Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

trans-Ethylenedi-p-phenylene diacetate

Stefanie Ritter, Jörg-M. Neudörfl, Janna Velder and Hans-Günther Schmalz*
Department für Chemie der Universität zu Köln, Greinstrasse 4, 50939 Köln, Germany
Correspondence e-mail: schmalz@uni-koeln.de

Received 12 August 2009; accepted 17 August 2009

Key indicators: single-crystal X-ray study; $T=100 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.002 \AA$; R factor $=0.042 ; \omega R$ factor $=0.106$; data-to-parameter ratio $=15.8$.

The centrosymmetric title compound, $\mathrm{C}_{18} \mathrm{H}_{26} \mathrm{O}_{4}$, was prepared in high yield from 4-acetoxystyrene via Ru-catalysed homoolefin metathesis. Exclusive formation of the E-configurated isomer was observed. In the crystal, a strong $\mathrm{C}-\mathrm{H} \cdots \pi$ intermolecular interaction links the molecules together.

Related literature

For the preparation of differently substituted stilbenes using a Ru-catalysed metathesis strategy, see: Velder et al. (2006). For alternative methodologies for the synthesis of oxy-functionalized stilbenes using Wittig-type olefinations or Heckcouplings, see: Kim et al. (2002); Lion et al. (2005); Botella et al. (2004); Reetz et al. (1998). For the bioactivity of various stilbenes with a focus on their anticancer activity, see: Aggarwal et al. (2004); Wolter et al. (2002); Fremont (2000); Jang et al. (1997); Wieder et al. (2001). For related structures see: Malone et al. (1997). For a previous synthesis of the title compound see: Johnson et al. (1952).

Experimental

Crystal data

$\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{O}_{4}$

$M_{r}=296.31$
Monoclinic, $P 2_{k} / c$
$a=9.7430$ (4) A
$b=7.2839$ (4) \AA
$c=11.2723$ (6) A
$\beta=113.649$ (3) ${ }^{\circ}$
$V=732.78$ (7) \AA^{3}
$Z=2$
Mo $K \alpha$ radiation
$\mu=0.10 \mathrm{~mm}^{-1}$
$T=100 \mathrm{~K}$
$0.52 \times 0.36 \times 0.34 \mathrm{~mm}$

Data collection

Nonius KappaCCD diffractometer
Absorption correction: none
3533 measured reflections
1595 independent reflections 1119 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.038$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.042 \quad 101$ parameters
$w R\left(F^{2}\right)=0.106 \quad \mathrm{H}$-atom parameters constrained
$S=1.03$
1595 reflections
$\Delta \rho_{\text {max }}=0.20 \mathrm{e} \AA^{-3}$
$\Delta \rho_{\text {min }}=-0.21 \mathrm{e}^{-3}$

Table 1
Geometry the $\mathrm{C}-\mathrm{H} \cdots \pi$ interaction $\left({ }_{\mathrm{A}},{ }^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 7-\mathrm{H} 7 \cdots C g 1^{\mathrm{i}}$	0.95	2.81	$3.539(2)$	135
Symmetry code: (i) $-x, y+\frac{1}{2},-z+\frac{1}{2}$.	$C g 1$ is the centroid of the $\mathrm{C} 2-\mathrm{C} 7$ ring.			

Data collection: COLLECT (Hooft, 1998); cell refinement: DENZO (Otwinowski \& Minor, 1997); data reduction: DENZO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SCHAKAL99 (Keller, 1999); software used to prepare material for publication: PLATON (Spek, 2009) and enCIFer (Allen et al., 2004).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HG2554).

References

Aggarwal, B. B., Bhardwaj, A., Aggarwal, R. S., Seeram, N. P., Shishodia, S. \& Takada, Y. (2004). Anticancer Res. 24, 2783-2840.
Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. \& Towler, M. (2004). J. Appl. Cryst. 37, 335-338.
Botella, L. \& Nayera, C. (2004). Tetrahedron, 60, 5563-5570.
Fremont, L. (2000). Life Sci. 66, 663-673.
Hooft, R. W. W. (1998). COLLECT. Nonius BV, Delft, The Netherlands
Jang, M., Cai, L., Udeani, G. O., Slowing, K. V., Thomas, L. F., Beecher, C. W. W., Fong, H. H. S., Farnsworth, N. R., Kinghorn, A. D., Mehta, R. G., Moon, R. C. \& Rezzuto, J. M. (1997). Science, 275, 218-220.

Johnson, W. S., Ericson, C. A. \& Ackerman, J. (1952). J. Am. Chem. Soc. 74, 2251-2253.
Keller, E. (1999). SCHAKAL99. University of Freiburg, Germany.
Kim, S., Ko, H., Park, J. E., Jung, S., Lee, S. K. \& Chun, Y.-J. (2002). J. Med. Chem. 45, 160-164.
Lion, C. J., Matthews, C. S., Stevens, M. F. \& Westwell, A. D. (2005). J. Med. Chem. 48, 1292-1295.
Malone, J. F., Murray, C. M., Charlton, M. H., Docherty, R. \& Lavery, A. J. (1997). J. Chem. Soc. Faraday Trans. 93, 3429-3436.

Otwinowski, Z. \& Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr \& R. M. Sweet, pp. 307-326. New York: Academic Press.
Reetz, M. T., Lohmer, G. \& Schwinkardi, R. (1998). Angew. Chem. Int. Ed. 37, 481-483.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Spek, A. L. (2009). Acta Cryst. D65, 148-155.
Velder, J., Ritter, S., Lex, J. \& Schmalz, H.-G. (2006). Synthesis, 2, 273-278.
Wieder, T., Prokop, A., Bagci, B., Essmann, F., Bernicke, D., Schulze-Osthoff, K., Dorken, B., Schmalz, H. G., Daniel, P. T. \& Henze, G. (2001). Leukemia, 15, 1735-1742.
Wolter, F. \& Stein, J. (2002). Drugs Future, 27, 949-960.

supporting information

Acta Cryst. (2009). E65, o2229 [doi:10.1107/S1600536809032620]

trans-Ethylenedi-p-phenylene diacetate

Stefanie Ritter, Jörg-M. Neudörfl, Janna Velder and Hans-Günther Schmalz

S1. Comment

Resveratrol-related stilbenes exhibit promising anticancer activity (Aggarwal et al., 2004; Wolter et al., 2002; Fremont et al., 2000; Jang et al., 1997). Based on our own research in the field of bioactive stilbenes (Wieder et al., 2001) we decided to reinvestigate the possibility of using a cross-metathesis strategy for the synthesis of compounds of type 1 (Velder et al., 2006) which turned out to be a highly efficient route towards symmetrically as well as unsymmetrically substituted E-stilbenes. Alternative strategies for the synthesis of stilbenes are based on Wittig-type olefinations or Heck couplings (Kim et al. (2002), Lion et al. (2005), Botella et al. (2004), Reetz et al. (1998)). One of the compounds prepared is the title compound trans-1,2-bis-(4-acetoxyphenyl)ethene. Within each molecule the two planes defined by the arene moieties are co-planar but slightly stepped (by 0.324 (2) \AA) due to the fact that the plane defined by the central double bond is twisted by a torsion angle of $-13.8(2)^{\circ}(\mathrm{C} 1 \mathrm{a}-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 7)$ and $165.7(15)^{\circ}(\mathrm{C} 1 \mathrm{a}-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3)$, respectively (figure 1). The molecules form layers which are intermolecularly linked through a $\mathrm{C}-\mathrm{H} \cdots \pi$ interaction of type III (Malone et al. 1997). This interaction occurs between the H atom of one phenyl group and the π-system of the other phenyl moiety (figure 2). With a $\mathrm{H} \cdots \pi$ distance of only $2.77 \AA$ these interactions are rather strong.

S2. Experimental

In a glove-box (Labmaster 130, mBraun), the catalyst (Grubbs-II, $2 \mathrm{~mol} \%$) was weighted into a 25 ml Schlenk tube, which was sealed with a rubber septum. This was then taken out of the box, connected to an Ar-vacuum double manifold and equipped with a reflux condenser under argon. A solution of 3-acetoxy-styrene ($1.0 \mathrm{~g}, 6.17 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{ml})$ was added via syringe and the resulting solution was refluxed for 1.5 h under argon. After allowing the reaction mixture to cool to room temperature, the solvent was evaporated in vacuo and the crude product was purified by recrystallization from EtOAc/cyclohexane $5: 1$ to give 0.8 g (88%) of the homo-metathesis product 1 . mp. $214{ }^{\circ} \mathrm{C}$ (Johnson et al. (1952) $215-218^{\circ} \mathrm{C}$). ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=2.29\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 7.04(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH}=), 7.08(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=8.7 \mathrm{~Hz}, \mathrm{H}-3, \mathrm{H}-5)$, $7.49(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=8.7 \mathrm{~Hz}, \mathrm{H}-2, \mathrm{H}-6) ;{ }^{13} \mathrm{C}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=21.2\left(\mathrm{CH}_{3}\right), 121.8(\mathrm{C}-3, \mathrm{C}-5), 127.4(\mathrm{C}-2, \mathrm{C}-6)$, 127.9 (C-7), $135.0(\mathrm{C}-1), 150.1(\mathrm{C}-4), 169.5(\mathrm{C}=\mathrm{O})$; HRMS, calcd for $\mathrm{C}_{18} \mathrm{H}_{16} \mathrm{O}_{4}\left(M^{+}\right) 296.1048$, found 296.105.

S3. Refinement

Hydrogen atoms were located in difference syntheses, and are refined at idealized positions $(\mathrm{C}-\mathrm{H}=0.98 \AA$ for methyl H atoms and $0.95 \AA$ for all other H Atoms) using a riding model, the U values of the H atoms are constrained relative to $U_{\text {eq }}$ of the parent carbon atom $\left(1.2 x U_{\mathrm{eq}}(\mathrm{C})\right.$ for $\mathrm{C}-\mathrm{H}$ and $1.5 x U_{\mathrm{eq}}(\mathrm{C})$ for methyl H$)$.

Figure 1
A top view of 1 . Displacement ellipsoids are drawn at the 50% probability level.

Figure 2
Intramolecular $\mathrm{C}-\mathrm{H} \cdots \pi$ interactions.

trans-Ethylenedi-p-phenylene diacetate

Crystal data

$\mathrm{C}_{18} \mathrm{H}_{16} \mathrm{O}_{4}$
$M_{r}=296.31$
Monoclinic, $P 2_{1} / c$
Hall symbol: -P 2ybc
$a=9.7430$ (4) \AA
$b=7.2839$ (4) \AA
$c=11.2723(6) \AA$
$\beta=113.649$ (3) ${ }^{\circ}$
$V=732.78(7) \AA^{3}$
$Z=2$

$$
\begin{aligned}
& F(000)=312 \\
& D_{\mathrm{x}}=1.343 \mathrm{Mg} \mathrm{~m} \\
& \text { Melting point: } 214 \mathrm{~K} \\
& \text { Mo } K \alpha \text { radiation, } \lambda=0.71073 \AA \\
& \text { Cell parameters from } 3533 \text { reflections } \\
& \theta=2.3-27.0^{\circ} \\
& \mu=0.10 \mathrm{~mm}^{-1} \\
& T=100 \mathrm{~K} \\
& \text { Needle, colourless } \\
& 0.52 \times 0.36 \times 0.34 \mathrm{~mm}
\end{aligned}
$$

Data collection

Nonius KappaCCD
diffractometer
Radiation source: fine-focus sealed tube
Graphite monochromator
φ and ω scans
3533 measured reflections
1119 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.038$
$\theta_{\text {max }}=27.0^{\circ}, \theta_{\text {min }}=2.3^{\circ}$
$h=-12 \rightarrow 12$
$k=-8 \rightarrow 9$
$l=-14 \rightarrow 14$
1595 independent reflections

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.042$
$w R\left(F^{2}\right)=0.106$
$S=1.03$
1595 reflections
101 parameters
0 restraints
Primary atom site location: structure-invariant direct methods

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor $w R$ and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>\sigma\left(F^{2}\right)$ is used only for calculating R-factors (gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F, and R - factors based on ALL data will be even larger. The coordinates of the hydrogen atoms are constrained, and the U values of the H atoms are constrained relative to the $U_{\text {eq }}$ of the atom the hydrogen binds to (1.2 for CH and $\mathrm{CH}_{2}, 1.5$ for CH_{3}).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\boldsymbol{A}^{2})

	x	y	z	$U_{\text {iso }} * / U_{\text {eq }}$
O1	$0.26496(12)$	$0.47976(14)$	$0.58904(9)$	$0.0210(3)$
O2	$0.37476(12)$	$0.75603(15)$	$0.60504(10)$	$0.0249(3)$
C1	$0.06877(16)$	$0.48067(19)$	$0.04361(14)$	$0.0165(3)$

H1	0.1412	0.4466	0.0111	0.020^{*}
C2	$0.11855(16)$	$0.48580(19)$	$0.18473(14)$	$0.0151(3)$
C3	$0.25433(16)$	$0.4033(2)$	$0.26319(14)$	$0.0171(3)$
H3	0.3134	0.3468	0.2238	0.020^{*}
C4	$0.30488(16)$	$0.4019(2)$	$0.39715(14)$	$0.0176(3)$
H4	0.3971	0.3446	0.4492	0.021^{*}
C5	$0.21842(17)$	$0.4853(2)$	$0.45310(13)$	$0.0165(4)$
C6	$0.08410(17)$	$0.5691(2)$	$0.37923(14)$	$0.0189(4)$
H6	0.0261	0.6259	0.4195	0.023^{*}
C7	$0.03502(17)$	$0.5694(2)$	$0.24605(14)$	$0.0179(4)$
H7	-0.0572	0.6274	0.1950	0.021^{*}
C8	$0.34023(17)$	$0.6307(2)$	$0.65644(15)$	$0.0187(4)$
C9	$0.37163(18)$	$0.6128(2)$	$0.79670(14)$	$0.0245(4)$
H9A	0.4210	0.7245	0.8424	0.037^{*}
H9B	0.4373	0.5070	0.8330	0.037^{*}
H9C	0.2773	0.5951	0.8069	0.037^{*}

Atomic displacement parameters $\left(\hat{A}^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
O1	$0.0304(7)$	$0.0177(6)$	$0.0123(6)$	$-0.0031(5)$	$0.0058(5)$	$-0.0012(4)$
O2	$0.0264(7)$	$0.0227(6)$	$0.0258(6)$	$-0.0058(5)$	$0.0106(5)$	$-0.0025(5)$
C1	$0.0191(8)$	$0.0139(8)$	$0.0174(8)$	$-0.0008(6)$	$0.0083(6)$	$-0.0011(6)$
C2	$0.0168(8)$	$0.0117(7)$	$0.0154(8)$	$-0.0031(6)$	$0.0051(6)$	$0.0008(6)$
C3	$0.0184(8)$	$0.0156(8)$	$0.0175(8)$	$-0.0012(6)$	$0.0076(7)$	$-0.0019(6)$
C4	$0.0156(8)$	$0.0154(8)$	$0.0181(8)$	$-0.0004(6)$	$0.0027(6)$	$0.0013(6)$
C5	$0.0239(9)$	$0.0132(8)$	$0.0106(8)$	$-0.0049(6)$	$0.0049(7)$	$-0.0005(6)$
C6	$0.0245(9)$	$0.0145(8)$	$0.0192(8)$	$0.0008(6)$	$0.0102(7)$	$-0.0023(6)$
C7	$0.0198(9)$	$0.0152(8)$	$0.0169(8)$	$0.0018(6)$	$0.0055(7)$	$0.0010(6)$
C8	$0.0146(8)$	$0.0187(9)$	$0.0212(8)$	$0.0035(6)$	$0.0056(7)$	$-0.0039(7)$
C9	$0.0275(9)$	$0.0245(9)$	$0.0174(9)$	$0.0029(7)$	$0.0046(7)$	$-0.0037(7)$

Geometric parameters ($\AA,{ }^{\circ}$)

$\mathrm{O} 1-\mathrm{C} 8$	$1.3700(18)$	$\mathrm{C} 4-\mathrm{C} 5$	$1.380(2)$
$\mathrm{O} 1-\mathrm{C} 5$	$1.4135(16)$	$\mathrm{C} 4-\mathrm{H} 4$	0.9500
$\mathrm{O} 2-\mathrm{C} 8$	$1.1994(17)$	$\mathrm{C} 5-\mathrm{C} 6$	$1.380(2)$
$\mathrm{C} 1-\mathrm{C} 1^{\mathrm{i}}$	$1.336(3)$	$\mathrm{C} 6-\mathrm{C} 7$	$1.381(2)$
$\mathrm{C} 1-\mathrm{C} 2$	$1.466(2)$	$\mathrm{C} 6-\mathrm{H} 6$	0.9500
$\mathrm{C} 1-\mathrm{H} 1$	0.9500	$\mathrm{C} 7-\mathrm{H} 7$	0.9500
$\mathrm{C} 2-\mathrm{C} 3$	$1.398(2)$	$\mathrm{C} 8-\mathrm{C} 9$	$1.491(2)$
$\mathrm{C} 2-\mathrm{C} 7$	$1.401(2)$	$\mathrm{C} 9-\mathrm{H} 9 \mathrm{~A}$	0.9800
$\mathrm{C} 3-\mathrm{C} 4$	$1.388(2)$	$\mathrm{C} 9-\mathrm{H} 9 \mathrm{~B}$	0.9800
$\mathrm{C} 3-\mathrm{H} 3$	0.9500	$\mathrm{C} 9-\mathrm{H} 9 \mathrm{C}$	0.9800
$\mathrm{C} 8-\mathrm{O} 1-\mathrm{C} 5$		$\mathrm{C} 5-\mathrm{C} 6-\mathrm{C} 7$	
$\mathrm{C} 1-\mathrm{C} 1-\mathrm{C} 2$	$116.48(11)$	$\mathrm{C} 5-\mathrm{C} 6-\mathrm{H} 6$	$119.19(14)$
$\mathrm{C} 1-\mathrm{C} 1-\mathrm{H} 1$	$126.23(17)$	$\mathrm{C} 7-\mathrm{C} 6-\mathrm{H} 6$	120.4

$\mathrm{C} 2-\mathrm{C} 1-\mathrm{H} 1$	116.9
$\mathrm{C} 3-\mathrm{C} 2-\mathrm{C} 7$	$117.66(14)$
$\mathrm{C} 3-\mathrm{C} 2-\mathrm{C} 1$	$119.52(13)$
$\mathrm{C} 7-\mathrm{C} 2-\mathrm{C} 1$	$122.81(13)$
$\mathrm{C} 4-\mathrm{C} 3-\mathrm{C} 2$	$121.62(14)$
$\mathrm{C} 4-\mathrm{C} 3-\mathrm{H} 3$	119.2
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{H} 3$	119.2
$\mathrm{C} 5-\mathrm{C} 4-\mathrm{C} 3$	$118.61(14)$
$\mathrm{C} 5-\mathrm{C} 4-\mathrm{H} 4$	120.7
$\mathrm{C} 3-\mathrm{C} 4-\mathrm{H} 4$	120.7
$\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 6$	$121.62(13)$
$\mathrm{C} 4-\mathrm{C} 5-\mathrm{O} 1$	$119.59(13)$
$\mathrm{C} 6-\mathrm{C} 5-\mathrm{O} 1$	$118.75(13)$
$\mathrm{C} 1-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	$165.70(18)$
$\mathrm{C} 1-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 7$	$-13.8(3)$
$\mathrm{C} 7-\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$	$0.6(2)$
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$	$-178.87(13)$
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5$	$-0.4(2)$
$\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 6$	$0.1(2)$
$\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5-\mathrm{O} 1$	$177.71(12)$
$\mathrm{C} 8-\mathrm{O} 1-\mathrm{C} 5-\mathrm{C} 4$	$97.22(15)$

$\mathrm{C} 6-\mathrm{C} 7-\mathrm{C} 2$	$121.30(14)$
$\mathrm{C} 6-\mathrm{C} 7-\mathrm{H} 7$	119.3
$\mathrm{C} 2-\mathrm{C} 7-\mathrm{H} 7$	119.3
$\mathrm{O} 2-\mathrm{C} 8-\mathrm{O} 1$	$122.30(14)$
$\mathrm{O} 2-\mathrm{C} 8-\mathrm{C} 9$	$126.94(14)$
$\mathrm{O} 1-\mathrm{C} 8-\mathrm{C} 9$	$110.76(13)$
$\mathrm{C} 8-\mathrm{C} 9-\mathrm{H} 9 \mathrm{~A}$	109.5
$\mathrm{C} 8-\mathrm{C} 9-\mathrm{H} 9 \mathrm{~B}$	109.5
$\mathrm{H} 9 \mathrm{~A}-\mathrm{C} 9-\mathrm{H} 9 \mathrm{~B}$	109.5
$\mathrm{C} 8-\mathrm{C} 9-\mathrm{H} 9 \mathrm{C}$	109.5
$\mathrm{H} 9 \mathrm{~A}-\mathrm{C} 9-\mathrm{H} 9 \mathrm{C}$	109.5
$\mathrm{H} 9 \mathrm{~B}-\mathrm{C} 9-\mathrm{H} 9 \mathrm{C}$	109.5
$\mathrm{C} 8-\mathrm{O} 1-\mathrm{C} 5-\mathrm{C} 6$	$-85.05(16)$
$\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 6-\mathrm{C} 7$	$0.0(2)$
$\mathrm{O} 1-\mathrm{C} 5-\mathrm{C} 6-\mathrm{C} 7$	$-177.66(13)$
$\mathrm{C} 5-\mathrm{C} 6-\mathrm{C} 7-\mathrm{C} 2$	$0.3(2)$
$\mathrm{C} 3-\mathrm{C} 2-\mathrm{C} 7-\mathrm{C} 6$	$-0.6(2)$
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 7-\mathrm{C} 6$	$178.93(13)$
$\mathrm{C} 5-\mathrm{O} 1-\mathrm{C} 8-\mathrm{O} 2$	$-5.1(2)$
$\mathrm{C} 5-\mathrm{O} 1-\mathrm{C} 8-\mathrm{C} 9$	$175.46(12)$

Symmetry code: (i) $-x,-y+1,-z$.

Hydrogen-bond geometry ($A,{ }^{\circ}$)

$D — \mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 7 — \mathrm{H} 7 \cdots C g 1^{\mathrm{ii}}$	0.95	2.81	$3.539(2)$	135

Symmetry code: (ii) $-x, y+1 / 2,-z+1 / 2$.

