

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

(Methoxo- κO)oxidobis(quinolin-8-olato- $\kappa^2 N, O$)vanadium(V)

Zhenghua Guo,^a Lianzhi Li,^a* Chengyuan Wang,^b Tao Xu^a and Jinghong Li^a

^aSchool of Chemistry and Chemical Engineering, Liaocheng University, Shandong 252059, People's Republic of China, and ^bResearch Center of Medical Chemistry & Chemical Biology, Chongqing Technology and Business University, Chongqing 400067, People's Republic of China

Correspondence e-mail: lilianzhi1963@yahoo.com.cn

Received 20 July 2009; accepted 11 August 2009

Key indicators: single-crystal X-ray study; T = 298 K; mean σ (C–C) = 0.011 Å; R factor = 0.072; wR factor = 0.230; data-to-parameter ratio = 12.3.

In the title complex, $[V(C_9H_6NO)_2(CH_3O)O]$, the central V^V atom is coordinated by the O atoms from the oxido and methoxo ligands and the N and O atoms of two bis-chelating quinolin-8-olate ligands, forming a distorted octahedral environment. In the crystal structure, weak intermolecular C-H···O hydrogen bonds connect molecules into centrosymmetric dimers which are, in turn, linked by weak C-H $\cdots \pi$ interactions into chains along the b axis.

Related literature

For the properties of vanadium compounds, see: Crans et al. (2004); Diego et al. (2003); Thompson & Orvig (2006). For the structures of oxidovandium complexes see: Hoshina et al. (1998); Otieno et al. (1996).

Experimental

Crystal data $[V(C_9H_6NO)_2(CH_3O)O]$ $M_r = 386.27$ Monoclinic, $P2_1/c$ a = 14.0405 (16) Åb = 8.0019 (1) Å

```
c = 15.5920 (18) Å
\beta = 110.560 \ (1)^{\circ}
V = 1640.2 (3) Å<sup>3</sup>
Z = 4
Mo Ka radiation
```

	•		
metal	l-organic	compound	S
inc tu	i olganic	compound	.0

 $0.44 \times 0.18 \times 0.17 \text{ mm}$

85.35 (19)

77.40 (19)

 $\mu = 0.63 \text{ mm}^{-1}$ T = 298 K

Data collection

Bruker SMART 1000 CCD area-	7660 measured reflections
detector diffractometer	2893 independent reflections
Absorption correction: multi-scan	1378 reflections with $I > 2\sigma(I)$
(SADABS; Sheldrick, 1996)	$R_{\rm int} = 0.102$
$T_{\min} = 0.768, T_{\max} = 0.900$	

Refinement

ł v

S 2

$R[F^2 > 2\sigma(F^2)] = 0.072$	235 parameters
$vR(F^2) = 0.230$	H-atom parameters constrained
S = 1.00	$\Delta \rho_{\rm max} = 0.81 \text{ e } \text{\AA}^{-3}$
893 reflections	$\Delta \rho_{\rm min} = -0.69 \ {\rm e} \ {\rm \AA}^{-3}$

Table 1 Selected bond angles (°)

O3-V1-N1

O3-V1-O2	101.9 (2)	O2-V1-N1	85.35 (1
O3-V1-O1	91.4 (2)	O1-V1-N1	77.40 (1
O2-V1-O1	156.3 (2)	O4-V1-N2	170.1 (2)

164.3(2)

Table 2 Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdots A$
C9−H9···O4 ⁱ	0.93	2.54	3.355 (8)	146
C19−H19 <i>B</i> ···Cg ⁱⁱ	0.96	2.84	3.520 (9)	128

Symmetry codes: (i) -x + 1, -y + 1, -z + 1; (ii) x, y + 1, z. Cg is the centroid of the N2/ C10-C14 ring.

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1996); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

The authors thank the Natural Science Foundation of Shandong Province (No. Y2004B02) for a research grant.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LH2870).

References

- Crans, D. C., Smee, J. J., Gaidamauskas, E. & Yang, L. (2004). Chem. Rev. 104, 849-902.
- Diego, D. R., Agustin, G., Ramon, V., Carlo, M., Andrea, I. & Dante, M. (2003). Dalton Trans. pp. 1813-1820.
- Hoshina, G., Tsuchimoto, M., Ohba, S., Nakajima, K., Uekusa, H., Ohashi, Y., Ishida, H. & Kojima, M. (1998). Inorg. Chem. 37, 142-145.
- Otieno, T., Bond, M. R., Mokry, L. M., Walter, R. B. & Carrano, C. J. (1996). J. Chem. Soc. Chem. Commun. pp. 37-38.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.

Thompson, K. H. & Orvig, C. (2006). Dalton Trans. pp. 761-764.

supporting information

Acta Cryst. (2009). E65, m1075 [doi:10.1107/S1600536809031560]

(Methoxo- κO)oxidobis(quinolin-8-olato- $\kappa^2 N$, O)vanadium(V)

Zhenghua Guo, Lianzhi Li, Chengyuan Wang, Tao Xu and Jinghong Li

S1. Comment

Vanadium is a biologically essential trace element, encountered in metalloenzymes such as haloperoxidases or nitrogenases. Its coordination chemistry has received increasing attention due to the fact that vanadium compounds in various oxidation states have insulin-mimetic properties (Diego *et al.*, 2003; Crans *et al.*, 2004; Thompson & Orvig, 2006). We report here the synthesis and crystal structure of the title complex.

In the molecular structure (Fig.1.), the central V^v atom is six-coordinated by the O atoms of the oxo and methoxo ligands and the N atoms and O atoms of two 8-hydroxyquinolato ligands, forming a distorted octahedral environment (Table 1). The V=O bond distance is 1.602 (4) Å which is typical for oxovandium complexes (Hoshina *et al.*, 1998; Otieno *et al.*, 1996). The mean planes of the chelated rings defined by N1/C5—C6/O1/V1 and N2/C14—C15/O2/V1 form a dihedral angle of 82.02 (18)°.

In the crystal structure, weak intermolecular C—H···O hydrogen bonds connect molecules into centrosymmetric dimers (Fig. 2) which are, in turn, linked by weak C—H··· π interactions into chains along the b axis.

S2. Experimental

8-Hydroxyquinoline (1 mmol, 145.16 mg) was dissolved in hot methanol (10 ml) and added dropwise to a methanol solution (3 ml) of $VOSO_{4.3}H_2O$ (1 mmol, 225.4 mg). The mixture was then stirred at 323 K for 4 h. The solution was held at room temperature for 15 days, whereupon brown needle crystals suitable for X-ray diffraction were obtained.

S3. Refinement

All H atoms were placed in geometrically calculated positions, with C—H = 0.93–0.96 Å, and allowed to ride on their respective parent atoms, with $U_{iso}(H) = 1.2 U_{eq}(C)$ or $1.5 U_{eq}(C_{methyl})$.

Figure 1

The molecular structure of the title compound, showing 30% probability displacement ellipsoids and the atom-numbering scheme.

Figure 2

Part of the crystal structure with hydrogen bonds shown as dashed lines.

(Methoxo- κO)oxidobis(quinolin-8-olato- $\kappa^2 N$, O)vanadium(V)

Crystal data

 $\begin{bmatrix} V(C_9H_6NO)_2(CH_3O)O \end{bmatrix} \\ M_r = 386.27 \\ Monoclinic, P2_1/c \\ Hall symbol: -P 2ybc \\ a = 14.0405 (16) Å \\ b = 8.0019 (1) Å \\ c = 15.5920 (18) Å \\ \beta = 110.560 (1)^\circ \\ V = 1640.2 (3) Å^3 \\ Z = 4 \end{bmatrix}$

Data collection

Bruker SMART 1000 CCD area-detector diffractometer Radiation source: fine-focus sealed tube Graphite monochromator φ and ω scans Absorption correction: multi-scan (*SADABS*; Sheldrick, 1996) $T_{\min} = 0.768, T_{\max} = 0.900$

Refinement

Secondary atom site location: difference Fourier
map
Hydrogen site location: inferred from
neighbouring sites
H-atom parameters constrained
$w = 1/[\sigma^2(F_o^2) + (0.1126P)^2]$
where $P = (F_o^2 + 2F_c^2)/3$
$(\Delta/\sigma)_{\rm max} < 0.001$
$\Delta \rho_{\rm max} = 0.81 \text{ e } \text{\AA}^{-3}$
$\Delta \rho_{\rm min} = -0.69 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

F(000) = 792

 $\theta = 2.7 - 25.3^{\circ}$

 $\mu = 0.63 \text{ mm}^{-1}$ T = 298 K

Needle, brown

 $R_{\rm int} = 0.102$

 $h = -16 \rightarrow 16$

 $l = -18 \rightarrow 18$

 $k = -9 \rightarrow 6$

 $0.44 \times 0.18 \times 0.17 \text{ mm}$

7660 measured reflections 2893 independent reflections

 $\theta_{\text{max}} = 25.0^{\circ}, \ \theta_{\text{min}} = 1.6^{\circ}$

1378 reflections with $I > 2\sigma(I)$

 $D_{\rm x} = 1.564 {\rm Mg} {\rm m}^{-3}$

Mo *Ka* radiation, $\lambda = 0.71073$ Å Cell parameters from 1311 reflections

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
0.26796 (9)	0.67329 (14)	0.24257 (8)	0.0458 (5)	
0.3527 (4)	0.4493 (6)	0.3065 (4)	0.0403 (13)	
0.1379 (4)	0.4855 (6)	0.1896 (4)	0.0446 (14)	
0.2435 (3)	0.6607 (6)	0.3552 (3)	0.0536 (13)	
	x 0.26796 (9) 0.3527 (4) 0.1379 (4) 0.2435 (3)	x y 0.26796 (9) 0.67329 (14) 0.3527 (4) 0.4493 (6) 0.1379 (4) 0.4855 (6) 0.2435 (3) 0.6607 (6)	x y z 0.26796 (9) 0.67329 (14) 0.24257 (8) 0.3527 (4) 0.4493 (6) 0.3065 (4) 0.1379 (4) 0.4855 (6) 0.1896 (4) 0.2435 (3) 0.6607 (6) 0.3552 (3)	xyz U_{iso}^*/U_{eq} 0.26796 (9)0.67329 (14)0.24257 (8)0.0458 (5)0.3527 (4)0.4493 (6)0.3065 (4)0.0403 (13)0.1379 (4)0.4855 (6)0.1896 (4)0.0446 (14)0.2435 (3)0.6607 (6)0.3552 (3)0.0536 (13)

O2	0.2803 (3)	0.5922 (6)	0.1345 (3)	0.0479 (12)
O3	0.1746 (3)	0.8276 (6)	0.2010 (4)	0.0592 (14)
O4	0.3700 (3)	0.7827 (5)	0.2732 (3)	0.0522 (13)
C1	0.4069 (5)	0.3432 (8)	0.2784 (5)	0.0504 (18)
H1	0.4035	0.3502	0.2178	0.060*
C2	0.4686 (5)	0.2221 (9)	0.3334 (6)	0.059 (2)
H2	0.5043	0.1480	0.3100	0.071*
C3	0.4762 (5)	0.2133 (8)	0.4233 (6)	0.058 (2)
H3	0.5189	0.1345	0.4618	0.069*
C4	0.4199 (5)	0.3227 (8)	0.4578 (5)	0.0426 (16)
C5	0.3577 (5)	0.4370 (7)	0.3952 (4)	0.0370 (15)
C6	0.2987 (5)	0.5570 (8)	0.4210 (5)	0.0427 (17)
C7	0.3040 (5)	0.5595 (9)	0.5099 (4)	0.0522 (19)
H7	0.2661	0.6366	0.5292	0.063*
C8	0.3665 (6)	0.4458 (10)	0.5716 (5)	0.060 (2)
H8	0.3695	0.4498	0.6321	0.072*
C9	0.4238 (5)	0.3288 (9)	0.5485 (5)	0.056 (2)
H9	0.4646	0.2549	0.5921	0.067*
C10	0.0644 (5)	0.4382 (8)	0.2193 (6)	0.061 (2)
H10	0.0650	0.4782	0.2755	0.073*
C11	-0.0131 (6)	0.3317 (10)	0.1701 (8)	0.078 (3)
H11	-0.0625	0.3005	0.1940	0.094*
C12	-0.0177 (6)	0.2729 (10)	0.0881 (8)	0.081 (3)
H12	-0.0704	0.2023	0.0550	0.097*
C13	0.0588 (6)	0.3196 (9)	0.0526 (6)	0.061 (2)
C14	0.1326 (5)	0.4281 (8)	0.1072 (5)	0.0467 (18)
C15	0.2132 (5)	0.4850 (8)	0.0794 (5)	0.0440 (17)
C16	0.2162 (6)	0.4307 (9)	-0.0033 (5)	0.058 (2)
H16	0.2679	0.4669	-0.0232	0.070*
C17	0.1425 (8)	0.3222 (11)	-0.0570 (6)	0.078 (3)
H17	0.1458	0.2859	-0.1125	0.094*
C18	0.0657 (7)	0.2675 (9)	-0.0307 (7)	0.076 (3)
H18	0.0172	0.1948	-0.0683	0.092*
C19	0.1912 (6)	1.0013 (10)	0.2138 (7)	0.088 (3)
H19A	0.1692	1.0385	0.2623	0.132*
H19B	0.1534	1.0588	0.1582	0.132*
H19C	0.2624	1.0246	0.2295	0.132*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
V1	0.0373 (7)	0.0496 (8)	0.0487 (8)	0.0070 (6)	0.0128 (6)	0.0060 (6)
N1	0.031 (3)	0.048 (3)	0.045 (4)	0.007 (3)	0.017 (3)	0.002 (3)
N2	0.034 (3)	0.044 (3)	0.057 (4)	0.010 (3)	0.018 (3)	0.014 (3)
01	0.046 (3)	0.060 (3)	0.056 (3)	0.021 (2)	0.020 (3)	0.007 (3)
O2	0.035 (3)	0.058 (3)	0.050 (3)	-0.002(2)	0.015 (2)	0.008 (2)
O3	0.044 (3)	0.060 (3)	0.072 (4)	0.012 (2)	0.018 (3)	0.014 (3)
O4	0.041 (3)	0.050 (3)	0.061 (3)	-0.003 (2)	0.012 (3)	0.004 (2)

supporting information

C1	0.051 (4)	0.051 (4)	0.055 (5)	0.012 (4)	0.027 (4)	-0.001 (4)
C2	0.047 (5)	0.054 (5)	0.086 (7)	0.013 (4)	0.036 (5)	-0.001 (4)
C3	0.042 (4)	0.045 (4)	0.081 (6)	0.009 (3)	0.016 (4)	0.013 (4)
C4	0.033 (4)	0.045 (4)	0.048 (5)	0.001 (3)	0.010 (3)	0.012 (4)
C5	0.027 (3)	0.042 (4)	0.043 (4)	0.000 (3)	0.013 (3)	0.006 (3)
C6	0.028 (4)	0.049 (4)	0.048 (5)	-0.001 (3)	0.009 (3)	-0.002 (4)
C7	0.049 (5)	0.077 (5)	0.034 (4)	0.002 (4)	0.019 (4)	-0.005 (4)
C8	0.059 (5)	0.084 (6)	0.035 (4)	-0.012 (5)	0.014 (4)	0.001 (4)
C9	0.038 (4)	0.068 (5)	0.052 (5)	0.002 (4)	0.006 (4)	0.024 (4)
C10	0.040 (4)	0.055 (5)	0.098 (7)	0.010 (4)	0.037 (5)	0.013 (5)
C11	0.043 (5)	0.059 (6)	0.139 (10)	0.002 (4)	0.039 (6)	0.019 (6)
C12	0.033 (5)	0.050 (5)	0.135 (10)	0.000 (4)	-0.002 (6)	0.018 (6)
C13	0.046 (5)	0.053 (5)	0.064 (6)	0.004 (4)	-0.006 (4)	0.004 (4)
C14	0.039 (4)	0.036 (4)	0.057 (5)	0.009 (3)	0.006 (4)	0.010 (4)
C15	0.032 (4)	0.044 (4)	0.048 (5)	0.009 (3)	0.004 (4)	0.010 (4)
C16	0.056 (5)	0.070 (5)	0.047 (5)	0.018 (4)	0.017 (4)	-0.002 (4)
C17	0.089 (7)	0.069 (6)	0.059 (6)	0.013 (5)	0.004 (6)	-0.018 (5)
C18	0.071 (6)	0.043 (5)	0.077 (7)	0.002 (4)	-0.022 (5)	0.001 (5)
C19	0.061 (6)	0.072 (6)	0.135 (9)	0.015 (5)	0.040 (6)	0.016 (6)
C19	0.061 (6)	0.072 (6)	0.135 (9)	0.015 (5)	0.040 (6)	0.016 (6)

Geometric parameters (Å, °)

V1-04	1.602 (4)	С7—С8	1.390 (9)
V1—O3	1.752 (5)	С7—Н7	0.9300
V1—O2	1.870 (5)	C8—C9	1.363 (9)
V1-01	1.907 (5)	C8—H8	0.9300
V1—N1	2.188 (5)	С9—Н9	0.9300
V1—N2	2.284 (6)	C10—C11	1.383 (11)
N1—C1	1.314 (7)	C10—H10	0.9300
N1—C5	1.364 (7)	C11—C12	1.341 (12)
N2—C10	1.326 (8)	C11—H11	0.9300
N2-C14	1.342 (8)	C12—C13	1.421 (12)
O1—C6	1.335 (7)	C12—H12	0.9300
O2—C15	1.339 (8)	C13—C14	1.390 (10)
O3—C19	1.412 (9)	C13—C18	1.400 (12)
C1—C2	1.380 (9)	C14—C15	1.422 (9)
C1—H1	0.9300	C15—C16	1.375 (9)
C2—C3	1.369 (10)	C16—C17	1.385 (11)
С2—Н2	0.9300	C16—H16	0.9300
C3—C4	1.408 (9)	C17—C18	1.353 (12)
С3—Н3	0.9300	C17—H17	0.9300
С4—С9	1.397 (9)	C18—H18	0.9300
C4—C5	1.397 (8)	C19—H19A	0.9600
C5—C6	1.416 (8)	C19—H19B	0.9600
C6—C7	1.362 (8)	С19—Н19С	0.9600
O4—V1—O3	101.5 (2)	C6—C7—C8	119.4 (7)

O4—V1—O2	95.9 (2)	С6—С7—Н7	120.3
O3—V1—O2	101.9 (2)	С8—С7—Н7	120.3
O4—V1—O1	100.7 (2)	C9—C8—C7	123.7 (7)
O3—V1—O1	91.4 (2)	С9—С8—Н8	118.1
O2—V1—O1	156.3 (2)	С7—С8—Н8	118.1
04—V1—N1	91.5 (2)	C8-C9-C4	118.3 (7)
03—V1—N1	1643(2)	C8—C9—H9	120.8
02—V1—N1	85 35 (19)	C4—C9—H9	120.8
01 - V1 - N1	77 40 (19)	$N_2 - C_{10} - C_{11}$	122.6 (8)
O4 V1 N2	1701(2)	$N_2 - C_{10} - H_{10}$	122.0 (0)
$O_{4} = V_{1} = N_{2}$ $O_{3} = V_{1} = N_{2}$	170.1(2)	$C_{11} C_{10} H_{10}$	118.7
$03 - \sqrt{1 - N^2}$	76.2(2)	$C_{12} = C_{11} = C_{10}$	120.8 (8)
$02 - v_1 - N_2$	70.2(2)	C12 - C11 - C10	120.8 (8)
VI = VI = N2	85.3 (2)		119.6
NI - VI - N2	82.15 (19)		119.6
CI—NI—C5	117.5 (6)	C11—C12—C13	119.2 (8)
C1-N1-V1	131.5 (5)	C11—C12—H12	120.4
C5—N1—V1	110.4 (4)	C13—C12—H12	120.4
C10—N2—C14	116.6 (6)	C14—C13—C18	118.4 (8)
C10—N2—V1	133.1 (5)	C14—C13—C12	115.4 (8)
C14—N2—V1	109.9 (4)	C18—C13—C12	126.2 (9)
C6—O1—V1	119.8 (4)	N2—C14—C13	125.4 (7)
C15—O2—V1	122.2 (4)	N2—C14—C15	113.6 (6)
C19—O3—V1	125.2 (5)	C13—C14—C15	121.0 (8)
N1—C1—C2	123.9 (7)	O2—C15—C16	123.9 (6)
N1—C1—H1	118.1	O2—C15—C14	117.8 (6)
C2—C1—H1	118.1	C16—C15—C14	118.3 (7)
C3—C2—C1	118.6 (6)	C15—C16—C17	120.1 (8)
C3—C2—H2	120.7	C15—C16—H16	119.9
C1—C2—H2	120.7	С17—С16—Н16	119.9
$C_{2}-C_{3}-C_{4}$	120 5 (7)	C18 - C17 - C16	1217(8)
C2—C3—H3	119.7	C18 - C17 - H17	119.1
C4 - C3 - H3	119.7	C_{16} C_{17} H_{17}	119.1
$C_{0} - C_{4} - C_{5}$	118.5 (6)	C17 - C18 - C13	120.4 (8)
C_{2} C_{4} C_{3}	125 5 (7)	C_{17} C_{18} H_{18}	110.8
$C_{2} = C_{4} = C_{3}$	125.5(7)	$C_{1,2}^{1,2} = C_{1,2}^{1,2} = H_{1,2}^{1,2}$	119.0
$C_{3} - C_{4} - C_{3}$	113.9 (0)	C_{13} C_{10} H_{10A}	119.0
NI-C5-C4	123.0 (0)	$O_2 = C_{10} = H_{10} D_1$	109.5
NI = CS = C6	114.3 (6)		109.5
C4—C5—C6	122.0 (6)	HI9A—CI9—HI9B	109.5
01	125.6 (6)	03—C19—H19C	109.5
01	116.3 (6)	Н19А—С19—Н19С	109.5
C7—C6—C5	118.1 (6)	H19B—C19—H19C	109.5
04—V1—N1—C1	-80.2 (6)	C9—C4—C5—N1	175.8 (6)
O3—V1—N1—C1	133.7 (9)	C3—C4—C5—N1	-2.3 (9)
O2—V1—N1—C1	15.5 (6)	C9—C4—C5—C6	-0.4 (9)
01—V1—N1—C1	179.1 (6)	C3—C4—C5—C6	-178.5 (6)
N2—V1—N1—C1	92.2 (6)	V1-01-C6-C7	165.8 (5)
04—V1—N1—C5	90.4 (4)	V1-01-C6-C5	-12.9(7)
	(-)		(')

O3—V1—N1—C5	-55.8 (10)	N1-C5-C6-O1	2.5 (8)
O2—V1—N1—C5	-173.9 (4)	C4C5C6O1	179.1 (5)
O1—V1—N1—C5	-10.3 (4)	N1C5C7	-176.3 (6)
N2—V1—N1—C5	-97.2 (4)	C4—C5—C6—C7	0.3 (9)
O3—V1—N2—C10	-74.5 (6)	O1—C6—C7—C8	-178.6 (6)
O2-V1-N2-C10	-177.7 (6)	C5—C6—C7—C8	0.1 (10)
O1-V1-N2-C10	17.3 (6)	C6—C7—C8—C9	-0.3 (11)
N1-V1-N2-C10	95.2 (6)	C7—C8—C9—C4	0.2 (11)
O3—V1—N2—C14	97.8 (4)	C5—C4—C9—C8	0.2 (10)
O2-V1-N2-C14	-5.4 (4)	C3—C4—C9—C8	178.1 (6)
O1-V1-N2-C14	-170.4 (4)	C14—N2—C10—C11	1.6 (10)
N1-V1-N2-C14	-92.5 (4)	V1-N2-C10-C11	173.5 (5)
O4—V1—O1—C6	-76.6 (5)	N2-C10-C11-C12	-1.0 (12)
O3—V1—O1—C6	-178.6 (5)	C10-C11-C12-C13	0.8 (12)
O2—V1—O1—C6	56.9 (7)	C11—C12—C13—C14	-1.3 (11)
N1-V1-01-C6	12.6 (4)	C11—C12—C13—C18	179.0 (8)
N2-V1-O1-C6	95.6 (5)	C10-N2-C14-C13	-2.3 (9)
O4—V1—O2—C15	178.2 (5)	V1—N2—C14—C13	-176.0 (5)
O3—V1—O2—C15	-78.7 (5)	C10—N2—C14—C15	179.5 (5)
O1—V1—O2—C15	44.0 (7)	V1—N2—C14—C15	5.8 (6)
N1-V1-O2-C15	87.2 (5)	C18—C13—C14—N2	-178.1 (6)
N2—V1—O2—C15	4.1 (4)	C12-C13-C14-N2	2.1 (10)
O4—V1—O3—C19	-12.4 (7)	C18—C13—C14—C15	0.0 (10)
O2—V1—O3—C19	-111.0 (6)	C12-C13-C14-C15	-179.8 (6)
O1—V1—O3—C19	88.8 (6)	V1-02-C15-C16	175.9 (5)
N1—V1—O3—C19	132.9 (8)	V1-02-C15-C14	-2.3 (8)
N2-V1-O3-C19	174.0 (6)	N2-C14-C15-O2	-3.1 (8)
C5—N1—C1—C2	-0.5 (10)	C13—C14—C15—O2	178.6 (6)
V1—N1—C1—C2	169.5 (5)	N2-C14-C15-C16	178.6 (6)
N1—C1—C2—C3	-1.6 (11)	C13—C14—C15—C16	0.3 (10)
C1—C2—C3—C4	1.8 (11)	O2-C15-C16-C17	-178.7 (6)
C2—C3—C4—C9	-177.9 (7)	C14—C15—C16—C17	-0.5 (10)
C2—C3—C4—C5	0.0 (9)	C15—C16—C17—C18	0.4 (12)
C1—N1—C5—C4	2.5 (9)	C16—C17—C18—C13	-0.1 (13)
V1—N1—C5—C4	-169.6 (5)	C14—C13—C18—C17	-0.1 (11)
C1—N1—C5—C6	179.0 (6)	C12—C13—C18—C17	179.6 (8)
V1—N1—C5—C6	6.9 (6)		

Hydrogen-bond geometry (Å, °)

<i>D</i> —H··· <i>A</i>	D—H	H···A	D····A	<i>D</i> —H··· <i>A</i>
C9—H9…O4 ⁱ	0.93	2.54	3.355 (8)	146
C19—H19 <i>B</i> ··· <i>Cg</i> ⁱⁱ	0.96	2.84	3.520 (9)	128

Symmetry codes: (i) -*x*+1, -*y*+1, -*z*+1; (ii) *x*, *y*+1, *z*.