

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Ethyl 2-acetoxymethyl-1-phenylsulfonyl-1*H*-indole-3-carboxylate

B. Gunasekaran,^a Radhakrishnan Sureshbabu,^b A. K. Mohanakrishnan,^b G. Chakkaravarthi^c and V. Manivannan^d*

^aDepartment of Physics, AMET University, Kanathur, Chennai 603 112, India, ^bDepartment of Organic Chemistry, University of Madras, Guindy Campus, Chennai 600 025, India, ^cDepartment of Physics, CPCL Polytechnic College, Chennai 600 068, India, and ^dDepartment of Research and Development, PRIST University, Vallam, Thanjavur 613 403, Tamil Nadu, India Correspondence e-mail: manivan_1999@vahoo.com

Received 26 July 2009; accepted 28 July 2009

Key indicators: single-crystal X-ray study; T = 295 K; mean σ (C–C) = 0.003 Å; R factor = 0.051; wR factor = 0.153; data-to-parameter ratio = 22.7.

In the title compound, $C_{20}H_{19}NO_6S$, the phenyl ring of the phenylsulfonyl group makes a dihedral angle of 83.35 (5)° with the indole ring system. The molecular structure exhibits a number of short intramolecular $C-H\cdots O$ contacts.

Related literature

For the biological activity of indole derivatives, see: Andreani *et al.* (2001); Quetin-Leclercq (1994); Mukhopadhyay *et al.* (1981); Singh *et al.* (2000). For related structures, see: Chakkaravarthi *et al.* (2007, 2008); Gunasekaran *et al.* (2009); For graph-set notation, see: Bernstein *et al.* (1995).

Experimental

Crystal data $C_{20}H_{19}NO_6S$ $M_r = 401.42$

Orthorhombic, *Pbca* a = 18.9097 (6) Å b = 7.9737 (2) Å c = 24.7877 (7) Å V = 3737.50 (18) Å³ Z = 8

Data collection

Bruker APEXII CCD diffractometer Absorption correction: multi-scan (*SADABS*; Sheldrick, 1996) $T_{\rm min} = 0.949, T_{\rm max} = 0.959$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.051$ 255 parameters $wR(F^2) = 0.153$ H-atom parameters constrainedS = 1.01 $\Delta \rho_{max} = 0.28$ e Å $^{-3}$ 5788 reflections $\Delta \rho_{min} = -0.35$ e Å $^{-3}$

Table 1		
Hydrogen-bond geometry	(Å,	°).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
C2-H2···O5	0.93	2.57	3.446 (2)	157
$C6-H6\cdots O2$	0.93	2.50	2.875 (3)	105
C8−H8···O2	0.93	2.42	2.993 (3)	120
C11-H11···O3	0.93	2.48	3.003 (3)	116
$C18 - H18A \cdots O4$	0.97	2.31	2.886 (3)	117
C18−H18B···O1	0.97	2.30	2.793 (3)	111

Data collection: *APEX2* (Bruker, 2004); cell refinement: *SAINT* (Bruker, 2004); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *PLATON* (Spek, 2009); software used to prepare material for publication: *SHELXL97*.

BG thanks AMET University management, India, for their kind support.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: GK2226).

References

- Andreani, A., Granaiola, M., Leoni, A., Locatelli, A., Morigi, R., Rambaldi, M., Giorgi, G., Salvini, L. & Garaliene, V. (2001). *Anticancer Drug Des.* 16, 167–174.
- Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.
- Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Chakkaravarthi, G., Dhayalan, V., Mohanakrishnan, A. K. & Manivannan, V. (2007). Acta Cryst. E63, 03698.
- Chakkaravarthi, G., Sureshbabu, R., Mohanakrishnan, A. K. & Manivannan, V. (2008). *Acta Cryst.* E64, o732.
- Gunasekaran, B., Sureshbabu, R., Mohanakrishnan, A. K., Chakkaravarthi, G. & Manivannan, V. (2009). Acta Cryst. E65, o1856.
- Mukhopadhyay, S., Handy, G. A., Funayama, S. & Cordell, G. A. (1981). J. Nat. Prod. 44, 696–700.
- Quetin-Leclercq, J. (1994). J. Pharm. Belg. 49, 181-192.
- Sheldrick, G. M. (1996). SADABS, University of Göttingen, Germany.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Singh, U. P., Sarma, B. K., Mishra, P. K. & Ray, A. B. (2000). Fol. Microbiol. 45, 173–176.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.

Mo $K\alpha$ radiation

 $0.25 \times 0.20 \times 0.20$ mm

28247 measured reflections

5788 independent reflections

3533 reflections with $I > 2\sigma(I)$

 $\mu = 0.21 \text{ mm}^{-1}$

T = 295 K

 $R_{\rm int} = 0.031$

supporting information

Acta Cryst. (2009). E65, o2069 [doi:10.1107/S1600536809029985]

Ethyl 2-acetoxymethyl-1-phenylsulfonyl-1*H*-indole-3-carboxylate

B. Gunasekaran, Radhakrishnan Sureshbabu, A. K. Mohanakrishnan, G. Chakkaravarthi and V. Manivannan

S1. Comment

Indole derivatives exhibit antibacterial, antifungal (Singh *et al.*, 2000) and antitumour activities (Andreani *et al.*, 2001). Some of the indole alkaloids extracted from plants possess interesting cytotoxic and antiparasitic properties (Quetin-Leclercq, 1994; Mukhopadhyay *et al.*, 1981).

The geometric parameters of the title compound (Fig. 1) agree well with reported similar structures (Chakkaravarthi *et al.*, 2007, 2008); (Gunasekaran *et al.*, 2009). The phenyl ring makes a dihedral angle of 83.35 (5) ° with the indole ring system. The sum of the bond angles around N1 [356.99 (5)°] indicate the sp^2 hybridized state of atom N1 in the molecule.

A distorted tetrahedral geometry $[O1-S1-O2 = 120.74 (10) \circ and O1-S1-N1 = 106.73 (8) \circ]$ around S1 is observed. The widening of the angles may be due to repulsive interactions between the two short S=O bonds. The torsion angles O1-S1-N1-C14 and O2-S1-N1-C7 [20.02 (18) \circ and -51.75 (15) \circ respectively] indicate the *syn* conformation of sulfonyl moiety.

The molecular structure is stabilized by weak intramolecular C—H···O interactions. The C6—H6···O2 interaction generate an S(5) graph set motif. The C8—H8···O2, C11—H11···O3, C18—H18A···O4 & C18—H18B···O1 interactions generate S(6) graph set motif and C2—H2···O5 interaction generate an S(8) graph set motif. The C6—H6···O2 and C8—H8···O2 interactions together constitute a pair of bifurcated acceptor bonds generating a ring of graph set $R_2^1(9)$ (Bernstein *et al.*, 1995).

S2. Experimental

Ethyl 2-(bromomethyl)-1-(phenylsulfonyl)-1*H*-indole-3-carboxylate (1 g, 2.4 mmol) was dissolved in dry dimethylformamide (10 ml). To this potassium acetate (0.47 g, 4.8 mmol) was added under nitrogen atmosphere. The reaction mixture was allowed to stir for 5 hr at room temperature. Then, the reaction mixture was poured over crushed ice (100 g) containing 1 mL of conc. HCl. The precipitated solid was filtered off and the solid was washed with water (3 x 20 ml) and dried. The product was recrystallized from methanol. Yield: 0.7 g (74%), m.p. 361–363K.

S3. Refinement

H atoms were positioned geometrically and refined using riding model with C—H = 0.93Å and $U_{iso}(H) = 1.2Ueq(C)$ for aromatic C—H, C—H = 0.97Å and $U_{iso}(H) = 1.2Ueq(C)$ for CH2, C—H = 0.96Å and $U_{iso}(H) = 1.5Ueq(C)$ for CH3.

Figure 1

The molecular structure of the title compound with atom labels and 30% probability displacement ellipsoids for non-H atoms.

Ethyl 2-acetoxymethyl-1-phenylsulfonyl-1*H*-indole-3-carboxylate

Crystal data

$C_{20}H_{19}NO_{6}S$ $M_{r} = 401.42$ Orthorhombic, <i>Pbca</i> Hall symbol: -P 2ac 2ab $a = 18.9097 (6) \text{ Å}$ $b = 7.9737 (2) \text{ Å}$ $c = 24.7877 (7) \text{ Å}$ $V = 3737.50 (18) \text{ Å}^{3}$ $Z = 8$	F(000) = 1680 $D_x = 1.427 \text{ Mg m}^{-3}$ Mo Ka radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 6552 reflections $\theta = 2.7-27.1^{\circ}$ $\mu = 0.21 \text{ mm}^{-1}$ T = 295 K Block, colourless $0.25 \times 0.20 \times 0.20 \text{ mm}$
Data collection	Absorption correction: multi-scan
Bruker APEXII CCD	(<i>SADABS</i> ; Sheldrick, 1996)
diffractometer	$T_{min} = 0.949$, $T_{max} = 0.959$
Radiation source: fine-focus sealed tube	28247 measured reflections
Graphite monochromator	5788 independent reflections
Detector resolution: 0 pixels mm ⁻¹	3533 reflections with $I > 2\sigma(I)$
ω and φ scans	$R_{int} = 0.031$

$\theta_{\text{max}} = 31.6^{\circ}, \ \theta_{\text{min}} = 2.0^{\circ}$	$k = -11 \rightarrow 8$
$h = -27 \rightarrow 20$	$l = -36 \rightarrow 36$
Refinement	
Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.051$	Hydrogen site location: inferred from
$wR(F^2) = 0.153$	neighbouring sites
<i>S</i> = 1.01	H-atom parameters constrained
5788 reflections	$w = 1/[\sigma^2(F_o^2) + (0.0697P)^2 + 1.0858P]$
255 parameters	where $P = (F_o^2 + 2F_c^2)/3$
0 restraints	$(\Delta/\sigma)_{\rm max} < 0.001$
Primary atom site location: structure-invariant	$\Delta \rho_{\rm max} = 0.28 \text{ e} \text{ Å}^{-3}$
direct methods	$\Delta ho_{ m min} = -0.35$ e Å ⁻³

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	X	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
C1	0.68111 (9)	0.2922 (2)	0.13401 (7)	0.0409 (4)	
C2	0.66359 (10)	0.3751 (3)	0.18121 (7)	0.0483 (4)	
H2	0.6165	0.3879	0.1913	0.058*	
C3	0.71703 (11)	0.4382 (3)	0.21287 (8)	0.0541 (5)	
Н3	0.7062	0.4961	0.2444	0.065*	
C4	0.78647 (11)	0.4159 (3)	0.19792 (9)	0.0558 (5)	
H4	0.8224	0.4567	0.2199	0.067*	
C5	0.80341 (11)	0.3345 (3)	0.15112 (9)	0.0552 (5)	
Н5	0.8506	0.3214	0.1413	0.066*	
C6	0.75066 (11)	0.2720 (3)	0.11846 (8)	0.0483 (4)	
H6	0.7617	0.2170	0.0865	0.058*	
C7	0.60056 (10)	0.4924 (2)	0.03978 (6)	0.0428 (4)	
C8	0.66197 (11)	0.4833 (3)	0.00964 (7)	0.0541 (5)	
H8	0.6895	0.3868	0.0088	0.065*	
C9	0.68026 (13)	0.6250 (3)	-0.01919 (8)	0.0637 (6)	
H9	0.7214	0.6239	-0.0397	0.076*	
C10	0.63942 (13)	0.7675 (3)	-0.01839 (8)	0.0625 (6)	
H10	0.6535	0.8601	-0.0385	0.075*	
C11	0.57857 (12)	0.7761 (3)	0.01128 (7)	0.0525 (5)	
H11	0.5511	0.8729	0.0114	0.063*	
C12	0.55875 (10)	0.6358 (2)	0.04138 (6)	0.0430 (4)	
C13	0.49985 (10)	0.6010 (2)	0.07648 (6)	0.0413 (4)	
C14	0.50652 (9)	0.4409 (2)	0.09542 (6)	0.0404 (4)	
C15	0.44401 (11)	0.7252 (3)	0.08755 (7)	0.0494 (5)	
C16	0.33828 (13)	0.7855 (4)	0.13344 (13)	0.0798 (8)	
H16A	0.3227	0.8383	0.1002	0.096*	
H16B	0.3533	0.8727	0.1582	0.096*	
C17	0.28112 (17)	0.6899 (4)	0.15688 (15)	0.1048 (11)	
H17A	0.2638	0.6106	0.1309	0.157*	
H17B	0.2436	0.7644	0.1671	0.157*	
H17C	0.2980	0.6313	0.1882	0.157*	
C18	0.45723 (10)	0.3415 (3)	0.12950 (7)	0.0471 (4)	

H18A	0.4095	0.3849	0.1262	0.057*	
H18B	0.4573	0.2250	0.1182	0.057*	
C19	0.45014 (11)	0.2553 (3)	0.22036 (8)	0.0537 (5)	
C20	0.48239 (14)	0.2728 (4)	0.27501 (9)	0.0738 (7)	
H20A	0.4577	0.2020	0.3001	0.111*	
H20B	0.4789	0.3874	0.2866	0.111*	
H20C	0.5312	0.2403	0.2735	0.111*	
N1	0.56802 (8)	0.37097 (19)	0.07288 (6)	0.0430 (3)	
01	0.56787 (8)	0.10956 (18)	0.12805 (7)	0.0627 (4)	
O2	0.64517 (9)	0.13016 (19)	0.04850 (6)	0.0663 (4)	
03	0.44205 (10)	0.8600 (2)	0.06699 (8)	0.0857 (6)	
04	0.39629 (8)	0.6727 (2)	0.12256 (6)	0.0641 (4)	
05	0.48159 (7)	0.35577 (17)	0.18482 (5)	0.0502 (3)	
O6	0.40269 (11)	0.1643 (3)	0.20854 (7)	0.0913 (6)	
S1	0.61405 (3)	0.20341 (6)	0.09468 (2)	0.04808 (15)	

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	0.0439 (9)	0.0323 (10)	0.0464 (8)	0.0010 (7)	-0.0041 (7)	0.0052 (7)
C2	0.0451 (10)	0.0481 (12)	0.0516 (9)	0.0023 (9)	0.0002 (8)	0.0016 (8)
C3	0.0603 (12)	0.0513 (13)	0.0508 (10)	-0.0009 (10)	-0.0050 (9)	-0.0036 (9)
C4	0.0541 (12)	0.0504 (13)	0.0631 (11)	-0.0073 (9)	-0.0138 (9)	0.0040 (9)
C5	0.0441 (10)	0.0516 (13)	0.0698 (12)	-0.0025 (9)	0.0003 (9)	0.0104 (10)
C6	0.0504 (10)	0.0405 (12)	0.0541 (9)	0.0027 (8)	0.0030 (8)	0.0026 (8)
C7	0.0524 (10)	0.0400 (11)	0.0359 (7)	-0.0054 (8)	-0.0076 (7)	-0.0011 (7)
C8	0.0604 (12)	0.0565 (13)	0.0454 (9)	-0.0010 (10)	0.0001 (8)	-0.0051 (9)
C9	0.0693 (14)	0.0767 (17)	0.0452 (10)	-0.0160 (12)	0.0061 (9)	-0.0028 (10)
C10	0.0826 (15)	0.0570 (15)	0.0478 (10)	-0.0208 (12)	-0.0024 (10)	0.0080 (9)
C11	0.0728 (13)	0.0397 (12)	0.0450 (9)	-0.0074 (9)	-0.0084 (9)	0.0026 (8)
C12	0.0551 (10)	0.0391 (11)	0.0348 (7)	-0.0054 (8)	-0.0106 (7)	-0.0035 (7)
C13	0.0491 (10)	0.0381 (10)	0.0366 (7)	-0.0010 (8)	-0.0114 (7)	-0.0010 (7)
C14	0.0420 (9)	0.0404 (11)	0.0389 (8)	-0.0030 (7)	-0.0104 (7)	0.0011 (7)
C15	0.0537 (11)	0.0463 (13)	0.0482 (9)	0.0039 (9)	-0.0120 (8)	0.0002 (8)
C16	0.0608 (14)	0.0734 (19)	0.1053 (19)	0.0158 (13)	0.0051 (14)	-0.0091 (15)
C17	0.084 (2)	0.087 (2)	0.144 (3)	0.0024 (17)	0.0415 (19)	-0.005 (2)
C18	0.0438 (9)	0.0490 (12)	0.0485 (9)	-0.0053 (8)	-0.0103 (7)	0.0048 (8)
C19	0.0529 (11)	0.0520 (13)	0.0562 (10)	-0.0001 (10)	0.0086 (9)	0.0086 (9)
C20	0.0858 (17)	0.0825 (18)	0.0532 (11)	-0.0016 (14)	0.0033 (11)	0.0150 (12)
N1	0.0468 (8)	0.0363 (9)	0.0459 (7)	-0.0002 (6)	-0.0071 (6)	0.0036 (6)
01	0.0561 (8)	0.0387 (9)	0.0933 (11)	-0.0070 (6)	-0.0113 (8)	0.0163 (7)
O2	0.0780 (10)	0.0467 (9)	0.0743 (9)	0.0083 (7)	-0.0106 (8)	-0.0226 (7)
03	0.0919 (13)	0.0588 (12)	0.1065 (14)	0.0256 (10)	0.0135 (11)	0.0258 (10)
O4	0.0605 (9)	0.0577 (10)	0.0741 (9)	0.0132 (7)	0.0094 (7)	0.0034 (8)
05	0.0545 (8)	0.0515 (8)	0.0445 (6)	-0.0091 (6)	-0.0059 (6)	0.0084 (6)
O6	0.0865 (12)	0.1080 (15)	0.0792 (11)	-0.0482 (12)	0.0073 (10)	0.0148 (11)
S 1	0.0519 (3)	0.0306 (3)	0.0617 (3)	0.0003 (2)	-0.0106 (2)	-0.0024 (2)

Geometric parameters (Å, °)

C1—C6	1.380 (3)	C13—C15	1.473 (3)
C1—C2	1.384 (3)	C14—N1	1.406 (2)
C1—S1	1.7492 (18)	C14—C18	1.487 (3)
C2—C3	1.375 (3)	C15—O3	1.190 (3)
C2—H2	0.9300	C15—O4	1.320 (2)
C3—C4	1.376 (3)	C16—O4	1.444 (3)
С3—Н3	0.9300	C16—C17	1.445 (4)
C4—C5	1.367 (3)	C16—H16A	0.9700
C4—H4	0.9300	C16—H16B	0.9700
C5—C6	1.378 (3)	C17—H17A	0.9600
С5—Н5	0.9300	C17—H17B	0.9600
С6—Н6	0.9300	C17—H17C	0.9600
C7—C8	1.383 (3)	C18—O5	1.451 (2)
C7—C12	1.390 (3)	C18—H18A	0.9700
C7—N1	1.411 (2)	C18—H18B	0.9700
C8—C9	1.380 (3)	C19—O6	1.190 (3)
С8—Н8	0.9300	C19—O5	1.331 (2)
C9—C10	1.374 (4)	C19—C20	1.492 (3)
С9—Н9	0.9300	C20—H20A	0.9600
C10—C11	1.367 (3)	C20—H20B	0.9600
C10—H10	0.9300	С20—Н20С	0.9600
C11—C12	1.396 (3)	N1—S1	1.6838 (16)
C11—H11	0.9300	O1—S1	1.4166 (15)
C12—C13	1.440 (3)	O2—S1	1.4136 (16)
C13—C14	1.366 (3)		
C6—C1—C2	121.34 (17)	O3—C15—O4	123.1 (2)
C6—C1—S1	119.21 (14)	O3—C15—C13	123.3 (2)
C2—C1—S1	119.39 (14)	O4—C15—C13	113.56 (17)
C3—C2—C1	118.77 (18)	O4—C16—C17	108.4 (2)
C3—C2—H2	120.6	O4—C16—H16A	110.0
C1—C2—H2	120.6	C17—C16—H16A	110.0
C2—C3—C4	120.01 (19)	O4—C16—H16B	110.0
С2—С3—Н3	120.0	C17—C16—H16B	110.0
С4—С3—Н3	120.0	H16A—C16—H16B	108.4
C5—C4—C3	120.91 (19)	С16—С17—Н17А	109.5
C5—C4—H4	119.5	C16—C17—H17B	109.5
C3—C4—H4	119.5	H17A—C17—H17B	109.5
C4—C5—C6	120.04 (19)	C16—C17—H17C	109.5
C4—C5—H5	120.0	H17A—C17—H17C	109.5
C6—C5—H5	120.0	H17B—C17—H17C	109.5
C5—C6—C1	118.91 (18)	O5—C18—C14	107.23 (14)
С5—С6—Н6	120.5	O5—C18—H18A	110.3
С1—С6—Н6	120.5	C14—C18—H18A	110.3
C8—C7—C12	122.42 (18)	O5—C18—H18B	110.3
C8—C7—N1	130.14 (18)	C14—C18—H18B	110.3

C12—C7—N1	107.44 (16)	H18A—C18—H18B	108.5
C9—C8—C7	116.6 (2)	O6—C19—O5	122.7 (2)
С9—С8—Н8	121.7	O6—C19—C20	126.1 (2)
С7—С8—Н8	121.7	O5—C19—C20	111.21 (19)
C10—C9—C8	121.9 (2)	C19—C20—H20A	109.5
С10—С9—Н9	119.1	C19—C20—H20B	109.5
С8—С9—Н9	119.1	H20A—C20—H20B	109.5
C11—C10—C9	121.5 (2)	С19—С20—Н20С	109.5
C11—C10—H10	119.3	H20A—C20—H20C	109.5
С9—С10—Н10	119.3	H20B—C20—H20C	109.5
C10—C11—C12	118.2 (2)	C14—N1—C7	108.65 (15)
C10—C11—H11	120.9	C14—N1—S1	127.94 (12)
C12—C11—H11	120.9	C7—N1—S1	120.40 (13)
C7—C12—C11	119.40 (18)	C15—O4—C16	116.42 (19)
C7—C12—C13	107.40 (16)	C19—O5—C18	115.88 (15)
C11—C12—C13	133.20 (19)	O2—S1—O1	120.74 (10)
C14—C13—C12	108.42 (16)	02—S1—N1	106.44 (9)
C14—C13—C15	129.06 (18)	01—S1—N1	106.73 (8)
C12—C13—C15	122.52 (17)	02-S1-C1	108.47 (9)
C13—C14—N1	108.09 (16)	01-S1-C1	109.60 (9)
C_{13} C_{14} C_{18}	129.45 (17)	N1 - S1 - C1	103.45 (8)
N1-C14-C18	122.22 (16)		
	(10)		
C6-C1-C2-C3	0.1 (3)	C12-C13-C15-O4	-177.13 (16)
<u>\$1-C1-C2-C3</u>	177.33 (15)	C_{13} C_{14} C_{18} C_{5}	-97.2 (2)
C1-C2-C3-C4	-1.1(3)	N1-C14-C18-O5	89.02 (19)
$C_{2} - C_{3} - C_{4} - C_{5}$	15(3)	C13 - C14 - N1 - C7	0.88(18)
C_{3} C_{4} C_{5} C_{6}	-0.7(3)	C18 - C14 - N1 - C7	17580(14)
C4-C5-C6-C1	-0.4(3)	C13 - C14 - N1 - S1	160.98(12)
C_{2} C_{1} C_{6} C_{5}	0.7(3)	C18 - C14 - N1 - S1	-241(2)
<u>\$1-C1-C6-C5</u>	-17658(15)	C8-C7-N1-C14	17948(17)
$C_{12} - C_{7} - C_{8} - C_{9}$	01(3)	C12 - C7 - N1 - C14	-0.79(18)
N1-C7-C8-C9	179 75 (17)	C8-C7-N1-S1	17.6(2)
C7 - C8 - C9 - C10	-0.5(3)	C12-C7-N1-S1	-162.66(12)
C_{8} C_{9} C_{10} C_{11}	0.2(3)	03-C15-04-C16	2 7 (3)
$C_{0} - C_{10} - C_{11} - C_{12}$	0.2(3)	C_{13} C_{15} C_{4} C_{16}	-17734(18)
C_{8} C_{7} C_{12} C_{11}	0.4(3)	C_{17} C_{16} C_{17} C	160.9(2)
N1 - C7 - C12 - C11	$-179\ 20\ (14)$	06-C19-05-C18	-3.3(3)
C_{8} C_{7} C_{12} C_{13}	-179.84(16)	C_{20} C_{19} C_{5} C_{18}	176.40(18)
$C_{0} = C_{12} = C_{13}$	1/9.04(10)	$C_{20} = C_{19} = 05 = C_{18}$	-170.40(18)
$C_{10} = C_{12} = C_{13}$	-0.8(3)	$C_{14} = C_{16} = 05 = C_{19}$	170.30(10)
$C_{10} = C_{11} = C_{12} = C_{13}$	170.76(18)	C7 N1 S1 O2	-51.75(15)
C7 C12 C13 C14	1/9.70(10) 0.13(18)	$C_{-N1} = S_{-02}$	-31.73(13)
$C_1 = C_{12} = C_{13} = C_{14}$	170 66 (18)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	20.02(10)
$C_{11} - C_{12} - C_{13} - C_{14}$	-170.64(15)	$C_1 = N_1 = S_1 = O_1$	-05.58(16)
$C_1 = C_{12} = C_{13} = C_{13}$	-0.1(3)	$C_{14} = N_{1} = S_{1} = C_{1}$	33.30(10)
$C_{11} - C_{12} - C_{13} - C_{13}$	-0.1(3)	$C_1 = N_1 = S_1 = C_1$	02.47(14)
C12 - C13 - C14 - N1	-0.02(18)	$C_0 - C_1 - S_1 - O_2$	-4.02(18)
U13—U13—U14—N1	1/9.14 (16)	$C_2 - C_1 - S_1 - O_2$	1/8.69 (15)

supporting information

C12—C13—C14—C18	-175.05 (16)	C6—C1—S1—O1	129.69 (16)
C15—C13—C14—C18	4.7 (3)	C2-C1-S1-O1	-47.59 (17)
C14—C13—C15—O3	-176.9 (2)	C6-C1-S1-N1	-116.77 (15)
C12—C13—C15—O3	2.8 (3)	C2-C1-S1-N1	65.94 (16)
C14—C13—C15—O4	3.1 (3)		

Hydrogen-bond geometry (Å, °)

<i>D</i> —H··· <i>A</i>	D—H	Н…А	D····A	D—H···A
С2—Н2…О5	0.93	2.57	3.446 (2)	157
С6—Н6…О2	0.93	2.50	2.875 (3)	105
С8—Н8…О2	0.93	2.42	2.993 (3)	120
С11—Н11…ОЗ	0.93	2.48	3.003 (3)	116
C18—H18A····O4	0.97	2.31	2.886 (3)	117
C18—H18 <i>B</i> …O1	0.97	2.30	2.793 (3)	111