

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

n-Butyl 2-(3-chloro-1,2-dihydropyrazin-2-ylidene)-2-cyanoacetate

Anita Stefańska,^a Tadeusz Ossowski^a and Łukasz Ponikiewski^b*

^aFaculty of Chemistry, University of Gdańsk, Sobieskiego 18/19, Gdańsk PL 80952, Poland, and ^bFaculty of Chemistry, Gdańsk University Of Techology, Narutowicza 11/12, Gdańsk PL 80233, Poland Correspondence e-mail: lukas_ponikiewski@vp.pl

Received 13 July 2009; accepted 12 August 2009

Key indicators: single-crystal X-ray study; T = 120 K; mean σ (C–C) = 0.008 Å; disorder in main residue; R factor = 0.047; wR factor = 0.156; data-to-parameter ratio = 10.9.

The title compound, C₁₁H₁₂ClN₃O₂, is essentially planar except for the *n*-butoxy group [r.m.s. deviation from the least-squares plane = 0.0131(1) Å for 11 non-H atoms]. An intramolecular N-H···O interaction results in the formation of an S(6) ring. The *n*-butoxy chain in the molecule is disordered over two sets of sites of equal occupancy.

Related literature

For applications of this class of compounds, see: Matter et al. (2005); Kaliszan et al. (1985); Petrusewicz et al. (1992, 1993, 1995). For pyrazinyl-pyrazylidene tautomerism, see: Pilarski et al. (1984). For related structures, see: Vishweshwar et al. (2000); Wardell et al. (2006). For the synthesis, see: Pilarski & Foks (1981, 1982).

Experimental

Crystal data C11H12ClN3O2 c = 10.573 (4) Å $M_r = 253.69$ $\beta = 95.80 \ (3)^{\circ}$ Monoclinic, Cc V = 1326.7 (9) Å³ a = 4.918 (3) Å Z = 4b = 25.642 (7) Å Mo $K\alpha$ radiation

 $\mu = 0.28 \text{ mm}^{-1}$ T = 120 K

Data collection

Oxford Diffraction KM-4/Xcalibur
diffractometer with a Sapphire2
(large Be window) detector
Absorption correction: Gaussian
(CrysAlis Pro; Oxford

Refinement R[F

$R[F^2 > 2\sigma(F^2)] = 0.047$	H atoms treated by a mixture of
$wR(F^2) = 0.156$	independent and constrained
S = 1.04	refinement
1687 reflections	$\Delta \rho_{\rm max} = 0.24 \text{ e } \text{\AA}^{-3}$
154 parameters	$\Delta \rho_{\rm min} = -0.23 \text{ e } \text{\AA}^{-3}$
1 restraint	Absolute structure: Flack (1983)
	466 Friedel pairs
	Flack parameter: 0.05 (18)

Table 1 Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdots A$
$N2-H2B\cdotsO1$	0.87 (2)	1.96 (5)	2.632 (6)	133 (6)

Data collection: CrvsAlis CCD (Oxford Diffraction, 2006); cell refinement: CrysAlis RED (Oxford Diffraction, 2006); data reduction: CrysAlis RED (Oxford Diffraction, 2006); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

The authors thank Drs Katarzyna Baranowska and Antoni Konitz for helpful discussions during the preparation of the manuscript. The work has been supported by the Fund for Science in the Year 2009 as a research project (DS/8410-4-0139-9).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: NG2612).

References

- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
- Flack, H. D. (1983). Acta Cryst. A39, 876-881.
- Kaliszan, R., Pilarski, B., Osmialowski, K., Strzalkowska-Grad, H. & Hrac, E. (1985). Pharm. Weekbl. [Sci], 7, 141-145.

Matter, H., Kumar, H. S. A., Fedorov, R., Frey, A., Kotsonis, P., Hartmann, E., Frohlich, L. G., Reif, A., Pfleiderer, W., Scheurer, P., Ghosh, D. K., Schlichting, I. & Schmidt, H. H. W. (2005). J. Med. Chem. 48, 4783-4792.

- Oxford Diffraction (2006). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.
- Oxford Diffraction (2007). CrysAlis Pro. Oxford Diffraction Ltd, Yarnton, England.
- Petrusewicz, J., Gami-Yilinkou, R., Kaliszan, R., Pilarski, B. & Foks, H. (1993). Gen. Pharmacol. 24, 17-22.
- Petrusewicz, J., Gami-Yilinkou, R., Pilarski, B. & Kaliszan, R. (1992). Pharmacol. Tonic. 70, 448-452.
- Petrusewicz, J., Turowski, M., Foks, H., Pilarski, B. & Kaliszan, R. (1995). Life Sci. 56, 667-677.

Pilarski, B. & Foks, H. (1981). Polish Patent No. P-232409.

Pilarski, B. & Foks, H. (1982). Polish Patent No. P-234716.

0.57 \times 0.11 \times 0.07 mm

Diffraction, 2007) $T_{\min} = 0.923, \ T_{\max} = 0.987$ 4629 measured reflections

 $R_{\rm int} = 0.034$

1687 independent reflections 1219 reflections with $I > 2\sigma(I)$ Pilarski, B., Foks, H., Osmialowski, K. & Kaliszan, R. (1984). Monatsh. Chem. 115, 179–185.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Vishweshwar, P., Nangia, A. & Lynch, V. M. (2000). Acta Cryst. C56, 1512–1514.

Wardell, S. M. S. V., de Souza, M. V. N., Wardell, J. L., Low, J. N. & Glidewell, C. (2006). Acta Cryst. E62, 03765–03767.

supporting information

Acta Cryst. (2009). E65, o2157–o2158 [doi:10.1107/S1600536809031870]

n-Butyl 2-(3-chloro-1,2-dihydropyrazin-2-ylidene)-2-cyanoacetate

Anita Stefańska, Tadeusz Ossowski and Łukasz Ponikiewski

S1. Comment

Heterocyclic compounds with active methylene moiety are known to have antiinflamatory (Petrusewicz *et al.*, 1995), analgesic (Kaliszan *et al.*, 1985) and large number of other pharmacological activities (Petrusewicz *et al.*, 1992). Numerous scientific publications confirm that pyrazine derivatives, obtained by nucleophilic substitution of chlorine atom in the pyrazine ring system with active methylene compound, posses above mentioned activity. Some of pyrazine C —H and N—H acids also demonstrated antithrombotic and antiplatelet activity (Petrusewicz *et al.*, 1993).

Such pharmacological activity (in group CH– andNH– acids) is possibly the result of acid character of particle and their structure, as in case of well known inhibitors of cyclooxygenase (Petrusewicz *et al.*, 1993). Structural analysis of pyrazine-acetonitrile derivatives shows pyrazinyl-pyrazylidene tautomerism (Pilarski *et al.*, 1984) but crystal of 2-butyl 2-(3-chloropyrazin- (1*H*)-ylidene)-2-cyanoacetateappears as NH-acid.

In the molecule of the title compound (Fig. 1) the bond lengths and angles characterizing the geometry of the pyrazines skeleton are typical for this group compounds (Vishweshwar *et al.* 2000; Wardell *et al.* 2006). The compound is essentially planar except for the n-butoxy group (r.m.s. deviation from the least-squares plane - 0.0131 (1) Å for 11 non-H atoms. An intramolecular N2—H2B···O1 contact generates a S(6) ring motif which stabilizes the molecular conformation. The n-butoxy chain in the molecule is disordered over two sets of sites in a 0.50 (1):0.50 (1) ratio.

S2. Experimental

2-butyl 2-(3-chloropyrazin-2(1*H*)-ylidene)-2-cyanoacetate was obtained bygeneral method described in papers (Pilarski *et al.*, 1981; Pilarski *et al.*, 1982). Crystallization of this compound from methanol forms a crystal.

S3. Refinement

Atoms O2, C8 (H8A, H8B), C9 (H9A, H9B), C10 (H10A, H10B), C11 (H11A, H11B, H11C) were disordered over two positions. During the refinement process the disordered atoms were refined with occupancies of 0.50 and 0.50. H atoms bonded to C were included in calculated positions and refined as riding on their parent C atom with C—H = 0.95 Å $U_{iso}(H) = 1.2 U_{eq}(C)$ for aromatic, C—H = 0.99 Å $U_{iso}(H) = 1.2 U_{eq}(C)$ for methylene and C—H = 0.98 Å $U_{iso}(H) = 1.5 U_{eq}(C)$ for methyl H atoms. The H2B atom was located from difference Fourier map and refined isotropically resulting in N—H abond length 0.87 (2) Å $U_{iso}(H) = 0.10$ (2) Å². The carbon atoms C8, C9, C10, C11 and C8A, C9A, C10A, C11A were located from a difference map, fixed at 1.50 for C—C distance and refined with the *DFIX* restraint. The Flack (1983) parameter was refined explicity, with both TWIN and BASF parameters.

Figure 1

The moleculare structure of the title compound showing the atomic numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.

n-Butyl 2-(3-chloro-1,2-dihydropyrazin-2-ylidene)-2-cyanoacetate

Crystal data	
$C_{11}H_{12}CIN_{3}O_{2}$ $M_{r} = 253.69$ Monoclinic, <i>Cc</i> Hall symbol: C -2yc a = 4.918 (3) Å b = 25.642 (7) Å	F(000) = 528 $D_x = 1.27 \text{ Mg m}^{-3}$ Mo K\alpha radiation, \lambda = 0.71073 \mathcal{A} Cell parameters from 1500 reflections $\theta = 2.5 - 32.3^{\circ}$ $\mu = 0.28 \text{ mm}^{-1}$
b = 25.042 (7) Å c = 10.573 (4) Å $\beta = 95.80 (3)^{\circ}$ $V = 1326.7 (9) \text{ Å}^{3}$ Z = 4	$\mu = 0.23 \text{ mm}$ T = 120 K Block, yellow $0.57 \times 0.11 \times 0.07 \text{ mm}$
Data collection	
Oxford Diffraction KM-4/Xcalibur diffractometer with a Sapphire2 (large Be window) detector	4629 measured reflections 1687 independent reflections 1219 reflections with $I > 2\sigma(I)$
Graphite monochromator	$R_{\rm int}=0.034$
Detector resolution: 8.1883 pixels mm ⁻¹	$\theta_{\rm max} = 25.5^{\circ}, \ \theta_{\rm min} = 2.5^{\circ}$
0.75° wide ω scans	$h = -3 \rightarrow 5$

 $k = -31 \rightarrow 31$ $l = -12 \rightarrow 12$

Refinement

Refinement on F^2	Hydrogen site location: inferred from
Least-squares matrix: full	neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.047$	H atoms treated by a mixture of independent
$wR(F^2) = 0.156$	and constrained refinement
S = 1.04	$w = 1/[\sigma^2(F_o^2) + (0.1833P)^2]$
1687 reflections	where $P = (F_o^2 + 2F_c^2)/3$
154 parameters	$(\Delta/\sigma)_{\rm max} < 0.001$
1 restraint	$\Delta \rho_{\rm max} = 0.24 \text{ e} \text{ Å}^{-3}$
Primary atom site location: structure-invariant	$\Delta \rho_{\rm min} = -0.23 \text{ e } \text{\AA}^{-3}$
direct methods	Absolute structure: Flack (1983), 466 Friedel
Secondary atom site location: difference Fourier	pairs
map	Absolute structure parameter: 0.05 (18)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	Occ. (<1)
Cl1	0.7083 (3)	0.42260 (5)	0.30244 (15)	0.0753 (4)	
01	0.0928 (8)	0.54438 (16)	0.6099 (3)	0.0731 (12)	
N1	0.4291 (11)	0.36488 (18)	0.4525 (5)	0.0827 (13)	
N2	0.1819 (9)	0.4445 (2)	0.5738 (4)	0.0612 (12)	
N3	0.7225 (16)	0.55178 (17)	0.2917 (6)	0.0874 (12)	
C1	0.2496 (17)	0.3549 (3)	0.5468 (7)	0.0905 (19)	
H1A	0.2102	0.3199	0.5681	0.109*	
C2	0.1303 (11)	0.3956 (3)	0.6086 (5)	0.0695 (16)	
H2A	0.0153	0.3889	0.6737	0.083*	
C3	0.3572 (10)	0.4596 (2)	0.4816 (4)	0.0548 (12)	
C4	0.4796 (11)	0.4144 (2)	0.4225 (4)	0.0649 (13)	
C5	0.4002 (10)	0.5136 (2)	0.4565 (4)	0.0569 (10)	
C6	0.5828 (11)	0.5330(2)	0.3632 (5)	0.0617 (11)	
C7	0.2549 (12)	0.5528 (2)	0.5259 (5)	0.0626 (15)	
02	0.3471 (16)	0.6051 (3)	0.5012 (7)	0.050 (2)*	0.5
C8	0.202 (2)	0.6474 (4)	0.5635 (11)	0.056 (3)*	0.5
H8A	0.2504	0.647	0.6566	0.067*	0.5
H8B	0.0014	0.6434	0.5458	0.067*	0.5
C9	0.296 (2)	0.6977 (4)	0.5064 (9)	0.070 (3)*	0.5
H9A	0.4939	0.7017	0.5331	0.084*	0.5
H9B	0.2014	0.7269	0.5444	0.084*	0.5
C10	0.253 (3)	0.7037 (4)	0.3607 (9)	0.072 (3)*	0.5
H10A	0.3655	0.6769	0.3231	0.086*	0.5

H10B	0.0594	0.6955	0.3331	0.086*	0.5
C11	0.316 (3)	0.7546 (5)	0.3052 (16)	0.095 (4)*	0.5
H11A	0.1591	0.7664	0.248	0.143*	0.5
H11B	0.4758	0.751	0.2573	0.143*	0.5
H11C	0.3558	0.7802	0.3734	0.143*	0.5
O2A	0.268 (2)	0.6013 (4)	0.4705 (9)	0.071 (3)*	0.5
C8A	0.111 (3)	0.6434 (5)	0.5272 (13)	0.080 (4)*	0.5
H8AA	0.1828	0.6493	0.6169	0.095*	0.5
H8AB	-0.0843	0.6336	0.5246	0.095*	0.5
C9A	0.142 (3)	0.6924 (5)	0.4496 (14)	0.102 (4)*	0.5
H9A1	0.0102	0.6892	0.3728	0.122*	0.5
H9A2	0.0775	0.7217	0.4998	0.122*	0.5
C10A	0.402 (3)	0.7092 (5)	0.4057 (13)	0.092 (3)*	0.5
H10C	0.4668	0.6798	0.3559	0.11*	0.5
H10D	0.5335	0.7124	0.4827	0.11*	0.5
C11A	0.433 (4)	0.7571 (5)	0.3292 (13)	0.089 (4)*	0.5
H11D	0.6227	0.7691	0.3421	0.133*	0.5
H11E	0.3116	0.7843	0.3561	0.133*	0.5
H11F	0.3845	0.7493	0.239	0.133*	0.5
H2B	0.150 (14)	0.4691 (19)	0.627 (5)	0.10 (2)*	

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Cl1	0.0730 (7)	0.0881 (7)	0.0692 (6)	0.0104 (9)	0.0279 (5)	-0.0026 (8)
01	0.085 (3)	0.067 (2)	0.073 (2)	0.003 (2)	0.035 (2)	0.0011 (18)
N1	0.098 (3)	0.070 (3)	0.085 (3)	0.007 (2)	0.036 (2)	0.001 (2)
N2	0.063 (3)	0.067 (3)	0.055 (2)	0.006 (2)	0.013 (2)	-0.003 (2)
N3	0.087 (3)	0.098 (3)	0.082 (3)	-0.002(3)	0.034 (2)	0.021 (3)
C1	0.119 (5)	0.063 (3)	0.097 (4)	0.004 (3)	0.049 (4)	-0.001 (3)
C2	0.075 (4)	0.071 (4)	0.067 (3)	-0.004 (3)	0.028 (3)	0.002 (3)
C3	0.049 (3)	0.073 (3)	0.042 (2)	0.003 (2)	0.0044 (19)	-0.007 (2)
C4	0.063 (3)	0.080 (4)	0.053 (2)	0.009 (2)	0.014 (2)	-0.002(2)
C5	0.055 (2)	0.065 (3)	0.052 (2)	-0.002(2)	0.0109 (18)	0.0014 (17)
C6	0.058 (2)	0.073 (3)	0.056 (2)	0.002 (2)	0.014 (2)	0.002 (2)
C7	0.069 (3)	0.060 (4)	0.062 (3)	-0.007 (3)	0.018 (3)	0.004 (3)

Geometric parameters (Å, °)

Cl1—C4	1.791 (5)	С9—Н9А	0.99	
O1—C7	1.271 (7)	С9—Н9В	0.99	
N1-C4	1.338 (7)	C10—C11	1.478 (14)	
N1-C1	1.421 (8)	C10—H10A	0.99	
N2—C2	1.338 (9)	C10—H10B	0.99	
N2—C3	1.419 (8)	C11—H11A	0.98	
N2—H2B	0.87 (2)	C11—H11B	0.98	
N3—C6	1.175 (8)	C11—H11C	0.98	
C1—C2	1.392 (10)	O2A—C8A	1.489 (17)	

C1—H1A	0.95	С8А—С9А	1.516 (14)
C2—H2A	0.95	C8A—H8AA	0.99
C3—C5	1.428 (7)	C8A—H8AB	0.99
C3—C4	1.475 (7)	C9A—C10A	1.469 (14)
С5—С7	1.472 (8)	С9А—Н9А1	0.99
C5—C6	1.486 (7)	С9А—Н9А2	0.99
C7—O2A	1.379 (11)	C10A—C11A	1.487 (14)
C7—O2	1.448 (10)	C10A—H10C	0.99
02	1.489 (13)	C10A—H10D	0.99
C8—C9	1.514 (12)	C11A—H11D	0.98
C8—H8A	0.99	C11A—H11E	0.98
C8—H8B	0.99	C11A—H11F	0.98
C9—C10	1.541 (12)		
C4—N1—C1	118.8 (5)	С10—С9—Н9А	107.8
C2—N2—C3	126.2 (5)	С8—С9—Н9В	107.8
C2—N2—H2B	117 (5)	С10—С9—Н9В	107.8
C3—N2—H2B	114 (5)	H9A—C9—H9B	107.2
C2-C1-N1	121.0 (6)	C11—C10—C9	118.2 (10)
C2—C1—H1A	119.5	C11—C10—H10A	107.8
N1—C1—H1A	119.5	C9—C10—H10A	107.8
N2—C2—C1	118.3 (5)	C11—C10—H10B	107.8
N2—C2—H2A	120.9	C9—C10—H10B	107.8
C1—C2—H2A	120.9	H10A—C10—H10B	107.1
N2—C3—C5	120.3 (5)	C7—O2A—C8A	115.7 (8)
N2—C3—C4	112.3 (5)	O2A—C8A—C9A	107.3 (11)
C5—C3—C4	127.5 (5)	O2A—C8A—H8AA	110.2
N1—C4—C3	123.5 (4)	С9А—С8А—Н8АА	110.2
N1-C4-Cl1	115.1 (4)	O2A—C8A—H8AB	110.2
C3—C4—Cl1	121.4 (4)	С9А—С8А—Н8АВ	110.2
C3—C5—C7	118.7 (4)	H8AA—C8A—H8AB	108.5
C3—C5—C6	124.0 (4)	C10A—C9A—C8A	123.5 (13)
C7—C5—C6	117.3 (5)	C10A—C9A—H9A1	106.5
N3—C6—C5	175.5 (5)	C8A—C9A—H9A1	106.5
O1—C7—O2A	120.7 (6)	C10A—C9A—H9A2	106.5
O1—C7—O2	120.9 (5)	С8А—С9А—Н9А2	106.5
O2A—C7—O2	19.8 (5)	H9A1—C9A—H9A2	106.5
O1—C7—C5	127.1 (5)	C9A—C10A—C11A	123.6 (13)
O2A—C7—C5	111.0 (6)	C9A—C10A—H10C	106.4
O2—C7—C5	111.5 (5)	C11A—C10A—H10C	106.4
C7—O2—C8	115.0 (7)	C9A—C10A—H10D	106.4
O2—C8—C9	105.3 (8)	C11A—C10A—H10D	106.4
O2—C8—H8A	110.7	H10C—C10A—H10D	106.5
С9—С8—Н8А	110.7	C10A—C11A—H11D	109.5
O2—C8—H8B	110.7	C10A—C11A—H11E	109.5
C9—C8—H8B	110.7	H11D—C11A—H11E	109.5
H8A—C8—H8B	108.8	C10A—C11A—H11F	109.5
C8—C9—C10	117.8 (9)	H11D—C11A—H11F	109.5

supporting information

С8—С9—Н9А	107.8	H11E—C11A—H11F	109.5
C4—N1—C1—C2	-0.9 (10)	C6—C5—C7—O1	-179.2 (5)
C3—N2—C2—C1	-2.4 (9)	C3—C5—C7—O2A	-166.0 (6)
N1—C1—C2—N2	2.2 (11)	C6—C5—C7—O2A	13.6 (8)
C2—N2—C3—C5	-178.1 (5)	C3—C5—C7—O2	172.8 (5)
C2—N2—C3—C4	1.2 (7)	C6—C5—C7—O2	-7.6 (8)
C1—N1—C4—C3	-0.4 (8)	O1—C7—O2—C8	-10.3 (11)
C1—N1—C4—Cl1	-179.9 (5)	O2A—C7—O2—C8	85.0 (19)
N2—C3—C4—N1	0.3 (7)	C5—C7—O2—C8	177.5 (7)
C5—C3—C4—N1	179.5 (5)	C7—O2—C8—C9	-170.4 (8)
N2—C3—C4—Cl1	179.8 (3)	O2—C8—C9—C10	56.8 (12)
C5—C3—C4—Cl1	-1.0 (7)	C8—C9—C10—C11	173.4 (12)
N2—C3—C5—C7	-1.4 (6)	O1—C7—O2A—C8A	7.6 (13)
C4—C3—C5—C7	179.5 (5)	O2—C7—O2A—C8A	-89.0 (19)
N2—C3—C5—C6	179.1 (5)	C5—C7—O2A—C8A	175.8 (9)
C4—C3—C5—C6	-0.1 (8)	C7—O2A—C8A—C9A	-177.5 (10)
C3—C5—C6—N3	18E1 (10)	O2A—C8A—C9A—C10A	-42.8 (19)
C7—C5—C6—N3	0 (8)	C8A—C9A—C10A—C11A	179.8 (14)
C3—C5—C7—O1	1.2 (8)		

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	D····A	<i>D</i> —H··· <i>A</i>
N2—H2 <i>B</i> ···O1	0.87 (2)	1.96 (5)	2.632 (6)	133 (6)