organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

N,N'-Bis(2-thienylmethylene)benzene-1,4-diamine

Nai-Wei Dong, Dong-Xue Jia, Chun-Li Gan, Dong-Mei Zhou and Feng-Zhi Liu*

School of Pharmaceutical Science, Harbin Medical University, Harbin 150086, People's Republic of China Correspondence e-mail: liufengzhi@live.cn

Received 10 August 2009; accepted 12 August 2009

Key indicators: single-crystal X-ray study; T = 294 K; mean σ (C–C) = 0.005 Å; R factor = 0.065; wR factor = 0.196; data-to-parameter ratio = 13.8.

The Schiff base, $C_{16}H_{12}N_2S_2$, has been synthesized by refluxing an ethanolic solution of thiophene-2-carbaldehyde and benzene-1,4-diamine. The center of the benzene ring is located on a crystallographic center of inversion. The dihedral angle between the benzene and thiophene rings is 63.6 (1)°.

Related literature

For general background to Schiff base complexes, see: Andersen *et al.* (2005); Koizumi *et al.* (2005); Boskovic *et al.* (2003); Oshio *et al.* (2005). For the synthesis, see: Kannappan *et al.* (2005).

Experimental

Crystal data C₁₆H₁₂N₂S₂

 $M_r = 296.40$

```
Monoclinic, P2_1/n

a = 6.1882 (7) Å

b = 7.2371 (9) Å

c = 16.375 (2) Å

\beta = 95.860 (2)°

V = 729.5 (2) Å<sup>3</sup>
```

Data collection

Bruker APEXII CCD area-detector	3380 measured reflections
diffractometer	1252 independent reflections
Absorption correction: multi-scan	1021 reflections with $I > 2\sigma(I)$
(SADABS; Sheldrick, 2004)	$R_{\rm int} = 0.019$
$T_{\min} = 0.949, \ T_{\max} = 0.969$	

Refinement

$$\begin{split} R[F^2 > 2\sigma(F^2)] &= 0.065 & 91 \text{ parameters} \\ wR(F^2) &= 0.196 & H\text{-atom parameters not refined} \\ S &= 1.00 & \Delta\rho_{\text{max}} &= 1.07 \text{ e} \text{ Å}^{-3} \\ 1252 \text{ reflections} & \Delta\rho_{\text{min}} &= -0.21 \text{ e} \text{ Å}^{-3} \end{split}$$

Z = 2

Mo $K\alpha$ radiation

 $0.15 \times 0.11 \times 0.09 \text{ mm}$

 $\mu = 0.36 \text{ mm}^{-1}$

T = 294 K

Data collection: *APEX2* (Bruker, 2002); cell refinement: *SAINT-Plus* (Bruker, 2003); data reduction: *SAINT-Plus*; program(s) used to solve structure: *SHELXTL* (Sheldrick, 2008); program(s) used to refine structure: *SHELXTL*; molecular graphics: *SHELXTL*; software used to prepare material for publication: *SHELXTL*.

The authors acknowledge financial support by the Science Foundation of Harbin Medical University.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: IM2135).

References

- Andersen, L. H., Nielsen, I. B., Kristensen, M. B., El Ghazaly, M. O. A., Haacke, S., Nielsen, M. B. & Petersen, M. Å. (2005). J. Am. Chem. Soc. 127, 12347–12350.
- Boskovic, C., Bircher, R., Tregenna-Piggott, P. L. W., Güdel, H. U., Paulsen, C., Wernsdorfer, W., Barra, A. L., Khatsko, E., Neels, A. & Stoeckli-Evans, H. (2003). J. Am. Chem. Soc. 125, 14046–14058.
- Bruker (2002). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.
- Bruker (2003). SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.
- Kannappan, R., Tanase, S., Mutikainen, I., Turpeinen, U. & Reedijk, J. (2005). Inorg. Chim. Acta, 358, 383–388.
- Koizumi, S., Nihei, M., Nakano, M. & Oshio, H. (2005). *Inorg. Chem.* 44, 1208– 1210.
- Oshio, H., Nihei, M., Koizumi, S., Shiga, T., Nojiri, H., Nakano, M., Shirakawa, N. & Akatsu, M. (2005). J. Am. Chem. Soc. 127, 4568–4569.
- Sheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

supporting information

Acta Cryst. (2009). E65, o2190 [doi:10.1107/S1600536809031869]

N,N'-Bis(2-thienylmethylene)benzene-1,4-diamine

Nai-Wei Dong, Dong-Xue Jia, Chun-Li Gan, Dong-Mei Zhou and Feng-Zhi Liu

S1. Comment

During the past decades, Schiff bases have been intensively investigated not only because of their strong coordination capability but also due to diverse biological activities, such as e.g. antibacterial and antitumor activities (Andersen *et al.*, 2005; Koizumi *et al.*, 2005; Boskovic *et al.*, 2003; Oshio *et al.*, 2005). Here we report the structure of N,N'-bis-thio-phene-2-yl-methylene-1,4-benzenediamine, which could be used as another Schiff base ligand in combination with metal ions.

The molecular structure of the title compound is depicted in Figure 1. The center of the phenyl ring represents a crystallographic center of inversion. The dihedral angle between the phenyl and thiophene rings is $63.6 (1)^{\circ}$. As it is expected the thiophene rings also are perfectly planar with a deviation of the S atom of 0.001 Å.

S2. Experimental

N,N'-Bis-thiophene-2-yl-methylene-1,4-benzenediamine was prepared according to the method reported in the literature (Kannappan *et al.*, 2005). Thiophene-2-carboxaldehyde (0.02 mol) was added to a stirred ethanolic solution of *p*-phenylenediamine (0.01 mol). The reaction mixture was stirred about 3 h and then the mixture was allowed to stand at room temperature for about two days. Yellow crystals suitable for X-ray diffraction analysis were collected with a yield of 60%. Anal. Calc. for $C_{16}H_{12}N_2S_2$: C 64.78, H 4.05, N 9.45%; Found: C 64.59, H 4.01, N 9.25%.

S3. Refinement

All H atoms were placed in calculated positions with C—H = 0.93Å and refined as riding with $U_{iso}(H) = 1.2U_{eq}(carrier)$.

Figure 1

View of the molecular structure of the title compound, showing the atomic numbering scheme and 50% probability displacement ellipsoids. Atoms labeled with A at the symmetry positions (-x + 1, -y + 1, -z + 1).

N,N'-Bis(2-thienylmethylene)benzene-1,4-diamine

Crystal data

C₁₆H₁₂N₂S₂ $M_r = 296.40$ Monoclinic, $P2_1/n$ Hall symbol: -P 2yn a = 6.1882 (7) Å b = 7.2371 (9) Å c = 16.375 (2) Å $\beta = 95.860$ (2)° V = 729.5 (2) Å³ Z = 2

Data collection

Bruker APEXII CCD area-detector	3380 measured reflections
diffractometer	1252 independent reflections
Radiation source: fine-focus sealed tube	1021 reflections with $I > 2\sigma(I)$
Braphite monochromator	$R_{\rm int} = 0.019$
) and ω scans	$\theta_{\rm max} = 25.0^\circ, \ \theta_{\rm min} = 3.1^\circ$
Absorption correction: multi-scan	$h = -7 \rightarrow 7$
(SADABS; Sheldrick, 2004)	$k = -8 \longrightarrow 8$
$T_{\min} = 0.949, \ T_{\max} = 0.969$	$l = -19 \rightarrow 10$
Traphite monochromator and ω scans Absorption correction: multi-scan (<i>SADABS</i> ; Sheldrick, 2004) $T_{min} = 0.949, T_{max} = 0.969$	$R_{int} = 0.019$ $\theta_{max} = 25.0^{\circ}, \ \theta_{min} = 3.1^{\circ}$ $h = -7 \rightarrow 7$ $k = -8 \rightarrow 8$ $l = -19 \rightarrow 10$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.065$	Hydrogen site location: inferred from
$wR(F^2) = 0.196$	neighbouring sites
S = 1.00	H-atom parameters not refined
1252 reflections	$w = 1/[\sigma^2(F_o^2) + (0.141P)^2 + 0.3146P]$
91 parameters	where $P = (F_o^2 + 2F_c^2)/3$
0 restraints	$(\Delta/\sigma)_{\rm max} < 0.001$
Primary atom site location: structure-invariant	$\Delta ho_{ m max} = 1.07 \ m e \ m \AA^{-3}$
direct methods	$\Delta \rho_{\rm min} = -0.21 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

F(000) = 308

 $\theta = 3.1 - 25.0^{\circ}$ $\mu = 0.36 \text{ mm}^{-1}$

Block, yellow

 $0.15 \times 0.11 \times 0.09 \text{ mm}$

T = 294 K

 $D_{\rm x} = 1.349 {\rm Mg} {\rm m}^{-3}$

Mo *K* α radiation, $\lambda = 0.71073$ Å

Cell parameters from 1252 reflections

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
S1	0.15131 (14)	-0.10612 (13)	0.29041 (6)	0.0619 (5)
N1	0.3196 (4)	0.1917 (4)	0.41314 (16)	0.0486 (7)
C1	0.0201 (5)	0.0013 (4)	0.36497 (18)	0.0462 (7)
C2	-0.1804 (5)	-0.0755 (5)	0.3705 (2)	0.0565 (9)

H2	-0.2774	-0.0333	0.4061	0.068*	
C3	-0.2234 (6)	-0.2258 (5)	0.3163 (3)	0.0664 (10)	
H3	-0.3489	-0.2972	0.3136	0.080*	
C4	-0.0594 (6)	-0.2534 (6)	0.2685 (3)	0.0707 (11)	
H4	-0.0624	-0.3437	0.2280	0.085*	
C5	0.1188 (5)	0.1553 (4)	0.41151 (18)	0.0456 (7)	
Н5	0.0321	0.2297	0.4411	0.055*	
C6	0.4043 (5)	0.3492 (4)	0.45720 (17)	0.0422 (7)	
C7	0.3093 (5)	0.5209 (5)	0.4490 (2)	0.0564 (9)	
H7	0.1820	0.5361	0.4142	0.068*	
C8	0.6000 (6)	0.3299 (5)	0.5086 (2)	0.0576 (9)	
H8	0.6681	0.2153	0.5138	0.069*	

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
S1	0.0552 (6)	0.0657 (7)	0.0656 (7)	-0.0030 (4)	0.0105 (4)	-0.0170 (4)
N1	0.0464 (15)	0.0470 (15)	0.0525 (15)	-0.0058 (11)	0.0059 (11)	-0.0114 (12)
C1	0.0453 (16)	0.0484 (17)	0.0436 (15)	0.0007 (12)	-0.0013 (12)	-0.0027 (13)
C2	0.0483 (18)	0.062 (2)	0.059 (2)	-0.0059 (15)	0.0054 (15)	-0.0085 (16)
C3	0.0528 (19)	0.061 (2)	0.083 (3)	-0.0100 (16)	-0.0059 (18)	-0.0154 (19)
C4	0.068 (2)	0.063 (2)	0.079 (2)	-0.0017 (18)	-0.0038 (19)	-0.0248 (19)
C5	0.0500 (17)	0.0447 (16)	0.0424 (16)	0.0006 (13)	0.0052 (13)	-0.0041 (12)
C6	0.0422 (16)	0.0427 (15)	0.0417 (15)	-0.0024 (11)	0.0046 (12)	-0.0051 (12)
C7	0.0480 (17)	0.0531 (19)	0.065 (2)	0.0017 (14)	-0.0066 (15)	-0.0032 (16)
C8	0.055 (2)	0.0484 (18)	0.068 (2)	0.0073 (14)	-0.0004 (16)	-0.0039 (16)

Geometric parameters (Å, °)

S1—C4	1.694 (4)	С3—Н3	0.9300
S1—C1	1.719 (3)	C4—H4	0.9300
N1-C5	1.268 (4)	С5—Н5	0.9300
N1—C6	1.421 (4)	C6—C7	1.375 (4)
C1—C2	1.371 (4)	C6—C8	1.410 (4)
C1—C5	1.449 (4)	C7—C8 ⁱ	1.373 (5)
C2—C3	1.412 (5)	С7—Н7	0.9300
С2—Н2	0.9300	$C8$ — $C7^{i}$	1.373 (5)
C3—C4	1.358 (6)	C8—H8	0.9300
C4—S1—C1	91.48 (17)	S1—C4—H4	123.5
C5—N1—C6	119.1 (3)	N1—C5—C1	122.0 (3)
C2—C1—C5	127.8 (3)	N1—C5—H5	119.0
C2-C1-S1	111.1 (2)	C1—C5—H5	119.0
C5-C1-S1	121.1 (2)	C7—C6—C8	118.8 (3)
C1—C2—C3	112.6 (3)	C7—C6—N1	122.9 (3)
С1—С2—Н2	123.7	C8—C6—N1	118.2 (3)
С3—С2—Н2	123.7	C8 ⁱ —C7—C6	120.8 (3)
C4—C3—C2	111.8 (3)	C8 ⁱ —C7—H7	119.6

supporting information

С4—С3—Н3	124.1	С6—С7—Н7	119.6
С2—С3—Н3	124.1	C7 ⁱ —C8—C6	120.4 (3)
C3—C4—S1	113.0 (3)	C7 ⁱ —C8—H8	119.8
C3—C4—H4	123.5	С6—С8—Н8	119.8

Symmetry code: (i) -x+1, -y+1, -z+1.