

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

N'-[(3-Methyl-2-thienyl)carbonyl]isonicotinohydrazide

H. S. Naveenkumar,^a Amirin Sadikun,^a‡ Pazilah Ibrahim,^a Jia Hao Goh^b and Hoong-Kun Fun^{b*}§

^aSchool of Pharmaceutical Sciences, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and ^bX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia Correspondence e-mail: hkfun@usm.my

Received 17 August 2009; accepted 19 August 2009

Key indicators: single-crystal X-ray study; T = 100 K; mean σ (C–C) = 0.002 Å; R factor = 0.036; wR factor = 0.097; data-to-parameter ratio = 26.4.

In the title compound, $C_{12}H_{11}N_3O_2S$, the pyridine ring is inclined to the thiophene ring, forming a dihedral angle of $34.96(7)^{\circ}$. The mean plane through the hydrazide unit forms dihedral angles of 21.57 (8) and 53.08 (8) $^{\circ}$, respectively, with the pyridine and thiophene rings. The two O atoms are twisted away from each other, as indicated by the C-N-N-C torsion angle of $-81.27 (15)^{\circ}$. In the crystal structure, molecules are linked into an extended three-dimensional network by intermolecular N-H···N, N-H···O and C- $H \cdots O$ hydrogen bonds. The crystal structure also features a short S···O [3.2686 (10) Å] interaction and a weak intermolecular C-H··· π interaction.

Related literature

For general background to and application of isoniazid derivatives, see: Janin (2007); Maccari et al. (2005); Slayden et al. (2000). For the preparation of the title compound, see: Besra et al. (1993). For bond-length data, see: Allen et al. (1987). For a closely related structure, see: Naveenkumar et al. (2009). For the stability of the temperature controller used for the data collection, see: Cosier & Glazer (1986).

V = 1198.65 (3) Å³

Mo $K\alpha$ radiation $\mu = 0.27 \text{ mm}^{-1}$

 $0.58 \times 0.20 \times 0.15~\text{mm}$

17333 measured reflections

4355 independent reflections

4078 reflections with $I > 2\sigma(I)$

Z = 4

T = 100 K

 $R_{\rm int} = 0.025$

Experimental

Crystal data

$C_{12}H_{11}N_3O_2S$	
$M_r = 261.30$	
Orthorhombic, $P2_12_12_1$	
i = 8.9206 (1) Å	
o = 10.7552 (2) Å	
c = 12.4934 (2) Å	

Data collection

Bruker SMART APEXII CCD area-detector diffractometer Absorption correction: multi-scan (SADABS; Bruker, 2005) $T_{\min} = 0.861, T_{\max} = 0.961$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.036$	$\Delta \rho_{\rm max} = 0.79 \text{ e} \text{ Å}^{-3}$
$wR(F^2) = 0.097$	$\Delta \rho_{\rm min} = -0.43 \text{ e } \text{\AA}^{-3}$
S = 1.05	Absolute structure: Flack (1983),
4355 reflections	1856 Friedel pairs
165 parameters	Flack parameter: -0.04 (6)
H-atom parameters constrained	

Table 1 Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	$D-\mathrm{H}$	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$N2-H1N2\cdots N1^{i}$	0.86	2.14	2.9068 (17)	149
$N3-H1N3\cdots O2^{ii}$	0.86	1.99	2.8034 (15)	158
$C4-H4A\cdots O1^{iii}$	0.93	2.58	3.2047 (17)	125
$C10-H10A\cdots O2^{iv}$	0.93	2.51	3.3928 (19)	159
$C11-H11A\cdots Cg1^{v}$	0.93	2.80	3.3760 (17)	121

Symmetry codes: (i) $-x, y + \frac{1}{2}, -z - \frac{1}{2}$; (ii) $x + \frac{1}{2}, -y + \frac{3}{2}, -z$; (iii) $-x + \frac{1}{2}, -y + 1, z - \frac{1}{2}$; (iv) $-x, y + \frac{1}{2}, -z + \frac{1}{2}$; (v) $-x, y + \frac{3}{2}, -z + \frac{1}{2}$. *Cg*1 is centroid of the C1/C2/N1/C3-C5 ring.

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009).

This research was supported by Universiti Sains Malaysia (USM) under the University Research Grant (No. 1001/ PFARMASI/815005). HKF and JHG thank USM for the Research University Golden Goose Grant (No. 1001/PFIZIK/ 811012). HSNK and JHG thank USM for the award of a USM Fellowship.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: IS2451).

References

- Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.
- Besra, G. S., Minnikin, D. E., Wheeler, P. R. & Ratledge, C. (1993). Chem. Phys. Lipids, 66, 23-34.
- Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.

Flack, H. D. (1983). Acta Cryst. A39, 876-881.

[‡] Additional correspondence author, e-mail: amirin@usm.my. § Thomson Reuters ResearcherID: A-3561-2009.

Janin, Y. L. (2007). Bioorg. Med. Chem. 15, 2479-2513.

Maccari, R., Ottanà, R. & Vigorita, M. G. (2005). *Bioorg. Med. Chem. Lett.* 15, 2509–2513.

Naveenkumar, H. S., Sadikun, A., Ibrahim, P., Yeap, C. S. & Fun, H.-K. (2009). *Acta Cryst.* E65, 01912. Sheldrick, G. M. (2008). *Acta Cryst.* A64, 112–122. Slayden, R. A. & Barry, C. E. (2000). *Microbes Infect.* 2, 659–669. Spek, A. L. (2009). *Acta Cryst.* D65, 148–155.

supporting information

Acta Cryst. (2009). E65, o2235-o2236 [doi:10.1107/S1600536809033030]

N'-[(3-Methyl-2-thienyl)carbonyl]isonicotinohydrazide

H. S. Naveenkumar, Amirin Sadikun, Pazilah Ibrahim, Jia Hao Goh and Hoong-Kun Fun

S1. Comment

In the search of new compounds, isoniazid derivatives have been found to possess potential tuberculostatic activity (Janin, 2007; Maccari *et al.*, 2005; Slayden *et al.*, 2000). As a part of a current work on synthesis of such derivatives, in this paper we present the crystal structure of the title compound, (I) which was synthesized in our lab.

In (I), the pyridine ring (C1/C2/N1/C3-C5) is inclined to the thiophene ring (C8-C11/S1), forming a dihedral angle of $34.96(7)^{\circ}$ (Fig. 1). The mean plane through the hydrazide unit (C7/N2/N3/O2) forms dihedral angles of 21.57 (8) and $53.08(8)^{\circ}$, respectively, with the pyridine and thiophene rings. The O1 and O2 atoms are twisted away from each other as indicated by torsion angle C6–N2–N3–C7 [-81.27 (15)°]. The bond lengths (Allen *et al.*, 1987) and angles are comparable to a closely related structure (Naveenkumar *et al.*, 2009).

In the crystal structure (Fig. 2), the molecules are linked into an extended three-dimensional network by intermolecular C4—H4A···O1, C10—H10A···O2, N2—H1N2···N1 and N3—H1N3···O2 hydrogen bonds (Table 1). The crystal structure is further stabilized by short S1···O2 interactions of 3.2686 (10) Å [symmetry code: 1/2+x, 3/2-y, -z] and by weak intermolecular C11—H11A···Cg1 interactions (Table 1; Cg1 is the centroid of the pyridine ring).

S2. Experimental

Compound (I) was prepared following the procedure by literature (Besra *et al.*, 1993). Dry dichloromethane (30 ml) and 4-dimethylaminopyridine (4-DMAP) (1.2 eq) was added to 3-methylthiophene-2-carbonyl chloride followed by isoniazid (1.1 eq). The reaction mixture was kept in an ice bath for 1 h and then left stirring under nitrogen atmosphere overnight at room temperature. Dichloromethane (20 ml) was added to the reaction mixture, which was then washed with water, and the organic layer dried over anhydrous sodium sulphate. The solvent was removed under reduced pressure to afford the crude product which was purified by column chromatography and recrystallized from ethanol to afford colorless single crystals.

S3. Refinement

All the H atoms were placed in calculated positions, with N—H = 0.86 Å, $U_{iso}(H) = 1.2 U_{eq}(N)$, C—H = 0.93 Å, $U_{iso}(H) = 1.2 U_{eq}(C)$ for aromatic, and C—H = 0.96 Å, $U_{iso}(H) = 1.5 U_{eq}(C)$ for methyl group. These H atoms were refined as riding on their parent atoms. A rotating group model was used for the methyl group.

Figure 1

The molecular structure of the (I), showing 50% probability displacement ellipsoids and the atom-numbering scheme. Hydrogen atoms are shown as spheres of arbitrary radius.

Figure 2

Three dimensional extended network, viewed along the *b* axis. Intermolecular interactions are shown as dashed lines.

N'-[(3-Methyl-2-thienyl)carbonyl]isonicotinohydrazide

Crystal data	
$C_{12}H_{11}N_3O_2S$	V = 1198.65 (3) Å ³
$M_r = 261.30$	Z = 4
Orthorhombic, $P2_12_12_1$	F(000) = 544
Hall symbol: P 2ac 2ab	$D_{\rm x} = 1.448 {\rm ~Mg} {\rm ~m}^{-3}$
a = 8.9206 (1) Å	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
b = 10.7552 (2) Å	Cell parameters from 9634 reflections
c = 12.4934 (2) Å	$\theta = 2.5 - 32.7^{\circ}$

 $\mu = 0.27 \text{ mm}^{-1}$ T = 100 K

Data collection

Bruker SMART APEXII CCD area-detector diffractometer	17333 measured reflections 4355 independent reflections
Radiation source: fine-focus sealed tube	4078 reflections with $I > 2\sigma(I)$
Graphite monochromator	$R_{\rm int} = 0.025$
φ and ω scans	$\theta_{\text{max}} = 32.7^{\circ}, \theta_{\text{min}} = 2.5^{\circ}$
Absorption correction: multi-scan	$h = -13 \rightarrow 13$
(SADABS; Bruker, 2005)	$k = -14 \rightarrow 16$
$T_{\min} = 0.861, \ T_{\max} = 0.961$	$l = -17 \rightarrow 18$
Refinement	
Refinement on F^2	Hydrogen site location: inferred from
Least-squares matrix: full	neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.036$	H-atom parameters constrained
$wR(F^2) = 0.097$	$w = 1/[\sigma^2(F_o^2) + (0.0542P)^2 + 0.3319P]$
S = 1.05	where $P = (F_{o}^{2} + 2F_{c}^{2})/3$
4355 reflections	$(\Delta/\sigma)_{\rm max} < 0.001$
165 parameters	$\Delta \rho_{\rm max} = 0.79 \text{ e } \text{\AA}^{-3}$
0 restraints	$\Delta \rho_{\rm min} = -0.43 \text{ e} \text{ Å}^{-3}$
Primary atom site location: structure-invariant direct methods	Absolute structure: Flack (1983), 1856 Friedel pairs
Secondary atom site location: difference Fourier	Absolute structure parameter: -0.04 (6)

Block, colourless

 $0.58 \times 0.20 \times 0.15 \text{ mm}$

map

Special details

Experimental. The crystal was placed in the cold stream of an Oxford Cyrosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1)K.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F² against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F², conventional R-factors R are based on F, with F set to zero for negative F². The threshold expression of $F^2 > 2sigma(F^2)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F² are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atom	ic coordinates	and isotropic	c or equivale	nt isotropic dis	splacement	parameters ($(Å^2)$)
			4	1	1		· ·	

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
S1	0.26735 (4)	0.98879 (3)	0.04525 (3)	0.01858 (8)	
01	0.29108 (13)	0.48575 (10)	0.02488 (8)	0.0221 (2)	
O2	0.01066 (11)	0.69442 (9)	0.07046 (8)	0.01664 (19)	
N1	0.03034 (14)	0.21406 (11)	-0.25010 (10)	0.0159 (2)	
N2	0.18343 (13)	0.62066 (10)	-0.09379 (9)	0.0137 (2)	
H1N2	0.1404	0.6288	-0.1550	0.016*	
N3	0.21647 (13)	0.72506 (10)	-0.03274 (9)	0.01367 (19)	
H1N3	0.2954	0.7684	-0.0458	0.016*	
C1	0.11893 (17)	0.29049 (12)	-0.08076 (11)	0.0165 (2)	
H1A	0.1343	0.2764	-0.0081	0.020*	

C2	0.05396 (17)	0.19936 (13)	-0.14457 (11)	0.0174 (2)	
H2A	0.0255	0.1248	-0.1128	0.021*	
C3	0.07732 (15)	0.32069 (12)	-0.29452 (11)	0.0153 (2)	
H3A	0.0653	0.3306	-0.3680	0.018*	
C4	0.14288 (15)	0.41719 (12)	-0.23723 (11)	0.0143 (2)	
H4A	0.1741	0.4894	-0.2716	0.017*	
C5	0.16079 (15)	0.40323 (12)	-0.12698 (10)	0.0136 (2)	
C6	0.21924 (14)	0.50531 (11)	-0.05670 (10)	0.0138 (2)	
C7	0.12212 (14)	0.75769 (11)	0.04814 (11)	0.0125 (2)	
C8	0.15680 (15)	0.87488 (12)	0.10399 (11)	0.0142 (2)	
C9	0.10620 (16)	0.91137 (14)	0.20356 (11)	0.0177 (2)	
C10	0.15852 (18)	1.03210 (14)	0.23047 (13)	0.0209 (3)	
H10A	0.1356	1.0716	0.2947	0.025*	
C11	0.24567 (18)	1.08445 (13)	0.15288 (12)	0.0214 (3)	
H11A	0.2883	1.1631	0.1581	0.026*	
C12	0.0117 (2)	0.83596 (16)	0.27738 (13)	0.0259 (3)	
H12A	0.0530	0.7538	0.2835	0.039*	
H12B	-0.0884	0.8309	0.2496	0.039*	
H12C	0.0097	0.8745	0.3466	0.039*	

Atomic displacement parameters $(Å^2)$

	U^{11}	U ²²	U ³³	U^{12}	U ¹³	U ²³
S1	0.02092 (15)	0.01399 (13)	0.02083 (16)	-0.00198 (11)	0.00366 (12)	-0.00283 (12)
01	0.0302 (5)	0.0186 (4)	0.0176 (5)	0.0033 (4)	-0.0104 (4)	-0.0021 (4)
O2	0.0134 (4)	0.0166 (4)	0.0200 (5)	-0.0026 (3)	0.0000 (3)	0.0000 (4)
N1	0.0187 (5)	0.0131 (5)	0.0160 (5)	-0.0004 (4)	-0.0017 (4)	-0.0018 (4)
N2	0.0177 (5)	0.0113 (4)	0.0120 (5)	-0.0003 (4)	-0.0028 (4)	-0.0031 (4)
N3	0.0150 (5)	0.0122 (4)	0.0138 (5)	-0.0024 (4)	0.0005 (4)	-0.0046 (4)
C1	0.0229 (6)	0.0140 (6)	0.0125 (5)	0.0003 (5)	-0.0015 (5)	0.0011 (4)
C2	0.0226 (6)	0.0123 (5)	0.0173 (6)	-0.0006 (5)	-0.0006 (5)	0.0004 (5)
C3	0.0182 (6)	0.0163 (6)	0.0114 (5)	-0.0001 (4)	0.0005 (4)	-0.0028 (4)
C4	0.0172 (6)	0.0127 (5)	0.0131 (5)	-0.0014 (4)	-0.0001 (4)	-0.0011 (4)
C5	0.0158 (5)	0.0123 (5)	0.0128 (5)	0.0014 (4)	-0.0015 (4)	-0.0018 (4)
C6	0.0159 (5)	0.0133 (5)	0.0122 (5)	0.0008 (4)	-0.0012 (4)	-0.0018 (4)
C7	0.0129 (5)	0.0123 (5)	0.0124 (5)	0.0012 (4)	-0.0020 (4)	0.0002 (4)
C8	0.0139 (5)	0.0128 (5)	0.0160 (6)	0.0008 (4)	-0.0015 (4)	-0.0016 (4)
C9	0.0180 (6)	0.0188 (6)	0.0165 (6)	0.0005 (5)	-0.0001 (5)	-0.0021 (5)
C10	0.0230 (6)	0.0194 (6)	0.0205 (6)	0.0026 (5)	-0.0022 (5)	-0.0084 (5)
C11	0.0246 (7)	0.0152 (5)	0.0245 (7)	-0.0008 (5)	-0.0006 (5)	-0.0079 (5)
C12	0.0299 (8)	0.0246 (7)	0.0234 (7)	-0.0028 (6)	0.0019 (6)	-0.0040 (6)

Geometric parameters (Å, °)

S1—C11	1.7041 (14)	C3—C4	1.3898 (18)
S1—C8	1.7355 (14)	С3—НЗА	0.9300
O1—C6	1.2222 (15)	C4—C5	1.3948 (19)
O2—C7	1.2367 (15)	C4—H4A	0.9300

N1 C2	1 2412 (19)	C5 C6	1 4004 (18)
	1.3412(10)	C3—C0	1.4994 (16)
NI	1.3445 (18)	C/-C8	1.4/36(1/)
N2—C6	1.3623 (16)		1.3803 (19)
N2—N3	1.3890 (14)	C9—C10	1.420 (2)
N2—H1N2	0.8600	C9—C12	1.489 (2)
N3—C7	1.3611 (17)	C10-C11	1.364 (2)
N3—H1N3	0.8600	C10—H10A	0.9300
C1—C2	1.3899 (19)	C11—H11A	0.9300
C1—C5	1.3940 (18)	C12—H12A	0.9600
C1—H1A	0.9300	C12—H12B	0.9600
C2—H2A	0.9300	C12—H12C	0.9600
C11—S1—C8	91.61 (7)	O1—C6—C5	123.00 (12)
C3—N1—C2	117.21 (12)	N2—C6—C5	112.71 (11)
C6—N2—N3	119 98 (11)	02—C7—N3	121 52 (11)
C6-N2-H1N2	120.0	02 - 07 - 08	121.02(11) 122(19(12))
N3 N2 H1N2	120.0	N3 C7 C8	122.19(12) 116.25(11)
113 - 112 - 111112	120.0 110.00(11)	$\begin{array}{c} 113 - 0.7 - 0.8 \\ 123 - 0.7 \\ 123 - 0.8 \\ 123 -$	110.25(11) 126.06(13)
C7 N2 U1N2	119.00 (11)	$C_{2} = C_{3} = C_{1}$	120.90(13)
	120.5	$C_{2} = C_{3} = C_{1}$	111.48 (10)
$N_2 - N_3 - HIN_3$	120.5	C/-C8-S1	121.53 (10)
	119.18 (12)		111.46 (13)
C2—C1—HIA	120.4	C8—C9—C12	126.03 (14)
C5—C1—H1A	120.4	C10—C9—C12	122.50 (13)
N1—C2—C1	123.01 (13)	C11—C10—C9	113.35 (13)
N1—C2—H2A	118.5	C11—C10—H10A	123.3
C1—C2—H2A	118.5	C9—C10—H10A	123.3
N1—C3—C4	123.85 (12)	C10-C11-S1	112.10 (11)
N1—C3—H3A	118.1	C10-C11-H11A	124.0
С4—С3—НЗА	118.1	S1—C11—H11A	124.0
C3—C4—C5	118.45 (12)	C9—C12—H12A	109.5
C3—C4—H4A	120.8	C9—C12—H12B	109.5
C5—C4—H4A	120.8	H12A—C12—H12B	109.5
C1—C5—C4	118.16 (12)	C9—C12—H12C	109.5
C1—C5—C6	119.18 (11)	H12A—C12—H12C	109.5
C4-C5-C6	122.64 (12)	H12B-C12-H12C	109.5
01-C6-N2	122.01(12) 124.29(12)		109.0
01 00 112	124.29 (12)		
C6 N2 N3 C7	-81.27(15)	N2 N3 C7 C8	-175 15 (11)
$C_0 = N_2 = N_3 = C_7$	31.27(13)	$N_2 = N_3 = C_7 = C_8$	1/3.13(11)
C_{5} C_{1} C_{2} N_{1}	2.5(2)	02-07-08-09	21.3(2)
$C_2 = C_1 = C_2 = C_1$	0.0(2)	$N_{3} - C_{7} - C_{8} - C_{9}$	-101.20(13)
C2—N1—C3—C4	-2.5(2)	02-07-08-51	-156.60 (11)
N1 - C3 - C4 - C5	-0.2(2)	N3-C/-C8-SI	20.83 (16)
C2—C1—C5—C4	-3.4 (2)	C11—S1—C8—C9	-0.12 (11)
C2—C1—C5—C6	175.06 (12)	C11—S1—C8—C7	178.09 (12)
C3—C4—C5—C1	3.2 (2)	C7—C8—C9—C10	-178.07 (13)
C3—C4—C5—C6	-175.20 (12)	S1—C8—C9—C10	0.02 (15)
N3—N2—C6—O1	-6.2 (2)	C7—C8—C9—C12	3.3 (2)
N3—N2—C6—C5	173.77 (11)	S1—C8—C9—C12	-178.58 (13)

C1—C5—C6—O1	32.1 (2)	C8—C9—C10—C11	0.12 (19)
C4—C5—C6—O1	-149.49 (14)	C12-C9-C10-C11	178.78 (14)
C1C5	-147.86 (13)	C9—C10—C11—S1	-0.21 (17)
C4—C5—C6—N2	30.54 (18)	C8—S1—C11—C10	0.19 (12)
N2—N3—C7—O2	2.30 (18)		

Hydrogen-bond geometry (Å, °)

<i>D</i> —H··· <i>A</i>	<i>D</i> —Н	H···A	D····A	<i>D</i> —H··· <i>A</i>
N2—H1N2…N1 ⁱ	0.86	2.14	2.9068 (17)	149
N3—H1 <i>N</i> 3····O2 ⁱⁱ	0.86	1.99	2.8034 (15)	158
C4—H4A···O1 ⁱⁱⁱ	0.93	2.58	3.2047 (17)	125
C10—H10A····O2 ^{iv}	0.93	2.51	3.3928 (19)	159
C11—H11 A ···C g 1 ^v	0.93	2.80	3.3760 (17)	121

Symmetry codes: (i) -x, y+1/2, -z-1/2; (ii) x+1/2, -y+3/2, -z; (iii) -x+1/2, -y+1, z-1/2; (iv) -x, y+1/2, -z+1/2; (v) -x, y+3/2, -z+1/2.