

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

# Bromido(2,2':6',2"-terpyridine)platinum(II) dibromidoaurate(I) dimethyl sulfoxide solvate

# Michael I. Kahn,<sup>a</sup> James A. Golen,<sup>b</sup> Arnold L. Rheingold<sup>c</sup> and Linda H. Doerrer<sup>a</sup>\*

<sup>a</sup>Chemistry Department, Boston University, 590 Commonwealth Ave., Boston, Massachusetts 02215, USA, <sup>b</sup>Department of Chemistry and Biochemistry, University of Massachusetts–Dartmouth, North Dartmouth, Massachusetts 02747, USA, and <sup>c</sup>Department of Chemistry and Biochemistry, University of California–San Diego, 9500 Gilman Drive, MC 0358, La Jolla, California 92093, USA Correspondence e-mail: doerrer@bu.edu

Received 18 August 2009; accepted 20 August 2009

Key indicators: single-crystal X-ray study; T = 208 K; mean  $\sigma$ (C–C) = 0.010 Å; *R* factor = 0.039; w*R* factor = 0.103; data-to-parameter ratio = 19.4.

The crystal structure of the title compound,  $[PtBr(C_{15}H_{11}N_3)]$ -[AuBr<sub>2</sub>]·(CH<sub>3</sub>)<sub>2</sub>SO, exhibits infinite chains of  $\{PtAuPt\}_{\infty}$  metallophilic interactions along the *b* axis. Two cations and one anion stack in a trimer with a unique Pt···Au distance of 3.3361 (5) Å and Pt···Pt contacts of 3.4335 (6) Å. The remaining [AuBr<sub>2</sub>]<sup>-</sup> anion forms no close contacts.

## **Related literature**

For the related chloride structure,  $[Pt(tpy)Cl][AuCl_2]$ (tpy=2,2':6',2"-terpyridine), see Hayoun *et al.* (2006). For the related  $[Pt(tpy)I][AuI_2]$  complex, see Angle *et al.* (2007). For a review of double salts with metallophilic interactions, see Doerrer (2008). The synthesis of [Pt(tpy)X]X complexes (X =Cl, Br, I) is discussed in Annibale *et al.* (2004), and the preparation of  $[AuX_2]^-$  in Braunstein & Clark (1973). For background to metallophilic interactions, see: Pyykkö (1997). For a description of the Cambridge Structural Database, see: Allen (2002).



## **Experimental**

Crystal data  $[PtBr(C_{15}H_{11}N_3)][AuBr_2] \cdot C_2H_6OS$  $M_r = 943.18$ 

Triclinic,  $P\overline{1}$ a = 8.1463 (11) Å Mo  $K\alpha$  radiation

 $0.30 \times 0.20 \times 0.15~\text{mm}$ 

 $\mu = 19.31 \text{ mm}^{-1}$ 

T = 208 K

Z = 2

b = 10.0930 (14) Å c = 13.9624 (19) Å  $\alpha = 81.905 (2)^{\circ}$   $\beta = 87.675 (2)^{\circ}$   $\gamma = 68.532 (3)^{\circ}$  $V = 1057.6 (3) \text{ Å}^{3}$ 

#### Data collection

| Bruker SMART CCD area-detector               | 7511 measured reflections              |
|----------------------------------------------|----------------------------------------|
| diffractometer                               | 4826 independent reflections           |
| Absorption correction: multi-scan            | 4312 reflections with $I > 2\sigma(I)$ |
| (SADABS; Sheldrick, 2000)                    | $R_{\rm int} = 0.019$                  |
| $T_{\rm min} = 0.068, \ T_{\rm max} = 0.160$ |                                        |
|                                              |                                        |

## Refinement

 $\begin{array}{ll} R[F^2 > 2\sigma(F^2)] = 0.039 & 249 \text{ parameters} \\ wR(F^2) = 0.103 & H\text{-atom parameters constrained} \\ S = 1.01 & \Delta\rho_{\max} = 2.01 \text{ e } \text{\AA}^{-3} \\ 4826 \text{ reflections} & \Delta\rho_{\min} = -4.14 \text{ e } \text{\AA}^{-3} \end{array}$ 

| Table 1            |              |      |      |          |     |            |     |       |       |
|--------------------|--------------|------|------|----------|-----|------------|-----|-------|-------|
| Selected geometric | parameters ( | Å, ° | ) in | [Pt(tpy) | X][ | $[AuX_2],$ | X = | Cl, I | Br, I |

|                                                                                      | Cl                                                      | Br                                                      | Ι                                                    |
|--------------------------------------------------------------------------------------|---------------------------------------------------------|---------------------------------------------------------|------------------------------------------------------|
| Au - Pt $Pt - X$ $Au - X$ $Pt - Pt$                                                  | 3.2684 (1)<br>2.305 (3)<br>2.271 (3)<br>3.4535 (7)      | 3.3361 (5)<br>2.4319 (8)<br>2.3984 (9)<br>3.4335 (6)    | 4.2546 (4)<br>2.5930 (5)<br>2.5581 (5)<br>3.5278 (3) |
| $X^2 - Au^1 - Pt^1$<br>$X^1 - Pt^1 - Au^1$<br>$Au^1 - Pt^1 - Pt^1(1 - x, 2 - y, -z)$ | Cl<br>88.63 (7)<br>91.37 (7)<br>97.62 (7)<br>165.10 (2) | Br<br>81.70 (2)<br>98.30 (2)<br>84.08 (2)<br>173.94 (1) |                                                      |

Data collection: *SMART* (Bruker, 2005); cell refinement: *SAINT* (Bruker, 2005); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *ORTEP-3* (Farrugia, 1997); software used to prepare material for publication: *SHELXTL* (Sheldrick, 2008).

We thank Boston University and the National Science Foundation (NSF-CCF 829890 to LHD) for financial support.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CV2602).

#### References

- Allen, F. H. (2002). Acta Cryst. B58, 380-388.
- Angle, C. S., Woolard, K. J., Kahn, M. I., Golen, J. A., Rheingold, A. L. & Doerrer, L. H. (2007). Acta Cryst. C63, m231–m234.
- Annibale, G., Pitteri, B., Wilson, M. H. & McMillin, D. (2004). Inorg. Synth. 34, 76–81.
- Braunstein, P. & Clark, R. J. H. (1973). J. Chem. Soc. Dalton Trans. pp. 1845– 1848.
- Bruker (2005). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Doerrer, L. H. (2008). Comments Inorg. Chem. 29, 93-127.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Hayoun, R., Zhong, D. K., Rheingold, A. L. & Doerrer, L. H. (2006). Inorg. Chem. 45, 6120–6122.
- Pyykkö, P. (1997). Chem. Rev. 97, 597-636.
- Sheldrick, G. M. (2000). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

# supporting information

Acta Cryst. (2009). E65, m1135 [doi:10.1107/S1600536809033248]

# Bromido(2,2':6',2''-terpyridine)platinum(II) dibromidoaurate(I) dimethyl sulfoxide solvate

# Michael I. Kahn, James A. Golen, Arnold L. Rheingold and Linda H. Doerrer

# S1. Comment

The title compound, (I), is the bromide analog of the previously published chloride (Hayoun *et al.*, 2006) and iodide (Angle *et al.*, 2007) derivatives.

There are no previous structural characterizations of  $[Pt(tpy)Br]^+$  (tpy=2,2':6',2"-terpyridine), but the interatomic distances within the  $[Pt(tpy)]^{2+}$  are unexceptional and unperturbed by the intermolecular interactions. According to the Cambridge Structural Database (Version 5.30, May 2009; Allen, 2002), the linear  $[AuBr_2]^-$  anion has been structurally characterized 32 times with an average Au—Br distance of 2.376 (3) Å and Br—Au—Br angle of 179.3 (2)°, with which the anions in (I) compare favorably. The structure of (I) is analogous to that of  $[Pt(tpy)Cl]^+[AuCl_2]^-$ , with metallophilic interactions forming among two platinum(II) and one gold(I) centers to form  $\{[Pt(tpy)Br]_2[AuBr_2]\}^+$  cations (Figure 1). These cations also form metallophilic interactions among each other resulting in an infinite chain of  $\{PtAuPt\}_{\infty}$  metallophilic interactions along the *b*-axis with the remaining  $[AuBr_2]^-$  counteranion found outside of the chain (Figure 2). A solvent DMSO molecule was also found in the lattice. The bromide ligands are small enough to allow for metallophilic interactions between gold(I) and platinum(II) centers (Figure 1). No extended metallophilic chains exist in the iodide derivative, which exhibits only pairwise contacts between the cations and between the anions.

As seen in Table 1, the Pt(II)···Pt(II) distances in the bromide derivative are the shortest of all three halogenated species, at 3.4335 (6) Å. The chloride and iodide derivatives exhibit 3.4535 (7) and 3.5278 (3) Å Pt···Pt metallophilic distances, respectively. Evidently the bromide ligand promotes shorter Pt···Pt bonds than the chloride or iodide derivatives, consistent with expectations that more electron rich metal centers promote metallophilic interactions (Pyykkö, 1997). As bromide is softer and less electronegative than chloride, its adjacent platinum center is less electron deficient and bromide is small enough to allow stacking for metallophilic bonding. The gold-platinum distances increase slightly with halogen size from Cl to Br. The Au···Pt···Pt angle is more linear in the bromide derivative at 173.9°, compared to the chloride derivative with an angle of 165.1°. These distances and angles, along with other potentially interesting geometrical values, are collected in Table 1.

The structure of compound (I), therefore, completes a study of the  $[Pt(tpy)X][AuX_2]$  systems and demonstrates that the halide constituent in the  $[Pt(tpy)X]^+$  ion has a determining effect on the length of the Pt…Pt metallophilic contacts for steric and electronic reasons.

# S2. Experimental

[Pt(tpy)Br]Br, prepared according to the literature (Annibale *et al.*, 2004), was mixed with potassium tetrabromoaurate, KAuBr<sub>4</sub>. Dry acetone was added to the mixture to reduce the gold(III) in KAuBr<sub>4</sub> to gold(I) in [AuBr<sub>2</sub>]<sup>-</sup>, as expected from the literature (Braunstein and Clark, 1973). This resulted in a maroon solution which turned light orange after stirring for three minutes at 30°C. The solution was allowed to mix at 30°C for four h, resulting in KBr, bromoacetone, and the

orange powder  $[Pt(tpy)Br]^+$   $[AuBr_2]^-$  (in 66% yield) as the products. The orange powder  $[Pt(tpy)Br]^+$   $[AuBr_2]^-$  was dissolved in DMSO and layered with chloroform to form red block-like crystals.

# **S3. Refinement**

The crystal was mounted on a CryoLoop with Paratone-N oil and immediately placed under a stream of N~2~ on a Bruker *SMART APEX* CCD system. All H atoms were positioned geometrically (C—H = 0.94–0.97 Å), and allowed to ride on their parent atoms, with Uĩso~ = 1.2–1.5 U~eq~(C). The highest residual peak [2.01 e Å<sup>-3</sup>] and deepest hole [-4.13 e Å<sup>-3</sup>] are situated 0.11 and 0.87 Å from Pt1, respectively.



# Figure 1

A view of the structure and stacking of two  $[Pt(tpy)Br]^+$  cations and one  $[AuBr_2]^-$  anion into a single cation with the second  $[AuBr_2]^-$  anion showing the atomic numbering [symmetry code: (i) -*x*, 1 - *y*, -*z*]. Metallophilic contacts are indicated with dotted lines. Displacement ellipsoids are drawn at the 50% probability level for non-H atoms and one molecule of DMSO has been omitted for clarity.



# Figure 2

A view of the stacking and structure in (I). Close contacts between  $\{Pt_2Au\}^+$  units are shown as dotted lines. Displacement ellipsoids are drawn at the 50% probability level.

# Bromido(2,2':6',2''-terpyridine)platinum(II) dibromidoaurate(I) dimethyl sulfoxide solvate

| Crystal data                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                             |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| [PtBr(C <sub>15</sub> H <sub>11</sub> N <sub>3</sub> )][AuBr <sub>2</sub> ]·C <sub>2</sub> H <sub>6</sub> OS<br>$M_r = 943.18$<br>Triclinic, <i>P</i> 1<br>Hall symbol: -P 1<br>a = 8.1463 (11)  Å<br>b = 10.0930 (14)  Å<br>c = 13.9624 (19)  Å<br>$a = 81.905 (2)^{\circ}$<br>$\beta = 87.675 (2)^{\circ}$<br>$\gamma = 68.532 (3)^{\circ}$ | Z = 2<br>F(000) = 852<br>$D_x = 2.962 \text{ Mg m}^{-3}$<br>Mo Ka radiation, $\lambda = 0.71073 \text{ Å}$<br>Cell parameters from 5521 reflections<br>$\theta = 2.5-28.2^{\circ}$<br>$\mu = 19.31 \text{ mm}^{-1}$<br>T = 208 K<br>Block, red<br>$0.30 \times 0.20 \times 0.15 \text{ mm}$ |
| $V = 1057.6 (3) Å^{3}$<br>Data collection                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                             |
| Bruker SMART CCD area-detector<br>diffractometer                                                                                                                                                                                                                                                                                              | 7511 measured reflections<br>4826 independent reflections                                                                                                                                                                                                                                   |
| Radiation source: fine-focus sealed tube                                                                                                                                                                                                                                                                                                      | 4312 reflections with $I > 2\sigma(I)$                                                                                                                                                                                                                                                      |
| Graphite monochromator                                                                                                                                                                                                                                                                                                                        | $R_{\rm int} = 0.019$                                                                                                                                                                                                                                                                       |
| $\varphi$ and $\omega$ scans                                                                                                                                                                                                                                                                                                                  | $\theta_{\rm max} = 28.2^{\circ},  \theta_{\rm min} = 1.5^{\circ}$                                                                                                                                                                                                                          |
| Absorption correction: multi-scan                                                                                                                                                                                                                                                                                                             | $h = -8 \rightarrow 10$                                                                                                                                                                                                                                                                     |

 $k = -13 \rightarrow 10$  $l = -18 \rightarrow 17$ 

(SADABS; Sheldrick, 2000) $T_{min} = 0.068, T_{max} = 0.160$  Refinement

| 0                                               |                                                                |
|-------------------------------------------------|----------------------------------------------------------------|
| Refinement on $F^2$                             | Secondary atom site location: difference Fourier               |
| Least-squares matrix: full                      | map                                                            |
| $R[F^2 > 2\sigma(F^2)] = 0.039$                 | Hydrogen site location: inferred from                          |
| $wR(F^2) = 0.103$                               | neighbouring sites                                             |
| S = 1.01                                        | H-atom parameters constrained                                  |
| 4826 reflections                                | $w = 1/[\sigma^2(F_o^2) + (0.0756P)^2] P = (F_o^2 + 2F_c^2)/3$ |
| 249 parameters                                  | $(\Delta/\sigma)_{\rm max} = 0.001$                            |
| 0 restraints                                    | $\Delta  ho_{ m max} = 2.01 \  m e \  m \AA^{-3}$              |
| Primary atom site location: structure-invariant | $\Delta \rho_{\rm min} = -4.14 \text{ e} \text{ Å}^{-3}$       |
| direct methods                                  |                                                                |

## Special details

**Geometry**. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

**Refinement**. Refinement of  $F^2$  against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on  $F^2$ , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative  $F^2$ . The threshold expression of  $F^2^2 > \sigma(F^2^2)$  is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on  $F^2^2$  are statistically about twice as large as those based on *F*, and *R*-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters  $(Å^2)$ 

|     | x            | У            | Ζ              | $U_{\rm iso}^*/U_{\rm eq}$ |  |
|-----|--------------|--------------|----------------|----------------------------|--|
| Au1 | 1.0000       | 0.5000       | 1.0000         | 0.03631 (12)               |  |
| Au2 | 0.5000       | 0.5000       | 0.5000         | 0.03754 (12)               |  |
| Pt1 | 0.01155 (3)  | 0.82805 (2)  | -0.005856 (15) | 0.02023 (9)                |  |
| Br1 | -0.25578 (8) | 0.87221 (7)  | 0.08893 (5)    | 0.03042 (15)               |  |
| Br2 | 0.98737 (9)  | 0.44194 (7)  | 1.17203 (6)    | 0.03918 (18)               |  |
| Br3 | 0.75978 (12) | 0.32173 (10) | 0.45033 (6)    | 0.0514 (2)                 |  |
| S1  | 0.3410 (3)   | 1.1786 (2)   | 0.55776 (14)   | 0.0477 (5)                 |  |
| N1  | 0.1935 (6)   | 0.7291 (5)   | 0.1004 (4)     | 0.0220 (10)                |  |
| N3  | -0.0990 (6)  | 0.9177 (5)   | -0.1372 (4)    | 0.0212 (9)                 |  |
| N2  | 0.2244 (6)   | 0.7937 (5)   | -0.0823 (4)    | 0.0196 (9)                 |  |
| 01  | 0.3110 (10)  | 1.0395 (7)   | 0.5756 (6)     | 0.079 (2)                  |  |
| C1  | 0.1657 (9)   | 0.6989 (7)   | 0.1947 (5)     | 0.0292 (13)                |  |
| H1A | 0.0493       | 0.7257       | 0.2172         | 0.035*                     |  |
| C2  | 0.3038 (10)  | 0.6292 (8)   | 0.2598 (5)     | 0.0363 (15)                |  |
| H2A | 0.2809       | 0.6086       | 0.3256         | 0.044*                     |  |
| C3  | 0.4751 (10)  | 0.5900 (8)   | 0.2277 (5)     | 0.0356 (15)                |  |
| H3A | 0.5700       | 0.5420       | 0.2713         | 0.043*                     |  |
| C4  | 0.5057 (9)   | 0.6221 (7)   | 0.1305 (5)     | 0.0313 (14)                |  |
| H4A | 0.6216       | 0.5976       | 0.1072         | 0.038*                     |  |
| C5  | 0.3634 (8)   | 0.6908 (6)   | 0.0682 (4)     | 0.0239 (12)                |  |
| C6  | 0.3808 (8)   | 0.7276 (7)   | -0.0365 (5)    | 0.0275 (13)                |  |
| C7  | 0.5327 (8)   | 0.7028 (6)   | -0.0895 (5)    | 0.0274 (13)                |  |
| H7A | 0.6440       | 0.6568       | -0.0592        | 0.033*                     |  |
| C8  | 0.5184 (8)   | 0.7467 (7)   | -0.1880 (5)    | 0.0307 (14)                |  |
|     |              |              |                |                            |  |

| H8A  | 0.6215      | 0.7295      | -0.2249     | 0.037*      |
|------|-------------|-------------|-------------|-------------|
| C9   | 0.3560 (8)  | 0.8153 (7)  | -0.2337 (4) | 0.0270 (12) |
| H9A  | 0.3475      | 0.8453      | -0.3008     | 0.032*      |
| C10  | 0.2060 (8)  | 0.8385 (6)  | -0.1780 (4) | 0.0237 (12) |
| C11  | 0.0209 (8)  | 0.9105 (6)  | -0.2094 (4) | 0.0241 (12) |
| C12  | -0.0334 (9) | 0.9673 (7)  | -0.3032 (5) | 0.0306 (14) |
| H12A | 0.0508      | 0.9637      | -0.3519     | 0.037*      |
| C13  | -0.2089 (9) | 1.0288 (7)  | -0.3261 (5) | 0.0344 (15) |
| H13A | -0.2470     | 1.0662      | -0.3903     | 0.041*      |
| C14  | -0.3288 (9) | 1.0348 (8)  | -0.2530 (5) | 0.0356 (15) |
| H14A | -0.4502     | 1.0775      | -0.2672     | 0.043*      |
| C15  | -0.2725 (8) | 0.9788 (6)  | -0.1592 (5) | 0.0270 (13) |
| H15A | -0.3559     | 0.9833      | -0.1100     | 0.032*      |
| C16  | 0.2828 (11) | 1.2500 (9)  | 0.4364 (5)  | 0.0473 (19) |
| H16A | 0.3572      | 1.1838      | 0.3945      | 0.071*      |
| H16B | 0.2987      | 1.3414      | 0.4222      | 0.071*      |
| H16C | 0.1603      | 1.2642      | 0.4255      | 0.071*      |
| C17  | 0.1620 (13) | 1.3074 (11) | 0.6114 (7)  | 0.063 (3)   |
| H17A | 0.1799      | 1.2924      | 0.6809      | 0.094*      |
| H17B | 0.0525      | 1.2965      | 0.5969      | 0.094*      |
| H17C | 0.1560      | 1.4035      | 0.5856      | 0.094*      |
|      |             |             |             |             |

Atomic displacement parameters  $(Å^2)$ 

| $U^{11}$     | $U^{22}$                                                                                                                                                                                                                                                            | $U^{33}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $U^{12}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $U^{13}$                                              | $U^{23}$                                              |
|--------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|-------------------------------------------------------|
| 0.02295 (18) | 0.0324 (2)                                                                                                                                                                                                                                                          | 0.0533 (3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -0.00747 (15)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -0.00103 (16)                                         | -0.01197 (17)                                         |
| 0.0434 (2)   | 0.0484 (2)                                                                                                                                                                                                                                                          | 0.0243 (2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -0.02176 (18)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -0.00643 (16)                                         | 0.00001 (16)                                          |
| 0.01865 (13) | 0.02448 (13)                                                                                                                                                                                                                                                        | 0.01805 (14)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -0.00871 (9)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.00074 (9)                                           | -0.00222 (9)                                          |
| 0.0254 (3)   | 0.0345 (3)                                                                                                                                                                                                                                                          | 0.0311 (3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -0.0109 (3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.0069 (2)                                            | -0.0054 (3)                                           |
| 0.0306 (3)   | 0.0323 (3)                                                                                                                                                                                                                                                          | 0.0542 (5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -0.0095 (3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -0.0011 (3)                                           | -0.0097 (3)                                           |
| 0.0499 (5)   | 0.0579 (5)                                                                                                                                                                                                                                                          | 0.0436 (5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -0.0160 (4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -0.0025 (4)                                           | -0.0072 (4)                                           |
| 0.0383 (9)   | 0.0678 (13)                                                                                                                                                                                                                                                         | 0.0308 (10)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -0.0188 (9)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -0.0043 (8)                                           | 0.0137 (9)                                            |
| 0.021 (2)    | 0.027 (2)                                                                                                                                                                                                                                                           | 0.019 (2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -0.0096 (19)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -0.0004 (19)                                          | -0.0027 (19)                                          |
| 0.017 (2)    | 0.022 (2)                                                                                                                                                                                                                                                           | 0.022 (2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -0.0041 (18)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -0.0033 (18)                                          | -0.0013 (19)                                          |
| 0.018 (2)    | 0.021 (2)                                                                                                                                                                                                                                                           | 0.020 (2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -0.0077 (18)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.0020 (18)                                           | -0.0030 (19)                                          |
| 0.081 (5)    | 0.057 (4)                                                                                                                                                                                                                                                           | 0.079 (5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -0.020 (4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.013 (4)                                             | 0.033 (4)                                             |
| 0.034 (3)    | 0.035 (3)                                                                                                                                                                                                                                                           | 0.021 (3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -0.017 (3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.003 (3)                                             | -0.002 (3)                                            |
| 0.042 (4)    | 0.045 (4)                                                                                                                                                                                                                                                           | 0.023 (3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -0.020 (3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -0.001 (3)                                            | 0.005 (3)                                             |
| 0.039 (4)    | 0.038 (4)                                                                                                                                                                                                                                                           | 0.029 (4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -0.015 (3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -0.012 (3)                                            | 0.006 (3)                                             |
| 0.030 (3)    | 0.034 (3)                                                                                                                                                                                                                                                           | 0.032 (4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -0.013 (3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -0.004 (3)                                            | -0.004 (3)                                            |
| 0.023 (3)    | 0.025 (3)                                                                                                                                                                                                                                                           | 0.024 (3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -0.011 (2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.000 (2)                                             | -0.001 (2)                                            |
| 0.024 (3)    | 0.030 (3)                                                                                                                                                                                                                                                           | 0.028 (3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -0.010 (2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -0.001 (2)                                            | -0.003 (3)                                            |
| 0.023 (3)    | 0.029 (3)                                                                                                                                                                                                                                                           | 0.029 (3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -0.008 (2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -0.002 (2)                                            | -0.004 (3)                                            |
| 0.024 (3)    | 0.036 (3)                                                                                                                                                                                                                                                           | 0.032 (4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -0.011 (3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.007 (3)                                             | -0.005 (3)                                            |
| 0.027 (3)    | 0.035 (3)                                                                                                                                                                                                                                                           | 0.020 (3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -0.013 (3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.002 (2)                                             | -0.002 (2)                                            |
| 0.025 (3)    | 0.023 (3)                                                                                                                                                                                                                                                           | 0.025 (3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -0.010 (2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.001 (2)                                             | -0.003 (2)                                            |
| 0.022 (3)    | 0.026 (3)                                                                                                                                                                                                                                                           | 0.025 (3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -0.008 (2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -0.001 (2)                                            | -0.007 (2)                                            |
| 0.036 (3)    | 0.029 (3)                                                                                                                                                                                                                                                           | 0.026 (3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -0.013 (3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -0.003 (3)                                            | 0.001 (3)                                             |
|              | $U^{11}$ 0.02295 (18) 0.0434 (2) 0.01865 (13) 0.0254 (3) 0.0306 (3) 0.0499 (5) 0.0383 (9) 0.021 (2) 0.017 (2) 0.017 (2) 0.018 (2) 0.081 (5) 0.034 (3) 0.042 (4) 0.039 (4) 0.039 (4) 0.030 (3) 0.023 (3) 0.024 (3) 0.024 (3) 0.027 (3) 0.025 (3) 0.022 (3) 0.036 (3) | $U^{11}$ $U^{22}$ $0.02295 (18)$ $0.0324 (2)$ $0.0434 (2)$ $0.0484 (2)$ $0.01865 (13)$ $0.02448 (13)$ $0.0254 (3)$ $0.0345 (3)$ $0.0306 (3)$ $0.0323 (3)$ $0.0499 (5)$ $0.0579 (5)$ $0.0383 (9)$ $0.0678 (13)$ $0.021 (2)$ $0.027 (2)$ $0.017 (2)$ $0.022 (2)$ $0.018 (2)$ $0.057 (4)$ $0.034 (3)$ $0.035 (3)$ $0.042 (4)$ $0.045 (4)$ $0.039 (4)$ $0.038 (4)$ $0.030 (3)$ $0.034 (3)$ $0.023 (3)$ $0.025 (3)$ $0.024 (3)$ $0.036 (3)$ $0.027 (3)$ $0.023 (3)$ $0.025 (3)$ $0.023 (3)$ $0.022 (3)$ $0.026 (3)$ $0.022 (3)$ $0.029 (3)$ | $U^{11}$ $U^{22}$ $U^{33}$ $0.02295 (18)$ $0.0324 (2)$ $0.0533 (3)$ $0.0434 (2)$ $0.0484 (2)$ $0.0243 (2)$ $0.01865 (13)$ $0.02448 (13)$ $0.01805 (14)$ $0.0254 (3)$ $0.0345 (3)$ $0.0311 (3)$ $0.0306 (3)$ $0.0323 (3)$ $0.0542 (5)$ $0.0499 (5)$ $0.0579 (5)$ $0.0436 (5)$ $0.0383 (9)$ $0.0678 (13)$ $0.0308 (10)$ $0.021 (2)$ $0.027 (2)$ $0.019 (2)$ $0.017 (2)$ $0.022 (2)$ $0.022 (2)$ $0.018 (2)$ $0.021 (2)$ $0.020 (2)$ $0.081 (5)$ $0.057 (4)$ $0.079 (5)$ $0.034 (3)$ $0.035 (3)$ $0.021 (3)$ $0.042 (4)$ $0.045 (4)$ $0.023 (3)$ $0.039 (4)$ $0.038 (4)$ $0.029 (4)$ $0.030 (3)$ $0.034 (3)$ $0.024 (3)$ $0.023 (3)$ $0.029 (3)$ $0.029 (3)$ $0.023 (3)$ $0.029 (3)$ $0.029 (3)$ $0.024 (3)$ $0.035 (3)$ $0.029 (3)$ $0.025 (3)$ $0.025 (3)$ $0.025 (3)$ $0.022 (3)$ $0.026 (3)$ $0.025 (3)$ | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ |

# supporting information

| C13 | 0.035 (3) | 0.036 (3) | 0.029 (4) | -0.010 (3) | -0.009 (3) | 0.001 (3)  |
|-----|-----------|-----------|-----------|------------|------------|------------|
| C14 | 0.027 (3) | 0.042 (4) | 0.035 (4) | -0.010 (3) | -0.010 (3) | 0.002 (3)  |
| C15 | 0.022 (3) | 0.030 (3) | 0.029 (3) | -0.009 (2) | -0.003 (2) | -0.003 (3) |
| C16 | 0.057 (5) | 0.060 (5) | 0.028 (4) | -0.025 (4) | 0.001 (3)  | -0.001 (3) |
| C17 | 0.070 (6) | 0.084 (7) | 0.049 (5) | -0.040 (5) | 0.016 (5)  | -0.025 (5) |

Geometric parameters (Å, °)

| Au1—Br2 <sup>i</sup>      | 2.3981 (9)  | C4—H4A      | 0.9400     |  |
|---------------------------|-------------|-------------|------------|--|
| Au1—Br2                   | 2.3981 (9)  | C5—C6       | 1.471 (9)  |  |
| Au2—Br3                   | 2.3753 (9)  | C6—C7       | 1.375 (9)  |  |
| Au2—Br3 <sup>ii</sup>     | 2.3753 (9)  | С7—С8       | 1.381 (9)  |  |
| Pt1—N2                    | 1.944 (5)   | С7—Н7А      | 0.9400     |  |
| Pt1—N3                    | 2.015 (5)   | C8—C9       | 1.383 (9)  |  |
| Pt1—N1                    | 2.018 (5)   | C8—H8A      | 0.9400     |  |
| Pt1—Br1                   | 2.4320(7)   | C9—C10      | 1.385 (8)  |  |
| S101                      | 1.497 (7)   | С9—Н9А      | 0.9400     |  |
| S1—C16                    | 1.757 (8)   | C10-C11     | 1.468 (8)  |  |
| S1—C17                    | 1.782 (9)   | C11—C12     | 1.376 (9)  |  |
| N1—C1                     | 1.338 (8)   | C12—C13     | 1.365 (9)  |  |
| N1C5                      | 1.369 (7)   | C12—H12A    | 0.9400     |  |
| N3—C15                    | 1.348 (7)   | C13—C14     | 1.376 (10) |  |
| N3—C11                    | 1.366 (8)   | C13—H13A    | 0.9400     |  |
| N2—C6                     | 1.342 (7)   | C14—C15     | 1.376 (9)  |  |
| N2-C10                    | 1.345 (8)   | C14—H14A    | 0.9400     |  |
| C1—C2                     | 1.382 (10)  | C15—H15A    | 0.9400     |  |
| C1—H1A                    | 0.9400      | C16—H16A    | 0.9700     |  |
| C2—C3                     | 1.379 (10)  | C16—H16B    | 0.9700     |  |
| C2—H2A                    | 0.9400      | C16—H16C    | 0.9700     |  |
| C3—C4                     | 1.385 (9)   | C17—H17A    | 0.9700     |  |
| С3—НЗА                    | 0.9400      | C17—H17B    | 0.9700     |  |
| C4—C5                     | 1.380 (9)   | С17—Н17С    | 0.9700     |  |
| Br2 <sup>i</sup> —Au1—Br2 | 180.0       | С6—С7—Н7А   | 120.7      |  |
| $Br3 - Au2 - Br3^{ii}$    | 180.000 (1) | C8—C7—H7A   | 120.7      |  |
| N2-Pt1-N3                 | 80.7 (2)    | C7—C8—C9    | 121.5 (6)  |  |
| N2— $Pt1$ — $N1$          | 80.8 (2)    | C7—C8—H8A   | 119.2      |  |
| N3— $Pt1$ — $N1$          | 161.5 (2)   | C9—C8—H8A   | 119.2      |  |
| N2—Pt1—Br1                | 179.63 (16) | C8—C9—C10   | 118.2 (6)  |  |
| N3— $Pt1$ — $Br1$         | 98.95 (14)  | C8—C9—H9A   | 120.9      |  |
| N1—Pt1—Br1                | 99.58 (14)  | С10—С9—Н9А  | 120.9      |  |
| O1—S1—C16                 | 107.0 (4)   | N2—C10—C9   | 118.9 (5)  |  |
| 01—S1—C17                 | 106.8 (4)   | N2—C10—C11  | 113.0 (5)  |  |
| C16—S1—C17                | 97.3 (4)    | C9—C10—C11  | 128.2 (6)  |  |
| C1—N1—C5                  | 118.9 (5)   | N3—C11—C12  | 120.8 (6)  |  |
| C1—N1—Pt1                 | 127.8 (4)   | N3—C11—C10  | 114.7 (5)  |  |
| C5—N1—Pt1                 | 113.3 (4)   | C12—C11—C10 | 124.4 (6)  |  |
| C15—N3—C11                | 119.1 (5)   | C13—C12—C11 | 120.3 (7)  |  |
|                           |             |             |            |  |

| C15—N3—Pt1 | 127.2 (4) | C13—C12—H12A  | 119.8     |
|------------|-----------|---------------|-----------|
| C11—N3—Pt1 | 113.6 (4) | C11—C12—H12A  | 119.8     |
| C6—N2—C10  | 123.9 (5) | C12—C13—C14   | 118.4 (6) |
| C6—N2—Pt1  | 118.2 (4) | C12—C13—H13A  | 120.8     |
| C10-N2-Pt1 | 117.9 (4) | C14—C13—H13A  | 120.8     |
| N1—C1—C2   | 121.7 (6) | C13—C14—C15   | 120.6 (6) |
| N1—C1—H1A  | 119.2     | C13—C14—H14A  | 119.7     |
| C2—C1—H1A  | 119.2     | C15—C14—H14A  | 119.7     |
| C3—C2—C1   | 119.7 (6) | N3—C15—C14    | 120.7 (6) |
| С3—С2—Н2А  | 120.1     | N3—C15—H15A   | 119.7     |
| C1—C2—H2A  | 120.1     | C14—C15—H15A  | 119.7     |
| C2—C3—C4   | 119.2 (6) | S1—C16—H16A   | 109.5     |
| С2—С3—НЗА  | 120.4     | S1—C16—H16B   | 109.5     |
| С4—С3—Н3А  | 120.4     | H16A—C16—H16B | 109.5     |
| C5—C4—C3   | 118.9 (6) | S1—C16—H16C   | 109.5     |
| C5—C4—H4A  | 120.5     | H16A—C16—H16C | 109.5     |
| C3—C4—H4A  | 120.5     | H16B—C16—H16C | 109.5     |
| N1C5C4     | 121.6 (6) | S1—C17—H17A   | 109.5     |
| N1—C5—C6   | 115.0 (5) | S1—C17—H17B   | 109.5     |
| C4—C5—C6   | 123.4 (6) | H17A—C17—H17B | 109.5     |
| N2—C6—C7   | 119.0 (6) | S1—C17—H17C   | 109.5     |
| N2—C6—C5   | 112.7 (5) | H17A—C17—H17C | 109.5     |
| C7—C6—C5   | 128.3 (6) | H17B—C17—H17C | 109.5     |
| C6—C7—C8   | 118.6 (6) |               |           |
|            |           |               |           |

Symmetry codes: (i) -*x*+2, -*y*+1, -*z*+2; (ii) -*x*+1, -*y*+1, -*z*+1.