	0.0193 (9)	0.0018 (7)	0.0022 (7)	0.0012 (7)
N3	0.0117 (9)	0.0180 (10)	0.0116 (9)	-0.0007 (7)	-0.0001 (6)	-0.0003 (7)
N4	0.0113 (9)	0.0159 (9)	0.0094 (8)	0.0011 (7)	0.0027 (7)	-0.0001 (7)
C1	0.0160 (11)	0.0116 (11)	0.0141 (10)	-0.0007 (8)	0.0017 (8)	0.0028 (8)
C2	0.0135 (10)	0.0101 (10)	0.0139 (10)	-0.0010 (8)	0.0022 (8)	0.0014 (8)
C3	0.0142 (10)	0.0197 (11)	0.0146 (10)	0.0003 (9)	0.0010 (8)	-0.0018 (9)
C4	0.0164 (11)	0.0276 (12)	0.0167 (11)	0.0011 (9)	0.0015 (9)	-0.0019 (9)
C5	0.0152 (10)	0.0096 (10)	0.0126 (10)	-0.0005 (8)	0.0024 (8)	0.0009 (8)
C6	0.0191 (11)	0.0097 (10)	0.0138 (10)	-0.0026 (8)	0.0023 (9)	0.0030 (8)
C7	0.0151 (11)	0.0161 (11)	0.0175 (11)	0.0009 (9)	0.0042 (8)	0.0016 (8)
C8	0.0123 (10)	0.0192 (12)	0.0115 (10)	0.0014 (9)	0.0017 (8)	0.0015 (8)
С9	0.0131 (10)	0.0150 (11)	0.0150 (10)	-0.0019 (8)	0.0022 (8)	-0.0019 (8)
C10	0.0174 (11)	0.0174 (11)	0.0172 (10)	0.0015 (9)	0.0047 (8)	0.0023 (9)

Geometric parameters (Å, °)

01—C1	1.266 (2)	C2—C3	1.488 (2)
O2—C1	1.258 (2)	С3—НЗА	0.9600
O3—N1	1.4095 (18)	С3—НЗС	0.9600
O3—H3O	0.90 (2)	С3—Н3В	0.9600
O4—N2	1.3861 (19)	C4—C5	1.494 (2)

O4—H4O	0.95 (2)	C4—H4A	0.9600
O5—C6	1.248 (2)	C4—H4B	0.9600
O6—C10	1.424 (2)	C4—H4C	0.9600
О6—Н6О	0.87 (2)	C5—C6	1.497 (2)
N1—C2	1.284 (2)	C7—C8	1.518 (2)
N2-C5	1.281(2)	C7—H7A	0.9700
N3—C6	1 329 (2)	C7—H7B	0.9700
N3—C7	1.523(2) 1.453(2)	C8—H8A	0.9700
N3_H3N	0.86(2)	C8_H8B	0.9700
N4_C9	1.491(2)	C_{9}	1.505(2)
N4 C8	1.491(2) 1.494(2)		0.9700
	1.494(2)		0.9700
	0.970(19)	C10 H10A	0.9700
n_4 — n_5n_7	0.893(18)		0.9700
C1C2	1.515 (2)	С10—Н10В	0.9700
N1—O3—H3O	102.4 (12)	H4B—C4—H4C	109.5
N2—O4—H4O	99.8 (12)	N2—C5—C4	127.62 (17)
С10—О6—Н6О	110.1 (13)	N2—C5—C6	113.55 (15)
C2—N1—O3	111.74 (14)	C4—C5—C6	118.83 (16)
C5—N2—O4	114.45 (14)	05—C6—N3	123.72 (18)
C6—N3—C7	121.71 (16)	05-C6-C5	119.22 (16)
C6—N3—H3N	1184(13)	N3—C6—C5	117.05 (16)
C7—N3—H3N	119.8 (13)	N3-C7-C8	112,78 (15)
C9-N4-C8	110.61 (14)	N3—C7—H7A	109.0
C9—N4—H4N	112 3 (11)	C8-C7-H7A	109.0
C_{8} N4 H4N	108.9(11)	N3_C7_H7B	109.0
C9 M4 H5N	110.3(12)	C8_C7_H7B	109.0
C_{8} N/ H5N	108.5(12)	$H_{7A} = C_7 = H_{7B}$	107.8
HAN_NA_H5N	106.1 (16)	N4 - C8 - C7	113.05 (15)
$\Omega_2 = \Omega_1 = \Omega_1$	100.1(10) 125.82(17)	N4 C8 H8A	100.0
02 - 01 - 01	125.02(17) 115.20(16)		109.0
02 - C1 - C2	113.20(10) 118.08(17)	$C = C_0 = H_0 A$	109.0
$V_1 = C_2 = C_2$	116.36(17) 126.22(17)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	109.0
N1 = C2 = C3	120.33(17) 115.17(16)	$C = C_0 = H_0 D$	109.0
N1 = C2 = C1	113.17(10) 119.46(16)	$H\delta A = C\delta = H\delta B$	107.8
$C_2 = C_2 = U_2 A$	118.40 (10)	N4 = C9 = C10	112.47 (13)
$C_2 = C_3 = H_2 C_3$	109.5	N4 - C9 - H9A	109.1
	109.5	C10 - C9 - H9A	109.1
$H_3A = C_3 = H_3C$	109.5	N4—C9—H9B	109.1
$C_2 = C_3 = H_3 B$	109.5	C10—C9—H9B	109.1
H3A—C3—H3B	109.5	H9A—C9—H9B	107.8
Н3С—С3—Н3В	109.5	06-010-09	112.58 (15)
C5—C4—H4A	109.5	06-C10-H10A	109.1
C5—C4—H4B	109.5	С9—С10—Н10А	109.1
H4A—C4—H4B	109.5	06—C10—H10B	109.1
C5—C4—H4C	109.5	С9—С10—Н10В	109.1
H4A—C4—H4C	109.5	H10A—C10—H10B	107.8
03—N1—C2—C3	-12(3)	N2—C5—C6—O5	170 68 (17)
	(-)		

O3—N1—C2—C1	176.22 (14)	C4—C5—C6—O5	-9.1 (3)	
O2-C1-C2-N1	-174.16 (17)	N2-C5-C6-N3	-9.8 (2)	
O1—C1—C2—N1	7.0 (2)	C4—C5—C6—N3	170.42 (17)	
O2—C1—C2—C3	3.4 (2)	C6—N3—C7—C8	73.0 (2)	
O1—C1—C2—C3	-175.41 (17)	C9—N4—C8—C7	-176.88 (15)	
O4—N2—C5—C4	0.4 (3)	N3—C7—C8—N4	72.22 (18)	
O4—N2—C5—C6	-179.41 (14)	C8—N4—C9—C10	-171.87 (14)	
C7—N3—C6—O5	-0.2 (3)	N4—C9—C10—O6	60.2 (2)	
C7—N3—C6—C5	-179.75 (16)			

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	D··· A	<i>D</i> —H··· <i>A</i>
O3—H3 <i>O</i> …O5 ⁱ	0.90 (2)	1.78 (2)	2.677 (2)	173 (2)
O4—H4 <i>O</i> ···O2 ⁱⁱ	0.95 (2)	1.63 (2)	2.5733 (18)	172.3 (19)
O6—H6 <i>O</i> ···O2	0.87 (2)	2.25 (2)	3.101 (2)	163.4 (18)
N3—H3 <i>N</i> ···O6 ⁱⁱ	0.86 (2)	2.11 (2)	2.940 (2)	162.6 (18)
N4—H4N···O1 ⁱⁱⁱ	0.970 (19)	1.93 (2)	2.838 (2)	155.1 (15)
N4—H5 N ···O1 ^{iv}	0.895 (18)	1.921 (19)	2.796 (2)	165.1 (17)

Symmetry codes: (i) -*x*-1, *y*-1/2, -*z*+3/2; (ii) -*x*, -*y*, -*z*+2; (iii) *x*+1, *y*, *z*; (iv) -*x*-1, -*y*, -*z*+2.