Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

2,2,2-Tribromo- N -(4-chlorophenyl)acetamide

B. Thimme Gowda, ${ }^{\text {a }}$ Sabine Foro, ${ }^{\text {b }}$ P. A. Suchetan ${ }^{\text {a }}$ and Hartmut Fuess ${ }^{\text {b }}$

${ }^{\text {a }}$ Department of Chemistry, Mangalore University, Mangalagangotri 574 199, Mangalore, India, and ${ }^{\mathbf{b}}$ Institute of Materials Science, Darmstadt University of Technology, Petersenstrasse 23, D-64287 Darmstadt, Germany
Correspondence e-mail: gowdabt@yahoo.com
Received 11 August 2009; accepted 13 August 2009
Key indicators: single-crystal X-ray study; $T=299 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.014 \AA$; R factor $=0.080 ; w R$ factor $=0.205 ;$ data-to-parameter ratio $=18.1$.

The crystal structure of the title compound, $\mathrm{C}_{8} \mathrm{H}_{5} \mathrm{Br}_{3} \mathrm{ClNO}$, shows both intramolecular $\mathrm{N}-\mathrm{H} \cdots \mathrm{Br}$ and intermolecular $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonding. In the crystal, the molecules are packed into column-like chains in the c-axis direction via the $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds.

Related literature

For the preparation of the compound, see: Gowda et al. (2003). For our study of the effect of ring and side-chain substituents on the solid state structures of N -aromatic amides, see: Gowda et al. (2000, 2007, 2009).

Experimental

Crystal data

$\mathrm{C}_{8} \mathrm{H}_{5} \mathrm{Br}_{3} \mathrm{ClNO}$
$M_{r}=406.31$
Orthorhombic, Pbca
$a=9.7332$ (8) A

$$
\begin{aligned}
& b=10.2462(9) \AA \\
& c=23.898(2) \AA \\
& V=2383.3(3) \AA^{3} \\
& Z=8
\end{aligned}
$$

Mo $K \alpha$ radiation
$\mu=10.35 \mathrm{~mm}^{-1}$
Data collection
Oxford Diffraction Xcalibur diffractometer with a Sapphire CCD detector
Absorption correction: multi-scan (CrysAlis RED; Oxford

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.080$
$w R\left(F^{2}\right)=0.205$
$S=1.04$
2353 reflections
130 parameters
1 restraint
$T=299 \mathrm{~K}$
$0.40 \times 0.16 \times 0.10 \mathrm{~mm}$

Diffraction, 2009)
$T_{\text {min }}=0.104, T_{\text {max }}=0.355$
5692 measured reflections
2353 independent reflections 1643 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.033$

H atoms treated by a mixture of independent and constrained refinement
$\Delta \rho_{\text {max }}=2.04 \mathrm{e}_{\AA^{-3}}$
$\Delta \rho_{\text {min }}=-0.95 \mathrm{e} \mathrm{A}^{-3}$

Table 1
Hydrogen-bond geometry ($\AA,^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 1-\mathrm{H} 1 N \cdots \mathrm{Br} 1$	$0.84(5)$	$2.87(10)$	$3.197(8)$	$105(8)$
$\mathrm{N} 1-\mathrm{H} 1 N \cdots \mathrm{O}^{\mathrm{i}}$	$0.84(5)$	$2.21(5)$	$3.038(9)$	$168(10)$

Symmetry code: (i) $-x+\frac{1}{2}, y-\frac{1}{2}, z$.

Data collection: CrysAlis CCD (Oxford Diffraction, 2009); cell refinement: CrysAlis RED (Oxford Diffraction, 2009); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97.

BTG thanks the Alexander von Humboldt Foundation, Bonn, Germany, for an extension of his research fellowship.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: PK2183).

References

Gowda, B. T., Paulus, H. \& Fuess, H. (2000). Z. Naturforsch. Teil A, 55, 711720.

Gowda, B. T., Svoboda, I., Foro, S., Suchetan, P. A. \& Fuess, H. (2009). Acta Cryst. E65, o1955.
Gowda, B. T., Foro, S. \& Fuess, H. (2007). Acta Cryst. E63, o3392.
Gowda, B. T., Usha, K. M. \& Jayalakshmi, K. L. (2003). Z. Naturforsch. Teil A, 58, 801-806.
Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Spek, A. L. (2009). Acta Cryst. D65, 148-155.

supporting information

Acta Cryst. (2009). E65, o2172 [doi:10.1107/S1600536809032139]

2,2,2-Tribromo- N-(4-chlorophenyl)acetamide

B. Thimme Gowda, Sabine Foro, P. A. Suchetan and Hartmut Fuess

S1. Comment

As part of a study of the effect of the ring and side chain substituents on the solid state structures of N-aromatic amides (Gowda et al., 2000, 2007, 2009), the structure of 2,2,2-tribromo- N-(4-chlorophenyl)acetamide has been determined (Fig.1). The conformation of the $\mathrm{N}-\mathrm{H}$ bond is anti to the $\mathrm{C}=\mathrm{O}$ bond in the side chain, similar to that observed in $\mathrm{N}-(4-$ chlorophenyl)acetamide (Gowda et al., 2007), 2,2,2-trichloro-N-(4-chlorophenyl)acetamide (Gowda et al., 2003), and other amides (Gowda et al., 2009). The structure shows both intramolecular $\mathrm{N}-\mathrm{H} \cdots \mathrm{Br}$ and intermolecular $\mathrm{N}-\mathrm{H} \cdots \mathrm{O} \mathrm{H}-$ bonding. The packing diagram of molecules showing the hydrogen bonds $\mathrm{N} 1-\mathrm{H} 1 \mathrm{~N} \cdots \mathrm{O} 1$ (Table 1) involved in the formation of molecular chains in the direction of the c-axis is given in Fig. 2.

S2. Experimental

The title compound was prepared from 4-chloroaniline, tribromoacetic acid and phosphorylchloride according to the literature method (Gowda et al., 2003). The purity of the compound was checked by determining its melting point. It was further characterized by recording its infrared spectra. Single crystals of the title compound used for X-ray diffraction studies were obtained by a slow evaporation of its solution in petroleum ether at room temperature.

S3. Refinement

The H atom of the NH group was located in a difference map and later restrained to the distance $\mathrm{N}-\mathrm{H}=0.86$ (5) \AA. The other H atoms were positioned with idealized geometry using a riding model [$\mathrm{C}-\mathrm{H}=0.93 \AA$. All H atoms were refined with isotropic displacement parameters (set to 1.2 times of the $U_{\text {eq }}$ of the parent atom).
The largest residual electron-density features are located in the region of Br 3 and Br 2 . The highest peak is $0.98 \AA$ from Br 3 and the deepest hole is $0.50 \AA$ from Br 2 .

Figure 1
Molecular structure of (I), showing the atom labelling scheme and displacement ellipsoids are drawn at the 50\% probability level.

Figure 2

Molecular packing of (I) with hydrogen bonding shown as dashed lines.

2,2,2-Tribromo- N -(4-chlorophenyl)acetamide

Crystal data

$\mathrm{C}_{8} \mathrm{H}_{5} \mathrm{Br}_{3} \mathrm{ClNO}$

$M_{r}=406.31$
Orthorhombic, Pbca
Hall symbol: -P 2ac 2ab
$a=9.7332(8) \AA$
$b=10.2462(9) \AA$
$c=23.898$ (2) \AA
$V=2383.3$ (3) \AA^{3}
$Z=8$

Data collection

Oxford Diffraction Xcalibur
diffractometer with a Sapphire CCD detector
Radiation source: fine-focus sealed tube
Graphite monochromator
Rotation method data acquisition using ω and φ scans
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2009)
$T_{\text {min }}=0.104, T_{\text {max }}=0.355$

$$
\begin{aligned}
& F(000)=1520 \\
& D_{\mathrm{x}}=2.265 \mathrm{Mg} \mathrm{~m}^{-3} \\
& \text { Mo } K \alpha \text { radiation, } \lambda=0.71073 \AA \\
& \text { Cell parameters from } 2849 \text { reflections } \\
& \theta=2.6-27.8^{\circ} \\
& \mu=10.35 \mathrm{~mm}^{-1} \\
& T=299 \mathrm{~K} \\
& \text { Long needle, colourless } \\
& 0.40 \times 0.16 \times 0.10 \mathrm{~mm}
\end{aligned}
$$

5692 measured reflections

2353 independent reflections
1643 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.033$
$\theta_{\text {max }}=26.4^{\circ}, \theta_{\text {min }}=2.7^{\circ}$
$h=-12 \rightarrow 8$
$k=-12 \rightarrow 9$
$l=-29 \rightarrow 21$

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.080$
$w R\left(F^{2}\right)=0.205$
$S=1.04$
2353 reflections
130 parameters
1 restraint
Primary atom site location: structure-invariant direct methods

Secondary atom site location: difference Fourier map
Hydrogen site location: inferred from neighbouring sites
H atoms treated by a mixture of independent and constrained refinement
$w=1 /\left[\sigma^{2}\left(F_{0}^{2}\right)+(0.0891 P)^{2}+22.8289 P\right]$ where $P=\left(F_{0}^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}=0.005$
$\Delta \rho_{\text {max }}=2.04 \mathrm{e}_{\AA^{-3}}$
$\Delta \rho_{\text {min }}=-0.95$ e \AA^{-3}

Special details

Experimental. CrysAlis RED (Oxford Diffraction, 2009) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor $w R$ and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>\sigma\left(F^{2}\right)$ is used only for calculating R-factors $(\mathrm{gt}) \mathrm{etc}$. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F, and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^{2})

	x	y	z	$U_{\mathrm{iso}} * / U_{\mathrm{eq}}$
C1	$0.4391(10)$	$0.4634(8)$	$0.1037(4)$	$0.038(2)$
C2	$0.4633(11)$	$0.3604(9)$	$0.0673(5)$	$0.048(2)$
H2	0.3990	0.2939	0.0633	0.058^{*}
C3	$0.5841(10)$	$0.3580(10)$	$0.0369(5)$	$0.051(3)$
H3	0.6017	0.2885	0.0129	0.062^{*}
C4	$0.6786(10)$	$0.4569(10)$	$0.0418(4)$	$0.051(3)$
C5	$0.6549(10)$	$0.5578(10)$	$0.0790(5)$	$0.053(3)$
H5	0.7196	0.6240	0.0829	0.064^{*}
C6	$0.5357(11)$	$0.5609(9)$	$0.1103(4)$	$0.048(2)$
H6	0.5206	0.6282	0.1357	0.058^{*}
C7	$0.2449(10)$	$0.5644(8)$	$0.1518(4)$	$0.039(2)$
C8	$0.1178(10)$	$0.5312(8)$	$0.1876(4)$	$0.043(2)$
N1	$0.3172(8)$	$0.4601(6)$	$0.1361(3)$	$0.0425(19)$
H1N	$0.283(10)$	$0.386(6)$	$0.140(4)$	0.051^{*}
O1	$0.2715(7)$	$0.6760(5)$	$0.1408(3)$	$0.0521(18)$
C11	$0.8276(3)$	$0.4561(4)$	$0.00254(14)$	$0.0775(10)$
Br1	$-0.00883(11)$	$0.42751(13)$	$0.14426(6)$	$0.0737(5)$
Br2	$0.02425(15)$	$0.68618(11)$	$0.21207(7)$	$0.0817(5)$
Br3	$0.17735(16)$	$0.43813(13)$	$0.25385(5)$	$0.0792(5)$

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	$0.053(5)$	$0.028(4)$	$0.033(5)$	$0.007(4)$	$0.005(4)$	$0.006(4)$
C2	$0.054(6)$	$0.036(5)$	$0.054(6)$	$0.003(4)$	$0.005(5)$	$-0.001(5)$
C3	$0.047(6)$	$0.053(6)$	$0.054(6)$	$0.017(5)$	$0.009(5)$	$-0.006(5)$
C4	$0.040(5)$	$0.073(7)$	$0.040(5)$	$0.011(5)$	$0.004(4)$	$0.004(5)$
C5	$0.040(5)$	$0.050(6)$	$0.070(7)$	$-0.004(4)$	$0.008(5)$	$-0.006(5)$
C6	$0.055(6)$	$0.042(5)$	$0.046(6)$	$0.001(5)$	$0.000(5)$	$-0.014(5)$
C7	$0.042(4)$	$0.035(5)$	$0.040(5)$	$-0.001(4)$	$0.009(4)$	$0.007(4)$
C8	$0.053(5)$	$0.023(4)$	$0.052(6)$	$0.002(4)$	$0.011(5)$	$-0.005(4)$
N1	$0.051(5)$	$0.025(4)$	$0.052(5)$	$0.002(3)$	$0.013(4)$	$0.007(3)$
O1	$0.056(4)$	$0.024(3)$	$0.077(5)$	$0.003(3)$	$0.022(4)$	$0.003(3)$
C11	$0.0468(15)$	$0.117(3)$	$0.069(2)$	$0.0073(16)$	$0.0172(14)$	$-0.0168(19)$
Br1	$0.0450(6)$	$0.0856(9)$	$0.0904(10)$	$-0.0022(6)$	$-0.0020(6)$	$-0.0336(8)$
Br2	$0.0900(9)$	$0.0439(6)$	$0.1112(12)$	$0.0043(6)$	$0.0532(8)$	$-0.0141(7)$
Br3	$0.0860(9)$	$0.0990(10)$	$0.0527(7)$	$-0.0108(7)$	$0.0088(7)$	$0.0255(7)$

Geometric parameters $\left({ }^{A},{ }^{\circ}\right)$

$\mathrm{C} 1-\mathrm{C} 6$	$1.380(13)$	$\mathrm{C} 5-\mathrm{H} 5$	0.9300
$\mathrm{C} 1-\mathrm{C} 2$	$1.389(13)$	$\mathrm{C} 6-\mathrm{H} 6$	0.9300
$\mathrm{C} 1-\mathrm{N} 1$	$1.416(12)$	$\mathrm{C} 7-\mathrm{O} 1$	$1.202(10)$
$\mathrm{C} 2-\mathrm{C} 3$	$1.382(14)$	$\mathrm{C} 7-\mathrm{N} 1$	$1.334(11)$
$\mathrm{C} 2-\mathrm{H} 2$	0.9300	$\mathrm{C} 7-\mathrm{C} 8$	$1.542(13)$

C3-C4	1.374 (14)	C8-Br2	1.921 (8)
C3-H3	0.9300	C8-Br1	1.929 (10)
C4-C5	1.383 (14)	$\mathrm{C} 8-\mathrm{Br} 3$	1.937 (10)
C4- Cl 1	1.727 (10)	N1-H1N	0.84 (5)
C5-C6	1.382 (14)		
C6-C1-C2	120.4 (9)	C1-C6-C5	119.5 (9)
C6- $\mathrm{C} 1-\mathrm{N} 1$	121.7 (8)	C1-C6-H6	120.2
C2- $21-\mathrm{N} 1$	117.8 (8)	C5-C6-H6	120.2
C3-C2-C1	119.2 (9)	O1-C7-N1	126.0 (8)
C3-C2-H2	120.4	O1-C7-C8	120.2 (8)
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{H} 2$	120.4	N1-C7-C8	113.8 (7)
C4-C3-C2	120.8 (9)	$\mathrm{C} 7-\mathrm{C} 8-\mathrm{Br} 2$	111.5 (6)
C4-C3-H3	119.6	$\mathrm{C} 7-\mathrm{C} 8-\mathrm{Br} 1$	109.6 (6)
C2-C3-H3	119.6	$\mathrm{Br} 2-\mathrm{C} 8-\mathrm{Br} 1$	108.4 (5)
C3-C4-C5	119.6 (9)	$\mathrm{C} 7-\mathrm{C} 8-\mathrm{Br} 3$	108.8 (7)
C3-C4-Cl1	120.8 (8)	$\mathrm{Br} 2-\mathrm{C} 8-\mathrm{Br} 3$	107.4 (5)
C5-C4-Cl1	119.5 (8)	$\mathrm{Br} 1-\mathrm{C} 8-\mathrm{Br} 3$	111.0 (4)
C6-C5-C4	120.4 (9)	C7-N1-C1	125.2 (7)
C6-C5-H5	119.8	C7-N1-H1N	119 (7)
C4-C5-H5	119.8	$\mathrm{C} 1-\mathrm{N} 1-\mathrm{H} 1 \mathrm{~N}$	115 (7)
C6-C1-C2-C3	-1.2 (15)	$\mathrm{O} 1-\mathrm{C} 7-\mathrm{C} 8-\mathrm{Br} 2$	-2.7 (12)
N1-C1-C2-C3	-177.3 (9)	N1-C7-C8-Br2	176.9 (7)
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$	-1.1 (15)	$\mathrm{O} 1-\mathrm{C} 7-\mathrm{C} 8-\mathrm{Br} 1$	117.4 (9)
C2-C3-C4-C5	2.3 (16)	N1-C7-C8-Br1	-63.0 (10)
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4-\mathrm{Cl} 1$	-178.3 (8)	$\mathrm{O} 1-\mathrm{C} 7-\mathrm{C} 8-\mathrm{Br} 3$	-121.0 (9)
C3-C4-C5-C6	-1.3 (16)	N1-C7-C8-Br3	58.6 (9)
$\mathrm{Cl} 1-\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 6$	179.3 (8)	$\mathrm{O} 1-\mathrm{C} 7-\mathrm{N} 1-\mathrm{C} 1$	0.5 (16)
C2-C1-C6-C5	2.2 (15)	C8-C7-N1-C1	-179.1 (9)
N1-C1-C6-C5	178.1 (9)	C6- $\mathrm{C} 1-\mathrm{N} 1-\mathrm{C} 7$	36.9 (14)
C4-C5-C6-C1	-1.0 (16)	$\mathrm{C} 2-\mathrm{C} 1-\mathrm{N} 1-\mathrm{C} 7$	-147.1 (10)

Hydrogen-bond geometry (A, ${ }^{\circ}$)

$D — \mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 1 — \mathrm{H} 1 N \cdots \mathrm{Br} 1$	$0.84(5)$	$2.87(10)$	$3.197(8)$	$105(8)$
$\mathrm{N} 1 — \mathrm{H} 1 N \cdots \mathrm{O} 1^{\mathrm{i}}$	$0.84(5)$	$2.21(5)$	$3.038(9)$	$168(10)$

Symmetry code: (i) $-x+1 / 2, y-1 / 2, z$.

