organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

(4*S*,5*S*)-2-(3-Methoxyphenyl)-1,3dioxolane-4,5-dicarboxamide

De-Cai Wang,^a* Tao Ge,^a Wen-Yuan Wu,^b Wei Xu^a and Zheng Yang^a

^aState Key Laboratory of Materials-Oriented Chemical Engineering, College of Life Science and Pharmaceutical Engineering, Nanjing University of Technology, Xinmofan Road No. 5 Nanjing, Nanjing 210009, People's Republic of China, and ^bDepartment of Applied Chemistry, College of Science, Nanjing University of Technology, Xinmofan Road No. 5 Nanjing, Nanjing 210009, People's Republic of China

Correspondence e-mail: dcwang@njut.edu.cn

Received 29 June 2009; accepted 19 August 2009

Key indicators: single-crystal X-ray study; T = 294 K; mean σ (C–C) = 0.006 Å; R factor = 0.050; wR factor = 0.132; data-to-parameter ratio = 8.1.

In the title compound, $C_{12}H_{14}N_2O_5$, the five-membered ring adopts an envelope conformation. In the crystal structure, intermolecular N-H···O interactions link the molecules into a three-dimensional network. A weak C-H··· π interaction is also found.

Related literature

For general background, see: Kim *et al.* (1994); Pandey *et al.* (1997). For bond-length data, see: Allen *et al.* (1987).

Experimental

Crystal data $C_{12}H_{14}N_2O_5$ $M_r = 266.25$ Orthorhombic, $P2_12_12_1$

a = 9.2340 (18) Å	1
b = 9.852 (2) Å	
c = 14.266 (3) Å	

 $V = 1297.8 (5) \text{ Å}^3$ Z = 4Mo K\alpha radiation

Data collection

Enraf–Nonius CAD-4
diffractometer
Absorption correction: ψ scan
(North et al., 1968)
$T_{\min} = 0.971, T_{\max} = 0.979$
2599 measured reflections

Refinement

$$\begin{split} R[F^2 > 2\sigma(F^2)] &= 0.050 & 170 \text{ parameters} \\ wR(F^2) &= 0.132 & H\text{-atom parameters constrained} \\ S &= 1.33 & \Delta\rho_{\text{max}} = 0.31 \text{ e } \text{ Å}^{-3} \\ 1378 \text{ reflections} & \Delta\rho_{\text{min}} = -0.40 \text{ e } \text{ Å}^{-3} \end{split}$$

Table 1	
Hydrogen-bond	geometr

Hydrogen-bond geometry (Å, $^{\circ}$).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
N2-H2 B ···O5 ⁱ	0.86	2.33	3.076 (4)	145
$N2-H2A\cdots O4^{i}$	0.86	2.13	2.926 (4)	153
$N1 - H1B \cdot \cdot \cdot O2^{ii}$	0.86	2.31	3.045 (4)	143
$N1 - H1A \cdots O5^{iii}$	0.86	2.20	2.952 (4)	146
$C9-H9A\cdots Cg1^{iv}$	0.98	2.82	3.640 (4)	141

 $\mu = 0.11 \text{ mm}^{-1}$ T = 294 K

 $R_{\rm int} = 0.027$ 3 standard reflections

 $0.30 \times 0.20 \times 0.20$ mm

1378 independent reflections 1157 reflections with $I > 2\sigma(I)$

frequency: 120 min intensity decay: 1%

Symmetry codes: (i) $-x + 1, y + \frac{1}{2}, -z + \frac{1}{2}$; (ii) $x + \frac{1}{2}, -y + \frac{3}{2}, -z$; (iii) $-x + \frac{3}{2}, -y + 1, z - \frac{1}{2}$; (iv) $-x, y + \frac{1}{2}, -z + \frac{3}{2}$; *Cg*1 is the centroid of the C2–C7 ring.

Data collection: *CAD-4 Software* (Enraf–Nonius, 1989); cell refinement: *CAD-4 Software*; data reduction: *XCAD4* (Harms & Wocadlo, 1995); program(s) used to solve structure: *SHELXTL* (Sheldrick, 2008); program(s) used to refine structure: *SHELXTL*; molecular graphics: *SHELXTL*; software used to prepare material for publication: *SHELXTL* and *PLATON* (Spek, 2009).

The authors thank the Center of Testing and Analysis, Nanjing University for support.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HK2731).

References

- Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
- Enraf-Nonius (1989). CAD-4 Software. Enraf-Nonius, Delft, The Netherlands.
- Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany. Kim, D. K., Kim, G., Gam, J. S., Cho, Y. B., Kim, H. T., Tai, J. H., Kim, K. H.,

Hong, W. S. & Park, J. G. (1994). J. Med. Chem. 37, 1471–1485.

North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351– 359.

Pandey, G., Hajra, S., Ghorai, M. K. & Kumar, K. R. (1997). J. Org. Chem. 62, 5966–5973.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Spek, A. L. (2009). Acta Cryst. D65, 148-155.

supporting information

Acta Cryst. (2009). E65, o2230 [doi:10.1107/S1600536809032991]

(4*S*,5*S*)-2-(3-Methoxyphenyl)-1,3-dioxolane-4,5-dicarboxamide

De-Cai Wang, Tao Ge, Wen-Yuan Wu, Wei Xu and Zheng Yang

S1. Comment

Antitumor platinum drug is one kind of the most effective anticancer agents currently available. (2*S*,3*S*)-Diethyl 2,3-*O*-alkyltartrate analogues are the starting materials for the syntheses of platinum complexes with antitumor activity (Kim *et al.*, 1994) and are also important intermediates in organic syntheses (Pandey *et al.*, 1997). As part of our studies on the syntheses and characterizations of these compounds, we report herein the crystal structure of the title compound.

In the molecule of the title compound, (Fig. 1), the bond lengths (Allen *et al.*, 1987) and angles are within normal ranges. Ring A (C2-C7) is, of course, planar, while ring B (O2/O3/C8-C10) adopts envelope conformation with atom O2 displaced by 0.456 (3) Å from the plane of the other ring atoms.

In the crystal structure, intermolecular N-H···O interactions (Table 1) link the molecules into a three-dimensional network (Fig. 2), in which they may be effective in the stabilization of the structure. A weak C—H··· π interaction (Table 1) is also found.

S2. Experimental

For the preparation of the title compound, a mixture of (2S,3S)-diethyl- tartrate (500 mg, 2.43 mmol), 3-methoxybenzaldehyde (331 mg, 2.43 mmol), anhydrous copper(II) sulfate (776 mg, 2.86 mmol) and one drop of methanesulfonic acid in anhydrous toluene (8 ml) was stirred at room temperature for 8 h. Anhydrous magnesium sulfate (30 mg) was added to the reaction mixture, which was then stirred for 20 min. Then, the resulting colorless precipitate was obtained by evaporation and dried in the vacuo (yield; 83%). The obtained colorless product (654 mg, 2 mmol) was dissolved in anhydrous ethanol (40 ml), and a current of dry ammonia, dried by calcium cholride was passed into the reaction mixture at room temperature for 4 h. Then, the reaction mixture was filtered and the resulting product was evaporated to dryness. Crystals suitable for X-ray analysis were obtained by slow evaporation of a methanol solution after four weeks.

S3. Refinement

H atoms were positioned geometrically with N-H = 0.86 Å (for NH₂) and C-H = 0.93, 0.98 and 0.96 Å for aromatic, methine and methyl H atoms, respectively, and constrained to ride on their parent atoms, with $U_{iso}(H) = xU_{eq}(C,N)$, where x = 1.5 for methyl H, and x = 1.2 for all other H atoms. The absolute structure could not be determined reliably, and 986 Friedel pairs were averaged before the last cycle of refinement.

Figure 1

The molecular structure of the title molecule with the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level

Figure 2

A partial packing diagram. Hydrogen bonds are shown as dashed lines.

(45,55)-2-(3-Methoxyphenyl)-1,3-dioxolane-4,5-dicarboxamide

Crystal data	
$C_{12}H_{14}N_2O_5$	Hall symbol: P 2ac 2ab
$M_r = 266.25$	a = 9.2340 (18) Å
Orthorhombic, $P2_12_12_1$	<i>b</i> = 9.852 (2) Å

c = 14.266 (3) Å $V = 1297.8 (5) \text{ Å}^3$ Z = 4 F(000) = 560 $D_x = 1.363 \text{ Mg m}^{-3}$ Mo K α radiation, $\lambda = 0.71073 \text{ Å}$

Data collection

Enraf–Nonius CAD-4 diffractometer Radiation source: fine-focus sealed tube Graphite monochromator $\omega/2\theta$ scans Absorption correction: ψ scan (North *et al.*, 1968) $T_{\min} = 0.971, T_{\max} = 0.979$ 2599 measured reflections

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.050$ $wR(F^2) = 0.132$ S = 1.331378 reflections 170 parameters 0 restraints Primary atom site location: structure-invariant direct methods Cell parameters from 25 reflections $\theta = 9-13^{\circ}$ $\mu = 0.11 \text{ mm}^{-1}$ T = 294 KBlock, colorless $0.30 \times 0.20 \times 0.20 \text{ mm}$

1378 independent reflections 1157 reflections with $I > 2\sigma(I)$ $R_{int} = 0.027$ $\theta_{max} = 25.3^{\circ}, \ \theta_{min} = 2.5^{\circ}$ $h = -11 \rightarrow 0$ $k = -11 \rightarrow 11$ $I = -17 \rightarrow 0$ 3 standard reflections every 120 min intensity decay: 1%

Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.0632P)^2 + 0.0799P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} < 0.001$ $\Delta\rho_{max} = 0.31$ e Å⁻³ $\Delta\rho_{min} = -0.40$ e Å⁻³

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional	atomic	coordinates	and	isotro	vic or	r eq	juivalent	isotro	pic dis	placement	parameters	$(Å^2$)
										1	1	1 .	/

	x	y	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
01	0.6259 (4)	0.9009 (4)	-0.2515 (2)	0.085 (2)	
O2	0.5311 (3)	0.7583 (2)	0.08959 (15)	0.0374 (6)	
O3	0.7763 (3)	0.7304 (2)	0.10000 (19)	0.0431 (6)	
04	0.6719 (5)	0.3876 (3)	0.0578 (3)	0.0835 (13)	
05	0.5534 (3)	0.5637 (2)	0.30153 (17)	0.0495 (7)	
N1	0.8069 (4)	0.5351 (3)	-0.0253 (2)	0.0600 (11)	
H1A	0.8224	0.4786	-0.0701	0.072*	
H1B	0.8429	0.6155	-0.0279	0.072*	
N2	0.4593 (4)	0.7713 (3)	0.2737 (2)	0.0461 (8)	
H2A	0.4389	0.7854	0.3317	0.055*	

H2B	0.4395	0.8322	0.2324	0.055*
C1	0.5709 (6)	0.7727 (7)	-0.2635 (3)	0.093 (12)
H1C	0.5441	0.7602	-0.3280	0.140*
H1D	0.4871	0.7613	-0.2245	0.140*
H1E	0.6429	0.7069	-0.2466	0.140*
C2	0.6605 (5)	0.9407 (5)	-0.1622 (3)	0.0582 (12)
C3	0.7152 (6)	1.0709 (5)	-0.1530 (3)	0.0679 (15)
H3A	0.7253	1.1252	-0.2059	0.081*
C4	0.7541 (8)	1.1201 (4)	-0.0684 (4)	0.0788 (18)
H4A	0.7932	1.2068	-0.0638	0.095*
C5	0.7366 (6)	1.0431 (4)	0.0109 (3)	0.0581 (12)
H5A	0.7614	1.0782	0.0692	0.070*
C6	0.6820 (4)	0.9131 (3)	0.0036 (2)	0.0380 (8)
C7	0.6436 (4)	0.8611 (4)	-0.0833 (2)	0.0444 (9)
H7A	0.6069	0.7735	-0.0883	0.053*
C8	0.6654 (4)	0.8314 (3)	0.0910 (2)	0.0355 (8)
H8A	0.6676	0.8918	0.1456	0.043*
C9	0.5521 (4)	0.6389 (3)	0.1436 (2)	0.0334 (8)
H9A	0.4904	0.5665	0.1186	0.040*
C10	0.7109 (4)	0.6039 (3)	0.1246 (3)	0.0385 (8)
H10A	0.7553	0.5695	0.1823	0.046*
C11	0.7276 (5)	0.4985 (4)	0.0474 (3)	0.0469 (10)
C12	0.5210 (4)	0.6565 (3)	0.2480 (3)	0.0349 (8)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
01	0.076 (2)	0.142 (3)	0.0376 (13)	-0.018 (2)	-0.0052 (15)	0.0087 (18)
O2	0.0403 (13)	0.0370 (12)	0.0349 (12)	-0.0019 (11)	-0.0030 (12)	0.0073 (11)
O3	0.0365 (13)	0.0359 (12)	0.0569 (16)	0.0001 (11)	-0.0015 (12)	0.0047 (12)
O4	0.128 (3)	0.0379 (16)	0.084 (2)	-0.0130 (19)	0.065 (2)	-0.0087 (16)
05	0.0698 (18)	0.0423 (13)	0.0363 (13)	0.0070 (14)	0.0056 (14)	0.0088 (11)
N1	0.084 (3)	0.0436 (18)	0.053 (2)	-0.0035 (19)	0.038 (2)	-0.0072 (16)
N2	0.0574 (19)	0.0420 (16)	0.0390 (17)	0.0054 (17)	0.0148 (15)	0.0005 (13)
C1	0.065 (3)	0.165 (7)	0.049 (2)	-0.063 (4)	0.031 (2)	-0.035 (4)
C2	0.047 (2)	0.093 (3)	0.0348 (19)	0.010 (3)	0.0024 (18)	0.009 (2)
C3	0.091 (4)	0.053 (3)	0.060 (3)	0.021 (3)	0.029 (3)	0.023 (2)
C4	0.136 (5)	0.034 (2)	0.066 (3)	0.001 (3)	0.046 (3)	0.008 (2)
C5	0.088 (3)	0.036 (2)	0.050 (2)	-0.003 (2)	0.017 (2)	-0.0037 (18)
C6	0.044 (2)	0.0334 (17)	0.0366 (18)	0.0001 (15)	0.0056 (16)	0.0035 (15)
C7	0.043 (2)	0.052 (2)	0.0388 (19)	-0.0026 (18)	0.0046 (18)	0.0007 (18)
C8	0.0388 (18)	0.0318 (16)	0.0360 (17)	0.0027 (14)	-0.0012 (17)	0.0020 (15)
C9	0.0400 (19)	0.0285 (16)	0.0318 (17)	-0.0028 (15)	-0.0019 (16)	0.0024 (13)
C10	0.044 (2)	0.0333 (17)	0.0381 (18)	0.0026 (16)	0.0075 (16)	0.0042 (15)
C11	0.059 (3)	0.0342 (18)	0.048 (2)	0.0034 (18)	0.023 (2)	0.0064 (16)
C12	0.0405 (19)	0.0309 (16)	0.0332 (15)	-0.0022 (15)	0.0019 (16)	-0.0011 (15)

Geometric parameters (Å, °)

01—C1	1.372 (7)	С2—С7	1.380 (5)
O1—C2	1.371 (5)	C2—C3	1.385 (7)
O2—C8	1.434 (4)	C3—C4	1.350 (8)
O2—C9	1.419 (4)	C3—H3A	0.9300
O3—C8	1.434 (4)	C4—C5	1.371 (6)
O3—C10	1.429 (4)	C4—H4A	0.9300
O4—C11	1.217 (5)	C5—C6	1.380 (5)
O5—C12	1.228 (4)	С5—Н5А	0.9300
N1—C11	1.320 (5)	C6—C7	1.387 (5)
N1—H1A	0.8600	C6—C8	1.492 (5)
N1—H1B	0.8600	С7—Н7А	0.9300
N2—C12	1.318 (4)	C8—H8A	0.9800
N2—H2A	0.8600	C9—C12	1.527 (5)
N2—H2B	0.8600	C9—C10	1.531 (5)
C1—H1C	0.9600	С9—Н9А	0.9800
C1—H1D	0.9600	C10-C11	1.521 (5)
C1—H1E	0.9600	C10—H10A	0.9800
C2—O1—C1	117.8 (4)	C7—C6—C8	121.4 (3)
C9—O2—C8	106.9 (2)	C2—C7—C6	119.3 (4)
C10—O3—C8	109.0 (3)	С2—С7—Н7А	120.3
C11—N1—H1A	120.0	С6—С7—Н7А	120.3
C11—N1—H1B	120.0	O2—C8—O3	105.6 (2)
H1A—N1—H1B	120.0	O2—C8—C6	110.4 (3)
C12—N2—H2A	120.0	O3—C8—C6	112.1 (3)
C12—N2—H2B	120.0	O2—C8—H8A	109.6
H2A—N2—H2B	120.0	O3—C8—H8A	109.6
01—C1—H1C	109.5	C6—C8—H8A	109.6
O1—C1—H1D	109.5	O2—C9—C12	114.2 (3)
H1C—C1—H1D	109.5	O2—C9—C10	102.8 (3)
O1—C1—H1E	109.5	C12—C9—C10	112.2 (3)
H1C—C1—H1E	109.5	О2—С9—Н9А	109.1
H1D—C1—H1E	109.5	С12—С9—Н9А	109.1
O1—C2—C7	124.7 (5)	С10—С9—Н9А	109.1
O1—C2—C3	115.9 (4)	O3—C10—C11	112.0 (3)
C7—C2—C3	119.4 (4)	O3—C10—C9	104.6 (3)
C4—C3—C2	120.9 (4)	C11—C10—C9	112.3 (3)
C4—C3—H3A	119.5	O3—C10—H10A	109.3
С2—С3—НЗА	119.5	C11—C10—H10A	109.3
C3—C4—C5	120.5 (4)	C9—C10—H10A	109.3
C3—C4—H4A	119.7	O4—C11—N1	125.1 (4)
C5—C4—H4A	119.7	O4—C11—C10	118.8 (3)
C4—C5—C6	119.6 (4)	N1-C11-C10	116.0 (3)
C4—C5—H5A	120.2	O5—C12—N2	124.9 (3)
C6—C5—H5A	120.2	O5—C12—C9	118.4 (3)
C5—C6—C7	120.2 (3)	N2—C12—C9	116.7 (3)

C5—C6—C8	118.4 (3)		
C1—O1—C2—C7	-0.1 (7)	C5—C6—C8—O3	-104.0 (4)
C1C3	-179.8 (5)	C7—C6—C8—O3	76.1 (4)
O1—C2—C3—C4	-179.3 (5)	C8—O2—C9—C12	88.2 (3)
C7—C2—C3—C4	1.0 (8)	C8—O2—C9—C10	-33.7 (3)
C2—C3—C4—C5	-1.7 (9)	C8—O3—C10—C11	114.2 (3)
C3—C4—C5—C6	1.6 (8)	C8—O3—C10—C9	-7.6 (4)
C4—C5—C6—C7	-0.7 (7)	O2—C9—C10—O3	25.2 (3)
C4—C5—C6—C8	179.5 (5)	C12—C9—C10—O3	-98.0 (3)
O1—C2—C7—C6	-179.7 (4)	O2—C9—C10—C11	-96.5 (3)
C3—C2—C7—C6	-0.1 (6)	C12—C9—C10—C11	140.3 (3)
C5—C6—C7—C2	-0.1 (6)	O3—C10—C11—O4	-177.2 (4)
C8—C6—C7—C2	179.8 (4)	C9—C10—C11—O4	-59.9 (5)
C9—O2—C8—O3	29.8 (3)	O3—C10—C11—N1	4.8 (5)
C9—O2—C8—C6	151.1 (3)	C9-C10-C11-N1	122.1 (4)
C10—O3—C8—O2	-12.7 (3)	O2—C9—C12—O5	-171.1 (3)
C10—O3—C8—C6	-132.9 (3)	C10—C9—C12—O5	-54.6 (4)
C5—C6—C8—O2	138.5 (4)	O2—C9—C12—N2	9.5 (5)
C7—C6—C8—O2	-41.3 (4)	C10—C9—C12—N2	126.1 (3)

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D··· A	D—H···A
N2—H2 B ···O5 ⁱ	0.86	2.33	3.076 (4)	145
N2—H2A····O4 ⁱ	0.86	2.13	2.926 (4)	153
N1—H1 <i>B</i> ···O2 ⁱⁱ	0.86	2.31	3.045 (4)	143
N1—H1A····O5 ⁱⁱⁱ	0.86	2.20	2.952 (4)	146
C9—H9 A ··· $Cg1^{iv}$	0.98	2.82	3.640 (4)	141

Symmetry codes: (i) -x+1, y+1/2, -z+1/2; (ii) x+1/2, -y+3/2, -z; (iii) -x+3/2, -y+1, z-1/2; (iv) -x, y+1/2, -z+3/2.