

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

(1E,4E)-1,5-Bis(2,4-dimethylphenyl)penta-1.4-dien-3-one

Zhiguo Feng.^a lunhua Li^{b*} and Yi Lin^a

^aSchool of Life Science, Anhui Agricultural University, 130 West Yangtze Road, Hefei, Anhui Province 230036, People's Republic of China, and ^bShenzhen Wanxin Pharmatech Co Ltd, 1-108 Bioincubator building, 1st Gaoxin Road, Shenzhen, Guangdong 518057, People's Republic of China Correspondence e-mail: linyi0303@126.com

Received 14 August 2009; accepted 23 August 2009

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.003 Å; R factor = 0.065; wR factor = 0.173; data-to-parameter ratio = 15.4.

In the title compound, $C_{21}H_{22}O$, a derivative of the biologically active compound curcumin, the dihedral angle between the aromatic ring planes is $20.57 (11)^{\circ}$.

Related literature

For backgound to cucucmin and its biological properties, see: Began et al. (1999); Gautam et al. (2007); Liang et al. (2008); Liang, Shao et al. (2009); Liang, Tian et al. (2007); Liang, Yang et al. (2007); Liang, Zhou et al. (2009); Maheshwari et al. (2006); Zhao et al. (2009).

Å

Experimental

Crystal data

$C_{21}H_{22}O$	c = 12.9632 (19) Å
$M_r = 290.39$	$\beta = 94.090 \ (3)^{\circ}$
Monoclinic, $P2_1/c$	V = 1701.3 (4) Å ³
a = 4.9548 (7) Å	Z = 4
b = 26.555 (4) Å	Mo $K\alpha$ radiation

 $\mu = 0.07 \text{ mm}^{-1}$ T = 293 K

Data collection

Bruker SMART CCD diffractometer Absorption correction: multi-scan (SADABS; Bruker, 2002) $T_{\rm min}=0.769,\;T_{\rm max}=1.000$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.065$ $wR(F^2) = 0.173$ S = 0.973128 reflections

 $0.42 \times 0.37 \times 0.26 \text{ mm}$

8842 measured reflections 3128 independent reflections 2007 reflections with $I > 2\sigma(I)$ $R_{\rm int} = 0.095$

203 parameters H-atom parameters constrained $\Delta \rho_{\rm max} = 0.21 \text{ e } \text{\AA}^{-3}$ $\Delta \rho_{\rm min} = -0.21 \text{ e } \text{\AA}^{-3}$

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

This work was supported by the Key Sci&Tech Project of Wenzhou Government (grant No. 2008S0629).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB5050).

References

- Began, G., Sudharshan, E., Sankar, K. U. & Appu, R. G. (1999). J. Agric. Food Chem. 47, 4992-4997.
- Bruker (2002). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Gautam, S. C., Gao, X. & Dulchavsky, S. (2007). Adv. Exp. Med. Biol. 595, 321-41.
- Liang, G., Li, X. K., Chen, L., Yang, S. L., Wu, X. P., Studer, E., Gurley, E. C., Hylemon, P. B., Ye, F. Q., Li, Y. R. & Zhou, H. P. (2008). Bioorg. Med. Chem. Lett. 18, 1525-1529.
- Liang, G., Shao, L. L., Wang, Y., Zhao, C. G., Chu, Y. H., Xiao, J., Zhao, Y., Li, X. K. & Yang, S. L. (2009). Bioorg. Med. Chem. 17, 2623-2631.
- Liang, G., Tian, J.-L., Zhao, C.-G. & Li, X.-K. (2007). Acta Cryst. E63, 03630.
- Liang, G., Yang, S.-L., Wang, X.-H., Li, Y.-R. & Li, X.-K. (2007). Acta Cryst. E63, 04118.
- Liang, G., Zhou, H. P., Wang, Y., Gurley, E. C., Feng, B., Chen, L., Xiao, J., Yang, S. L. & Li, X. K. (2009). J. Cell. Mol. Med. In the press.
- Liang, G., Yang, S. L., Jiang, L. J., Zhao, Y., Shao, L. L., Xiao, J., Ye, F. Q., Li, Y. R.& Li, X. K. (2008). Chem. Pharm. Bull (Tokyo), 56, 162-167.
- Maheshwari, R. K., Singh, A. K., Gaddipati, J. & Srimal, R. C. (2006). Life Sci. 78. 2081-2087.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Zhao, C. G., Yang, J., Huang, Y., Liang, G. & Li, X. K. (2009). Z. Kristallogr. New Cryst. Struct. 224, 337-338.

supporting information

Acta Cryst. (2009). E65, o2275 [doi:10.1107/S1600536809033583]

(1E,4E)-1,5-Bis(2,4-dimethylphenyl)penta-1,4-dien-3-one

Zhiguo Feng, Junhua Li and Yi Lin

S1. Comment

The title compound, $C_{21}H_{22}O$, (1E,4E)-1,5-bis(2,4-dimethylphenyl)penta-1,4-dien-3-one (I), is a mono-carbonyl analogue of curcumin. Curcumin has been found to possess a variety of pharmaceutical applications, for example, inhibiting the mutations and the formation of tumors, antioxidation, anti-inflammation and anti-virus (Began *et al.*, 1999; Maheshwari *et al.*, 2006; Gautam *et al.*, 2007). According to the structural disadvantages of curcumin which is considered to be responsible for its weak pharmacokinetic profiles, a series of mono-carbonyl analogues have been designed and synthesized, and their biological activity *in vitro* and *in vivo* were evaluated.

Derivatives of dibenzylidene acetone, cyclopentanone and cyclohexanone exhibit potent anti-inflammatory, antibacterial and anti-cancer activity.(Liang *et al.*, 2008; Liang *et al.*, 2008; Liang, Shao *et al.*, 2009; Liang, Zhou *et al.*, 2009). This fact leads to the significance of these synthetic mono-carbonyl analogues of curcumin. Several of these derivatives have been reported their crystal structures (Liang, Tian *et al.*, 2007; Liang, Yang *et al.*, 2007; Zhao *et al.*, 2009). In the present paper, we describe the crystal structure of the title compound $C_{21}H_{22}O$ (I) here. Its geometrical parameters of are normal, the dihedral angle between the six-membered aromatic ring planes is 20.57 (11)°.

S2. Experimental

To a solution of 15 mmol 2,4-dimethylbenzaldehyde in MeOH (10 ml) was added 7.5 mmol acetone. The solution was stirred at room temperature for 20 min, followed by added dropwise 20% (w/v) NaOH (1.5 ml, 7.5 mmol). The mixture was stirred at RT and monitored with TLC. When the reaction finished, the residue was poured into saturated NH₄Cl solution and filtered. The precipitate was washed and purified by chromatography over silica gel using CH₂Cl₂ / CH₃OH as the eluent to afford the pure product (yield: 38.2%). Colourless blokes of (I) were grown in a CH₂Cl₂—CH₃OH mixture (6:2 v/v) by slow evaporation (mp 436–437 K). 1*H*-NMR (CDCl₃): 2.34 (s, 6H, Ar₄—CH₃), 2.44 (s, 6H, Ar₂—CH₃), 6.96 (d, 2H, J=16.0 Hz, =CH—C=O), 7.05 (m, 4H, Ar—H_{3,5}), 7.56 (d, 2H, J=8.0 Hz, Ar—H₆), 8.0 (d, 2H, J=16.0 Hz, Ar—CH=C). ESI-MS m/z: 603.8 (2*M*+Na)+, calcd for C₂₁H₂₂O: 290.4.

S3. Refinement

The H atoms were positioned geometrically (C—H = 0.93–0.97 Å) and refined as riding with $U_{iso}(H) = 1.2U_{eq}(C)$ or $1.5U_{eq}(methyl C)$.

F(000) = 624

 $\theta = 4.4 - 44.1^{\circ}$

 $\mu = 0.07 \text{ mm}^{-1}$

T = 293 K

Prism, green

 $0.42 \times 0.37 \times 0.26 \text{ mm}$

 $D_{\rm x} = 1.134 {\rm Mg m^{-3}}$

Mo *K* α radiation, $\lambda = 0.71073$ Å

Cell parameters from 1845 reflections

Figure 1

The molecular structure of (I) shoiwng 50% displacement ellipsoids for the non-hydrogen atoms.

(1*E*,4*E*)-1,5-Bis(2,4-dimethylphenyl)penta-1,4-dien-3-one

Crystal data C₂₁H₂₂O $M_r = 290.39$ Monoclinic, $P2_1/c$ Hall symbol: -P 2ybc a = 4.9548 (7) Å b = 26.555 (4) Å c = 12.9632 (19) Å $\beta = 94.090$ (3)° V = 1701.3 (4) Å³ Z = 4

Data collection

Bruker SMART CCD	8842 measured reflections
diffractometer	3128 independent reflections
Radiation source: fine-focus sealed tube	2007 reflections with $I > 2\sigma(I)$
Graphite monochromator	$R_{\rm int}=0.095$
ω scans	$\theta_{\text{max}} = 25.5^{\circ}, \ \theta_{\text{min}} = 1.5^{\circ}$
Absorption correction: multi-scan	$h = -5 \rightarrow 6$
(SADABS; Bruker, 2002)	$k = -31 \rightarrow 32$
$T_{\min} = 0.769, \ T_{\max} = 1.000$	$l = -7 \rightarrow 15$

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.065$ $wR(F^2) = 0.173$ S = 0.973128 reflections 203 parameters 0 restraints Primary atom site location: structure-invariant direct methods Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.0858P)^2]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} = 0.057$ $\Delta\rho_{max} = 0.21$ e Å⁻³ $\Delta\rho_{min} = -0.21$ e Å⁻³

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

	x	У	Z	$U_{ m iso}$ */ $U_{ m eq}$	
01	1.4353 (4)	0.35616 (7)	0.08357 (12)	0.0700 (5)	
C1	1.2047 (5)	0.36963 (8)	0.09662 (16)	0.0510 (6)	
C2	1.0758 (5)	0.35782 (8)	0.19171 (16)	0.0528 (6)	
H2	0.9031	0.3703	0.1994	0.063*	
C3	1.1920 (4)	0.33037 (8)	0.26714 (16)	0.0479 (6)	
H3	1.3621	0.3173	0.2566	0.057*	
C4	1.0435 (5)	0.39838 (8)	0.01739 (16)	0.0545 (6)	
H4	0.8698	0.4083	0.0313	0.065*	
C5	1.1329 (5)	0.41070 (8)	-0.07216 (16)	0.0516 (6)	
H5	1.3019	0.3982	-0.0860	0.062*	
C6	0.9942 (4)	0.44212 (7)	-0.15263 (16)	0.0473 (6)	
C7	1.0565 (4)	0.43873 (7)	-0.25633 (16)	0.0493 (6)	
C8	0.9237 (5)	0.47084 (8)	-0.32771 (17)	0.0557 (6)	
H8	0.9633	0.4684	-0.3966	0.067*	
C9	0.7367 (5)	0.50614 (8)	-0.30192 (18)	0.0570 (6)	
C10	0.6759 (5)	0.50852 (9)	-0.19985 (19)	0.0645 (7)	
H10	0.5482	0.5316	-0.1801	0.077*	
C11	0.8023 (5)	0.47709 (9)	-0.12683 (18)	0.0603 (6)	
H11	0.7577	0.4794	-0.0585	0.072*	
C12	1.0812 (4)	0.31833 (7)	0.36552 (15)	0.0455 (5)	
C13	0.8956 (5)	0.34978 (8)	0.40688 (17)	0.0564 (6)	
H13	0.8429	0.3789	0.3710	0.068*	
C14	0.7855 (5)	0.33986 (9)	0.49876 (18)	0.0614 (7)	
H14	0.6607	0.3620	0.5239	0.074*	
C15	0.8597 (5)	0.29692 (9)	0.55428 (16)	0.0544 (6)	
C16	1.0474 (4)	0.26532 (9)	0.51378 (16)	0.0535 (6)	
H16	1.0998	0.2365	0.5506	0.064*	
C17	1.1613 (4)	0.27453 (8)	0.42090 (15)	0.0466 (5)	
C18	1.2581 (5)	0.40116 (8)	-0.29188 (17)	0.0626 (7)	
H18A	1.2595	0.4025	-0.3658	0.094*	
H18B	1.2081	0.3679	-0.2712	0.094*	
H18C	1.4350	0.4091	-0.2613	0.094*	
C19	0.5986 (6)	0.54084 (9)	-0.3819 (2)	0.0795 (8)	
H19A	0.6863	0.5383	-0.4453	0.119*	
H19B	0.6098	0.5749	-0.3572	0.119*	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

H19C	0.4120	0.5313	-0.3938	0.119*	
C20	1.3587 (5)	0.23772 (9)	0.38199 (18)	0.0640 (7)	
H20A	1.3890	0.2110	0.4313	0.096*	
H20B	1.5267	0.2545	0.3725	0.096*	
H20C	1.2871	0.2240	0.3172	0.096*	
C21	0.7377 (5)	0.28438 (12)	0.65406 (18)	0.0784 (8)	
H21A	0.6361	0.3127	0.6761	0.118*	
H21B	0.8792	0.2765	0.7060	0.118*	
H21C	0.6198	0.2559	0.6438	0.118*	

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
01	0.0565 (11)	0.0924 (13)	0.0619 (11)	0.0062 (9)	0.0100 (9)	0.0172 (9)
C1	0.0505 (14)	0.0541 (13)	0.0482 (13)	-0.0077 (11)	0.0023 (11)	0.0032 (10)
C2	0.0491 (13)	0.0618 (14)	0.0476 (13)	-0.0010 (11)	0.0044 (11)	0.0058 (11)
C3	0.0476 (13)	0.0479 (12)	0.0482 (13)	-0.0034 (10)	0.0043 (10)	-0.0009 (10)
C4	0.0522 (14)	0.0625 (14)	0.0492 (13)	0.0007 (11)	0.0061 (11)	0.0072 (11)
C5	0.0558 (14)	0.0491 (13)	0.0498 (13)	-0.0050 (10)	0.0036 (11)	-0.0002 (10)
C6	0.0546 (14)	0.0411 (11)	0.0459 (13)	-0.0053 (10)	0.0016 (10)	-0.0001 (9)
C7	0.0548 (13)	0.0456 (12)	0.0474 (13)	-0.0087 (10)	0.0037 (11)	0.0022 (10)
C8	0.0668 (16)	0.0528 (13)	0.0474 (13)	-0.0088 (12)	0.0034 (11)	0.0045 (11)
C9	0.0682 (16)	0.0427 (12)	0.0588 (15)	-0.0048 (12)	-0.0049 (12)	0.0009 (11)
C10	0.0678 (17)	0.0532 (14)	0.0716 (17)	0.0092 (12)	-0.0008 (13)	-0.0069 (13)
C11	0.0715 (17)	0.0579 (14)	0.0520 (14)	-0.0001 (12)	0.0084 (12)	-0.0018 (11)
C12	0.0447 (12)	0.0481 (12)	0.0435 (12)	-0.0012 (10)	0.0020 (10)	-0.0009 (10)
C13	0.0607 (15)	0.0549 (13)	0.0539 (14)	0.0141 (11)	0.0074 (12)	0.0058 (11)
C14	0.0598 (15)	0.0696 (16)	0.0564 (15)	0.0172 (13)	0.0156 (12)	0.0002 (12)
C15	0.0517 (14)	0.0657 (15)	0.0461 (13)	0.0025 (12)	0.0056 (11)	0.0027 (11)
C16	0.0531 (14)	0.0586 (14)	0.0487 (13)	0.0035 (11)	0.0031 (11)	0.0115 (11)
C17	0.0455 (12)	0.0462 (12)	0.0479 (13)	0.0023 (10)	0.0015 (10)	0.0012 (10)
C18	0.0700 (16)	0.0639 (15)	0.0549 (14)	0.0062 (13)	0.0110 (12)	-0.0017 (12)
C19	0.095 (2)	0.0616 (16)	0.0795 (19)	0.0047 (14)	-0.0140 (16)	0.0103 (14)
C20	0.0720 (17)	0.0580 (14)	0.0632 (15)	0.0108 (13)	0.0140 (13)	0.0003 (12)
C21	0.0716 (18)	0.107 (2)	0.0586 (16)	0.0085 (16)	0.0199 (13)	0.0149 (15)

Geometric parameters (Å, °)

01—C1	1.221 (3)	C12—C17	1.409 (3)	
C1—C2	1.462 (3)	C13—C14	1.370 (3)	
C1—C4	1.469 (3)	C13—H13	0.9300	
C2—C3	1.319 (3)	C14—C15	1.384 (3)	
С2—Н2	0.9300	C14—H14	0.9300	
C3—C12	1.459 (3)	C15—C16	1.383 (3)	
С3—Н3	0.9300	C15—C21	1.504 (3)	
C4—C5	1.313 (3)	C16—C17	1.388 (3)	
C4—H4	0.9300	C16—H16	0.9300	
C5—C6	1.468 (3)	C17—C20	1.496 (3)	

С5—Н5	0.9300	C18—H18A	0.9600
C6—C11	1.387 (3)	C18—H18B	0.9600
C6—C7	1.403 (3)	C18—H18C	0.9600
C7—C8	1.389 (3)	C19—H19A	0.9600
C7—C18	1.507 (3)	C19—H19B	0.9600
C8—C9	1.376 (3)	C19—H19C	0.9600
C8—H8	0.9300	C20—H20A	0.9600
C9-C10	1 379 (3)	C20—H20B	0.9600
C9-C19	1.575(3) 1.513(3)	C20—H20C	0.9600
C_{10}	1 379 (3)	C21—H21A	0.9601
C10_H10	0.9300	C21_H21B	0.9601
	0.9300	$\begin{array}{c} C_{21} \\ C_{21} \\ H_{21}C \\ \end{array}$	0.9601
C_{11}	0.9300	021—11210	0.9001
012-013	1.579(5)		
01—C1—C2	121.6 (2)	C12—C13—H13	118.7
O1—C1—C4	121.5 (2)	C13—C14—C15	120.2 (2)
C2—C1—C4	116.9 (2)	C13—C14—H14	119.9
C3—C2—C1	123.4 (2)	C15—C14—H14	119.9
C3—C2—H2	118.3	C14—C15—C16	117.6 (2)
C1—C2—H2	118.3	C14—C15—C21	121.4 (2)
C2—C3—C12	126.7 (2)	C16—C15—C21	121.0 (2)
С2—С3—Н3	116.6	C15—C16—C17	123.3 (2)
C12—C3—H3	116.7	C15—C16—H16	118.4
C5-C4-C1	123 1 (2)	C17—C16—H16	118.4
C5-C4-H4	118.4	C16-C17-C12	118.1(2)
C1 - C4 - H4	118.4	C16-C17-C20	119 59 (19)
C4 - C5 - C6	126.8 (2)	C12 - C17 - C20	122 3 (2)
C4 - C5 - H5	116.6	C7 - C18 - H18A	109.5
C6-C5-H5	116.6	C7 - C18 - H18B	109.5
$C_1 C_6 C_7$	110.0 118.4.(2)	H18A C18 H18B	109.5
$C_{11} = C_{0} = C_{7}$	110.7(2)	C7 C18 H18C	109.5
C7 - C6 - C5	120.2(2) 1214(2)	$C_{1} = C_{18} = 118C$	109.5
$C^{2} = C^{2} = C^{2}$	121.4(2) 118.2(2)	H18A - C18 - H18C	109.5
$C_{0} = C_{1} = C_{0}$	110.2(2)	$C_{0} = C_{10} = H_{100}$	109.5
$C_{0} - C_{1} - C_{10}$	119.7(2) 122.00(10)	C9-C19-H19A	109.5
$C_{0} = C_{1} = C_{18}$	122.09 (19)	С9—С19—П19В	109.5
$C_{2} = C_{3} = C_{1}$	125.5 (2)	ПІ9А—СІ9—ПІ9В	109.5
C_{2} C_{3} H_{8}	118.5	C9—C19—H19C	109.5
C/-C8-H8	118.3	HI9A—CI9—HI9C	109.5
$C_{8} - C_{9} - C_{10}$	117.5 (2)	H19B-C19-H19C	109.5
C8—C9—C19	121.9 (2)	C17—C20—H20A	109.5
C10_C9_C19	120.7 (2)	C17—C20—H20B	109.5
C11—C10—C9	120.8 (2)	H20A—C20—H20B	109.5
C11—C10—H10	119.6	C17—C20—H20C	109.5
С9—С10—Н10	119.6	H20A—C20—H20C	109.5
C10—C11—C6	121.7 (2)	H20B—C20—H20C	109.5
C10-C11-H11	119.2	C15—C21—H21A	109.5
C6—C11—H11	119.1	C15—C21—H21B	109.5
C13—C12—C17	118.2 (2)	H21A—C21—H21B	109.5

C13—C12—C3 C17—C12—C3 C14—C13—C12 C14—C13—H13	120.67 (19) 121.08 (19) 122.6 (2) 118.7	C15—C21—H21C H21A—C21—H21C H21B—C21—H21C	109.5 109.5 109.5
$\begin{array}{c} 01 - C1 - C2 - C3 \\ C4 - C1 - C2 - C3 \\ C1 - C2 - C3 - C12 \\ 01 - C1 - C4 - C5 \\ C2 - C1 - C4 - C5 \\ C2 - C1 - C4 - C5 \\ C1 - C4 - C5 - C6 \\ C4 - C5 - C6 - C11 \\ C4 - C5 - C6 - C7 \\ C11 - C6 - C7 - C8 \\ C5 - C6 - C7 - C8 \\ C5 - C6 - C7 - C18 \\ C5 - C6 - C7 - C18 \\ C5 - C6 - C7 - C18 \\ C6 - C7 - C8 - C9 \\ C18 - C7 - C8 - C9 \\ C18 - C7 - C8 - C9 \\ C18 - C7 - C8 - C9 \\ C10 - C10 \\ C7 - C8 - C9 - C10 \\ C7 - C8 - C9 - C10 \\ C10 - C11 \\ C19 - C9 - C10 - C11 \\ \end{array}$	-3.1 (3) 176.8 (2) 177.8 (2) 1.1 (4) -178.8 (2) -175.49 (19) 24.6 (3) -157.2 (2) 0.4 (3) -177.83 (18) -177.87 (2) 3.0 (3) 0.7 (3) 179.9 (2) -1.4 (3) 179.3 (2) 1.0 (4) -179.7 (2)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} 0.1 \ (4) \\ -0.8 \ (3) \\ 177.5 \ (2) \\ -26.1 \ (3) \\ 154.2 \ (2) \\ -0.5 \ (3) \\ 179.7 \ (2) \\ 0.1 \ (4) \\ 0.4 \ (4) \\ -178.5 \ (2) \\ -0.4 \ (3) \\ 178.4 \ (2) \\ 0.1 \ (3) \\ -178.8 \ (2) \\ 0.4 \ (3) \\ -179.83 \ (19) \\ 179.2 \ (2) \\ -1.0 \ (3) \end{array}$