organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

4,4,5,5-Tetramethyl-2-(3,4,5-trimethoxyphenyl)imidazolidine-1-oxyl 3-oxide

Hai-Bo Wang, Lin-Lin Jing, Peng Gao and Xiao-Li Sun*

Department of Chemistry, School of Pharmacy, Fourth Military Medical University, Changle West Road 17, 710032 Xi-An, People's Republic of China Correspondence e-mail: lisydcn@yahoo.com.cn

Received 26 June 2009; accepted 23 July 2009

Key indicators: single-crystal X-ray study; T = 296 K; mean σ (C–C) = 0.003 Å; R factor = 0.046; wR factor = 0.119; data-to-parameter ratio = 14.0.

In the title nitronyl nitroxide radical compound, $C_{16}C_{23}N_2O_5$, the imidazole and benzene rings are twisted with respect to each other, making a dihedral angle of $26.2 (4)^{\circ}$. The imidazole ring adopts a half-chair conformation. Weak C- $H \cdots \pi$ interactions are also found.

Related literature

For the preparation of the title compound see: Ullman et al. (1974). For related structures, see: Feher et al. (2008); Gao et al. (2009); Qin et al. (2009); Cirujeda et al. (1995); Matsushita et al. (1997). For the coordination properties of the title compound and its use in the formation of molecule-based magnetic materials, see: Takui et al. (2009). For puckering parameters, see: Cremer & Pople (1975).

b = 7.2168 (12) Å

 $V = 3398.0 (10) \text{ Å}^3$

c = 22.831 (4) Å

Z = 8

Experimental

Crystal data

$C_{16}H_{23}N_2O_5$	
$M_r = 323.36$	
Orthorhombic, Pbca	
a = 20.623 (3) Å	

Mo $K\alpha$ radiation $\mu = 0.09 \text{ mm}^{-1}$

Data collection

Bruker APEXII diffractometer	
Absorption correction: none	
15858 measured reflections	

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.046$	216 parameters
$\nu R(F^2) = 0.119$	H-atom parameters constrained
1 = 1.06	$\Delta \rho_{\rm max} = 0.17 \ {\rm e} \ {\rm \AA}^{-3}$
027 reflections	$\Delta \rho_{\rm min} = -0.23 \text{ e } \text{\AA}^{-3}$

T = 296 K

 $R_{\rm int} = 0.062$

 $0.32 \times 0.25 \times 0.17 \text{ mm}$

3027 independent reflections 1519 reflections with $I > 2\sigma(I)$

Table 1

ŀ

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$C14-H14A\cdots Cg2^{i}$	0.96	2.80	3.644 (2)	147

Symmetry code: (i) -x, -y, -z + 1. Cg2 is the centroid of the phenyl ring.

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPIII (Burnett & Johnson, 1996) and ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

We thank the Natural Science Foundation of China (grant No. 20802092) for financial support.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: DN2472).

References

- Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.
- Cirujeda, J., Mas, M., Molins, E., Panthou de, F. L., Laugier, J., Park, J. G., Paulsen, C., Rey, P., Rovira, C. & Veciana, J. (1995). Chem. Commun. pp. 709-710.
- Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Feher, R., Wurst, K., Amabilino, D. B. & Veciana, J. (2008). Inorg. Chim. Acta, 361, 4094-4099.

Gao, Z.-Y., Chang, J.-L., Xian, D. & Jiang, K. (2009). Acta Cryst. E65, o1062.

- Matsushita, M. M., Izuoka, A., Sugawara, T., Kobayashi, T., Wada, N., Takeda, N. & Ishikawa, M. (1997). J. Am. Chem. Soc. 119, 4369-4379.
- Qin, X.-Y., Wang, P.-A. & Sun, X.-L. (2009). Acta Cryst. E65, o1031.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Takui, T., Hosokoshi, Y., Lan, X., Miyazaki, Y., Inada, A. & Okada, K. (2009). J. Am. Chem. Soc. 131, 4670-4673.
- Ullman, E. F., Osiecki, J. H., Boocock, D. G. B. & Darcy, R. (1974). J. Am. Chem. Soc. 96, 7049-7053.

supporting information

Acta Cryst. (2009). E65, o2090 [doi:10.1107/S1600536809029274]

4,4,5,5-Tetramethyl-2-(3,4,5-trimethoxyphenyl)imidazolidine-1-oxyl 3-oxide

Hai-Bo Wang, Lin-Lin Jing, Peng Gao and Xiao-Li Sun

S1. Comment

The title radical compound was obtained from the oxidation of 4,4,5,5- tetramethyl-2-(3,4,5-trimethoxybenzenyl)imidazolidine-1,3-diol, which was prepared by the condensation of 3,4,5-trimethoxybenzaldehyde with 2,3-Dimethyl-2,3bis(hydroxyl-amino)butane. The title compound was used for coordination with many metal cations, such as Mn^{2+} , Cu^{2+} , and Ni^{2+} , in order to form some molecule-based magnetic materials (Takui *et al.*, 2009).

The molecular structure of the title compound is shown in Fig 1. Examination of bond length within the five membered rings shows an average structure as observed with related compounds (Cirujeda *et al.*, 1995; Feher *et al.*, 2008; Gao *et al.*, 2009; Matsushita *et al.*, 1997; Qin *et al.*, 2009).

The imidazole and the phenyl rings are twisted with respect to each other making a dihedral angle of 26.2 (4)°. The imidazole ring has an half-chair conformation with puckering parameters O(2)=. 0.0275 (2)Å and φ = 233.0 (5)°(Cremer & Pople, 1975). The crystal structure is stabilized by weak C—H··· π (Table 1, *Cg*2 is the centroid of the phenyl ring) and van der Waals interactions.

S2. Experimental

The compound 4,4,5,5-tetramethyl-2-(3,4,5-trimethoxybenzenyl)-imidazolidine -1-oxyl-3-oxide was prepared according to the method reported by Ullman *et al.* (1974). 2,3-Dimethyl-2,3-bis(hydroxylamino) butane (1.48 g, 10.0 mmol) and 3,4,5-trimethoxybenzaldehyde (1.96 g, 10.0 mmol) were dissolved in a methanol-water mixture (2:1), which was stirred for 5 h at reflux temperature, then cooled to room temperature and filtered. The white powder was washed by methanol. This product was dried under vaccum, then, it was suspended in dichloromethane (50.0 ml) and the water solution (30.0 ml) of NaIO₄(1.7 g) was added and stirred at ice bath for 20 min. The reaction mixture was extracted by dichloromethane (30.0 ml) for twice and the organic layer was combined and dried over Na₂SO₄. Then the solvent was removed to give a dark blue residue which was purified by a flash column chromatography (eluent, ether and petroleum ether, the ratio of volume is 2 to 1) to yield the title compound (I) as a dark blue powder. Single crystals of compound (I) were obtained from the mixed solution of *n*-heptane and dichloromethane (the ratio of volume is 1 to 1).

S3. Refinement

All H atoms were fixed geometrically and treated as riding with C—H = 0.96 Å (methyl) or 0.93 Å (aromatic) with $U_{iso}(H) = 1.2U_{eq}(C_{aromatic})$ or $U_{iso}(H) = 1.5U_{eq}(C_{methyl})$.

Figure 1

Molecular structure of the title compound (I), showing the atom labeling scheme. Displacement ellipsoids are drawn at the 30% probability level.

4,4,5,5-Tetramethyl-2-(3,4,5-trimethoxyphenyl)imidazolidine-1-oxyl 3-oxide

Crystal data	
C ₁₆ H ₂₃ N ₂ O ₅ $M_r = 323.36$ Orthorhombic, <i>Pbca</i> Hall symbol: -P 2ac 2ab a = 20.623 (3) Å b = 7.2168 (12) Å c = 22.831 (4) Å V = 3398.0 (10) Å ³ Z = 8	F(000) = 1384 $D_x = 1.264 \text{ Mg m}^{-3}$ Mo $K\alpha$ radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 1322 reflections $\theta = 3.1-18.2^{\circ}$ $\mu = 0.09 \text{ mm}^{-1}$ T = 296 K Block, blue $0.32 \times 0.25 \times 0.17 \text{ mm}$
Data collectionBruker SMART APEX2 diffractometerRadiation source: fine-focus sealed tubeGraphite monochromatorDetector resolution: 0 pixels mm ⁻¹ φ and ω scans15858 measured reflections	3027 independent reflections 1519 reflections with $I > 2\sigma(I)$ $R_{int} = 0.062$ $\theta_{max} = 25.1^{\circ}, \ \theta_{min} = 1.8^{\circ}$ $h = -12 \rightarrow 24$ $k = -8 \rightarrow 8$ $l = -27 \rightarrow 26$

Refinement

Refinement on F^2	Hydrogen site location: inferred from
Least-squares matrix: full	neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.046$	H-atom parameters constrained
$wR(F^2) = 0.119$	$w = 1/[\sigma^2(F_o^2) + (0.05P)^2]$
S = 1.06	where $P = (F_{o}^{2} + 2F_{c}^{2})/3$
3027 reflections	$(\Delta/\sigma)_{\rm max} = 0.001$
216 parameters	$\Delta ho_{ m max} = 0.17 \ m e \ m \AA^{-3}$
0 restraints	$\Delta \rho_{\rm min} = -0.23 \text{ e } \text{\AA}^{-3}$
Primary atom site location: structure-invariant direct methods	Extinction correction: <i>SHELXL97</i> (Sheldrick, 2008), $Fc^*=kFc[1+0.001xFc^2\lambda^3/sin(2\theta)]^{-1/4}$
Secondary atom site location: difference Fourier map	Extinction coefficient: 0.0019 (5)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
N1	0.06793 (9)	0.2073 (3)	0.49665 (8)	0.0570 (5)	
N2	0.15280 (9)	0.0432 (3)	0.47376 (8)	0.0576 (5)	
01	0.01712 (9)	0.2652 (3)	0.52296 (7)	0.0913 (6)	
O2	0.20243 (8)	-0.0630(3)	0.47707 (7)	0.0903 (6)	
03	0.07153 (8)	0.1394 (2)	0.72841 (6)	0.0717 (5)	
04	0.12645 (7)	-0.1894 (2)	0.74689 (6)	0.0720 (5)	
05	0.17240 (8)	-0.3947 (2)	0.65885 (7)	0.0743 (5)	
C1	0.08745 (10)	0.2830 (3)	0.43780 (9)	0.0511 (6)	
C2	0.13132 (10)	0.1227 (3)	0.41649 (9)	0.0548 (6)	
C3	0.11082 (10)	0.0839 (3)	0.51744 (9)	0.0506 (6)	
C4	0.11306 (10)	0.0103 (3)	0.57690 (9)	0.0505 (6)	
C5	0.14140 (10)	-0.1615 (3)	0.58697 (10)	0.0533 (6)	
H5	0.1574	-0.2313	0.5559	0.064*	
C6	0.14551 (10)	-0.2276 (3)	0.64375 (10)	0.0550 (6)	
C7	0.12210 (10)	-0.1231 (3)	0.69035 (10)	0.0542 (6)	
C8	0.09320 (11)	0.0479 (3)	0.67984 (9)	0.0543 (6)	
C9	0.08840 (10)	0.1132 (3)	0.62324 (9)	0.0539 (6)	
H9	0.0686	0.2266	0.6161	0.065*	
C10	0.03918 (13)	0.3130 (4)	0.71996 (10)	0.0823 (8)	
H10A	0.0693	0.4022	0.7047	0.123*	
H10B	0.0224	0.3562	0.7567	0.123*	
H10C	0.0041	0.2971	0.6928	0.123*	
C11	0.18747 (13)	-0.1598 (5)	0.77318 (11)	0.1017 (10)	

H11A	0.2203	-0.2234	0.7511	0.153*
H11B	0.1868	-0.2064	0.8126	0.153*
H11C	0.1968	-0.0295	0.7737	0.153*
C12	0.19952 (13)	-0.5035 (4)	0.61337 (12)	0.0869 (8)
H12A	0.1663	-0.5354	0.5857	0.130*
H12B	0.2177	-0.6146	0.6296	0.130*
H12C	0.2329	-0.4343	0.5940	0.130*
C13	0.12386 (12)	0.4629 (3)	0.45043 (11)	0.0726 (7)
H13A	0.0965	0.5449	0.4724	0.109*
H13B	0.1358	0.5209	0.4141	0.109*
H13C	0.1622	0.4360	0.4727	0.109*
C14	0.02814 (11)	0.3224 (3)	0.40075 (10)	0.0722 (7)
H14A	0.0019	0.2129	0.3984	0.108*
H14B	0.0414	0.3586	0.3621	0.108*
H14C	0.0035	0.4207	0.4183	0.108*
C15	0.18983 (12)	0.1816 (4)	0.38065 (10)	0.0783 (8)
H15A	0.2168	0.2619	0.4037	0.117*
H15B	0.1756	0.2462	0.3462	0.117*
H15C	0.2141	0.0739	0.3694	0.117*
C16	0.09402 (13)	-0.0316 (3)	0.38572 (10)	0.0765 (8)
H16A	0.1214	-0.1385	0.3818	0.115*
H16B	0.0808	0.0099	0.3476	0.115*
H16C	0.0564	-0.0633	0.4084	0.115*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
N1	0.0488 (12)	0.0639 (13)	0.0583 (12)	0.0123 (10)	0.0125 (10)	0.0033 (10)
N2	0.0509 (11)	0.0636 (13)	0.0583 (13)	0.0127 (11)	0.0095 (10)	0.0047 (10)
01	0.0890 (14)	0.1057 (15)	0.0792 (11)	0.0366 (11)	0.0233 (11)	0.0175 (10)
O2	0.0745 (12)	0.1091 (15)	0.0872 (12)	0.0401 (11)	0.0215 (10)	0.0192 (10)
03	0.0827 (13)	0.0798 (12)	0.0526 (10)	0.0157 (10)	0.0074 (8)	-0.0006 (9)
O4	0.0655 (12)	0.0913 (13)	0.0591 (11)	-0.0002 (9)	-0.0019 (9)	0.0204 (9)
05	0.0798 (12)	0.0648 (12)	0.0783 (11)	0.0196 (10)	0.0001 (10)	0.0135 (10)
C1	0.0527 (14)	0.0518 (15)	0.0487 (13)	0.0028 (12)	0.0001 (11)	0.0055 (11)
C2	0.0590 (15)	0.0580 (15)	0.0474 (13)	0.0022 (12)	0.0058 (11)	0.0036 (12)
C3	0.0454 (13)	0.0516 (14)	0.0548 (14)	0.0060 (12)	0.0035 (12)	0.0021 (11)
C4	0.0450 (13)	0.0560 (15)	0.0504 (14)	-0.0007 (12)	0.0011 (11)	0.0049 (12)
C5	0.0475 (14)	0.0561 (16)	0.0561 (15)	0.0046 (11)	0.0013 (11)	-0.0007 (12)
C6	0.0453 (14)	0.0575 (16)	0.0623 (16)	0.0001 (12)	-0.0007 (12)	0.0082 (13)
C7	0.0478 (14)	0.0651 (17)	0.0496 (14)	-0.0037 (13)	0.0000 (11)	0.0112 (13)
C8	0.0517 (14)	0.0636 (16)	0.0474 (15)	-0.0029 (13)	0.0051 (11)	-0.0016 (12)
C9	0.0533 (14)	0.0544 (14)	0.0539 (15)	0.0038 (12)	0.0032 (11)	0.0032 (12)
C10	0.096 (2)	0.081 (2)	0.0701 (16)	0.0165 (17)	0.0143 (15)	-0.0100 (15)
C11	0.089 (2)	0.144 (3)	0.0727 (17)	-0.012 (2)	-0.0241 (17)	0.0182 (18)
C12	0.087 (2)	0.0655 (18)	0.108 (2)	0.0200 (15)	0.0072 (18)	0.0042 (16)
C13	0.0812 (19)	0.0569 (16)	0.0797 (17)	-0.0028 (14)	0.0029 (14)	0.0004 (13)
C14	0.0669 (17)	0.0819 (19)	0.0679 (15)	0.0090 (14)	-0.0072 (13)	0.0070 (14)

supporting information

C15	0.0740 (19)	0.087 (2)	0.0736 (16)	0.0027 (15)	0.0289 (14)	0.0119 (14)
C16	0.097 (2)	0.0662 (17)	0.0662 (16)	-0.0037 (15)	-0.0008 (15)	-0.0077 (13)

Geometric parameters (Å, °)

N1-01	1.278 (2)	C8—C9	1.379 (3)	
N1—C3	1.342 (2)	С9—Н9	0.9300	
N1—C1	1.506 (3)	C10—H10A	0.9600	
N2—O2	1.281 (2)	C10—H10B	0.9600	
N2—C3	1.353 (2)	C10—H10C	0.9600	
N2—C2	1.495 (3)	C11—H11A	0.9600	
O3—C8	1.366 (2)	C11—H11B	0.9600	
O3—C10	1.433 (3)	C11—H11C	0.9600	
O4—C7	1.380 (2)	C12—H12A	0.9600	
O4—C11	1.410 (3)	C12—H12B	0.9600	
O5—C6	1.372 (3)	C12—H12C	0.9600	
O5—C12	1.417 (3)	C13—H13A	0.9600	
C1—C14	1.514 (3)	C13—H13B	0.9600	
C1—C13	1.527 (3)	C13—H13C	0.9600	
C1—C2	1.547 (3)	C14—H14A	0.9600	
C2—C15	1.519 (3)	C14—H14B	0.9600	
C2—C16	1.525 (3)	C14—H14C	0.9600	
C3—C4	1.459 (3)	C15—H15A	0.9600	
С4—С9	1.389 (3)	C15—H15B	0.9600	
C4—C5	1.390 (3)	C15—H15C	0.9600	
С5—С6	1.384 (3)	C16—H16A	0.9600	
С5—Н5	0.9300	C16—H16B	0.9600	
С6—С7	1.391 (3)	C16—H16C	0.9600	
С7—С8	1.391 (3)			
01—N1—C3	126.26 (18)	O3—C10—H10A	109.5	
01—N1—C1	121.31 (18)	O3—C10—H10B	109.5	
C3—N1—C1	112.36 (17)	H10A—C10—H10B	109.5	
O2—N2—C3	126.70 (19)	O3—C10—H10C	109.5	
O2—N2—C2	121.20 (17)	H10A—C10—H10C	109.5	
C3—N2—C2	111.83 (17)	H10B—C10—H10C	109.5	
C8—O3—C10	117.76 (17)	O4—C11—H11A	109.5	
C7—O4—C11	113.82 (18)	O4—C11—H11B	109.5	
C6—O5—C12	117.56 (18)	H11A—C11—H11B	109.5	
N1-C1-C14	110.53 (17)	O4—C11—H11C	109.5	
N1-C1-C13	105.77 (17)	H11A—C11—H11C	109.5	
C14—C1—C13	110.08 (19)	H11B—C11—H11C	109.5	
N1—C1—C2	99.52 (16)	O5—C12—H12A	109.5	
C14—C1—C2	115.92 (18)	O5—C12—H12B	109.5	
C13—C1—C2	114.05 (18)	H12A—C12—H12B	109.5	
N2—C2—C15	110.07 (18)	O5—C12—H12C	109.5	
N2-C2-C16	105.78 (18)	H12A—C12—H12C	109.5	
C15—C2—C16	110.91 (19)	H12B—C12—H12C	109.5	

N2—C2—C1	100.67 (16)	C1—C13—H13A	109.5
C15—C2—C1	115.15 (19)	C1—C13—H13B	109.5
C16—C2—C1	113.33 (18)	H13A—C13—H13B	109.5
N1—C3—N2	107.77 (18)	C1—C13—H13C	109.5
N1 - C3 - C4	1263(2)	H13A—C13—H13C	109.5
$N_2 - C_3 - C_4$	125.9(2)	H13B $C13$ $H13C$	109.5
C_{9} C_{4} C_{5}	120.32(19)	C1 - C14 - H14A	109.5
$C_{2}^{0} - C_{4}^{0} - C_{3}^{0}$	120.32(1)) 120.2(2)	C1 - C14 - H14B	109.5
C_{5} C_{4} C_{3}	120.2(2) 1105(2)	$H_{14A} = C_{14} + H_{14B}$	109.5
$C_{5} = C_{4} = C_{5}$	119.3(2) 119.2(2)	$C_{1} = C_{14} = H_{14}C_{14}$	109.5
C6 C5 H5	119.2 (2)	$H_{14A} = C_{14} = H_{14C}$	109.5
C_{0}	120.4	H14A - C14 - H14C	109.5
C4—C3—H3	120.4	H14B - C14 - H14C	109.5
05-06-07	124.3(2)	C2C15H15A	109.5
05-06-07	115.1 (2)	C2—C15—H15B	109.5
C5_C6_C/	120.6 (2)	HI5A—CI5—HI5B	109.5
04—C7—C6	120.4 (2)	C2—C15—H15C	109.5
O4—C7—C8	119.8 (2)	H15A—C15—H15C	109.5
C6—C7—C8	119.9 (2)	H15B—C15—H15C	109.5
O3—C8—C9	124.9 (2)	C2—C16—H16A	109.5
O3—C8—C7	115.40 (19)	C2—C16—H16B	109.5
C9—C8—C7	119.7 (2)	H16A—C16—H16B	109.5
C8—C9—C4	120.3 (2)	C2—C16—H16C	109.5
С8—С9—Н9	119.8	H16A—C16—H16C	109.5
С4—С9—Н9	119.8	H16B—C16—H16C	109.5
O1—N1—C1—C14	-36.5 (3)	C2—N2—C3—C4	172.4 (2)
C3—N1—C1—C14	146.39 (19)	N1—C3—C4—C9	-26.4(3)
O1—N1—C1—C13	82.7 (2)	N2—C3—C4—C9	151.8 (2)
C3—N1—C1—C13	-94.5 (2)	N1—C3—C4—C5	155.1 (2)
O1—N1—C1—C2	-158.87 (19)	N2—C3—C4—C5	-26.7(3)
C3—N1—C1—C2	24.0 (2)	C9—C4—C5—C6	-0.9(3)
O2—N2—C2—C15	-40.2(3)	C3—C4—C5—C6	177.65 (19)
$C_3 - N_2 - C_2 - C_{15}$	145.36 (19)	C12-05-C6-C5	2.1 (3)
02 - N2 - C2 - C16	79 7 (2)	C12 = 05 = C6 = C7	-1774(2)
C_{3} N2 C_{2} C_{16}	-948(2)	C4 - C5 - C6 - 05	-179.98(19)
$0^{2}-N^{2}-C^{2}-C^{1}$	-1622(2)	C4-C5-C6-C7	-0.5(3)
C_{3} N2 C_{2} C_{1}	234(2)	$C_{11} = 04 = 07 = 06$	82 3 (3)
$N_1 - C_1 - C_2 - N_2$	-25.95(19)	$C_{11} = 04 = C_7 = C_8$	-98.7(3)
$C_1 A = C_1 = C_2 = N_2$	-144.43(10)	$05 \ C6 \ C7 \ 04$	-0.3(3)
$C_{14} = C_{1} = C_{2} = N_{2}$	86.2 (2)	$C_{5} = C_{6} = C_{7} = O_{4}$	-170.84(10)
$N_1 = C_1 = C_2 = N_2$	-144.27(10)	$C_{5} = C_{6} = C_{7} = C_{4}$	-179.04(19)
NI = CI = C2 = C13	-144.27(19)	03-00-07-08	-1/9.30(19)
C12 - C1 - C2 - C13	97.5 (2)	$C_{3} = C_{0} = C_{7} = C_{8}$	1.2(3)
$U_{13} - U_{1} - U_{2} - U_{13}$	-52.1(5)	$C_{10} = 03 = 03 = 03$	2.3 (3)
NI - CI - C2 - CI6	86.5 (2)	C10-03-C8-C/	-1//./(2)
U14-U1-U2-U16	-31.9 (3)	04 - 07 - 08 - 03	0.7(3)
C13 - C1 - C2 - C16	-161.33 (18)	C6-C7-C8-O3	179.72 (19)
01—N1—C3—N2	172.6 (2)	04-07-08-09	-179.5 (2)
C1 - N1 - C3 - N2	-10.4(2)	C6—C7—C8—C9	-0.5(3)

O1—N1—C3—C4	-8.9 (4)	O3—C8—C9—C4	178.9 (2)
C1—N1—C3—C4	168.07 (19)	C7—C8—C9—C4	-0.9 (3)
O2—N2—C3—N1	176.8 (2)	C5—C4—C9—C8	1.6 (3)
C2—N2—C3—N1	-9.1 (2)	C3—C4—C9—C8	-176.9 (2)
O2—N2—C3—C4	-1.7 (4)		

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	D····A	D—H···A
C14—H14 A ···Cg2 ⁱ	0.96	2.80	3.644 (2)	147

Symmetry code: (i) -x, -y, -z+1.