metal-organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

Diaguabis(1,10-phenanthroline)magnesium dichromate(VI) 1,10-phenanthroline disolvate

Hai-Xing Liu,^a Gui-Ying Dong,^b Zhi-Hong Ma^c and Guang-Hua Cui^b*

^aMicroscale Science Institute, College of Chemistry and Chemical Engineering, Weifang University, Weifang 261061, People's Republic of China, ^bCollege of Chemical Engineering and Biotechnology, Hebei Polytechnic University, Tangshan 063009, People's Republic of China, and ^cCollege of Basic Medicine, Hebei Medical University, Shijiazhuang 050017, People's Republic of China Correspondence e-mail: tscghua@126.com

Received 25 July 2009; accepted 29 July 2009

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.005 Å; R factor = 0.051; wR factor = 0.155; data-to-parameter ratio = 12.4.

In the title compound, $[Mg(C_{12}H_8N_2)_2(H_2O)_2][Cr_2O_7]$. $2C_{12}H_8N_2$, the cation and anion are situated on a twofold rotation axis. The Mg^{II} ion is coordinated by four N atoms from two 1,10-phenanthroline ligands and two O atoms from coordinated water molecules in a distorted octahedral geometry. Intermolecular $O-H \cdots N$ and $O-H \cdots O$ hydrogen bonds and π - π interactions between the aromatic rings [shortest centroid–centroid separation = 3.527(2) Å] link the cations, anions and 1,10-phenanthroline solvent molecules into a hydrogen-bonded cluster.

Related literature

For related magnesium-phenanthroline complexes, see: Zhu et al. (2008); Hao et al. (2008); Zhang (2004).

16762 measured reflections

3817 independent reflections

3068 reflections with $I > 2\sigma(I)$

 $R_{\rm int} = 0.020$

Experimental

Crystal data

$[Mg(C_{12}H_8N_2)_2(H_2O)_2][Cr_2O_7]$	$\beta = 123.49 \ (3)^{\circ}$
$2C_{12}H_8N_2$	$V = 4338 (2) \text{ Å}^3$
$M_r = 997.16$	Z = 4
Monoclinic, $C2/c$	Mo $K\alpha$ radiation
a = 16.761 (3) Å	$\mu = 0.59 \text{ mm}^{-1}$
b = 22.172 (4) Å	T = 293 K
c = 13.996 (3) Å	$0.30 \times 0.28 \times 0.21 \text{ mm}$

Data collection

Bruker SMART CCD area-detector diffractometer Absorption correction: multi-scan (SADABS; Sheldrick, 1996) $T_{\rm min}=0.826,\;T_{\rm max}=0.878$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.051$	308 parameters
$wR(F^2) = 0.155$	H-atom parameters constrained
S = 1.06	$\Delta \rho_{\rm max} = 0.87 \ {\rm e} \ {\rm \AA}^{-3}$
3817 reflections	$\Delta \rho_{\rm min} = -0.46 \text{ e } \text{\AA}^{-3}$

Table 1 н

lydrogen-bonc	l geometry	(A, °).	

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$\begin{array}{c} O1W-H1A\cdots N3\\ O1W-H1B\cdots O1 \end{array}$	0.85	2.08	2.876 (4)	156
	0.85	1.84	2.636 (4)	154

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1999); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

The authors thank Weifang University and the Scientific Research Fund of Hebei Provincial Education Department (project No. 2006114) for financial support.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CV2597).

References

Bruker (1998). SMART. Bruker AXS Inc., Madison, Wisconsin, USA. Bruker (1999). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Hao, X.-M., Gu, C.-S., Song, W.-D. & Liu, J.-W. (2008). Acta Cryst. E64, m1052. Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany. Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122. Zhang, B.-S. (2004). Chin. J. Struct. Chem. 23, 1411-1415. Zhu, L., Huang, J., Han, S.-Y. & An, Z. (2008). Acta Cryst. E64, m683.

supporting information

Acta Cryst. (2009). E65, m1026 [doi:10.1107/S1600536809030128]

Diaquabis(1,10-phenanthroline)magnesium dichromate(VI) 1,10phenanthroline disolvate

Hai-Xing Liu, Gui-Ying Dong, Zhi-Hong Ma and Guang-Hua Cui

S1. Comment

1,10-Phenanthroline (phen), which is the parent of an important class of chelating agents, has been widely used in the construction of supramolecular architectures. Some magnesium(II)-phenanthroline complexes have been synthesized and reported (Zhu *et al.*, 2008; Hao *et al.* 2008; Zhang, 2004). As a continuation of these studies, we now report the crystal structure of the title complex (I).

X-ray structure analysis reveals that (I) is an ionic monomeric Mg^{II} complex (Fig. 1) with two solvent phen molecules. The Mg(II) ion is surrounded by four N atoms from the two phen ligands and two O atoms from two coordinated water molecules to form distorted MgN₄O₂ octahedron. The Mg—O(2.018 (2)–2.018 (3) Å) and Mg—N (2.211 (3)–2.215 (2) Å) bond lengths are normal.

In the crystal structure, intermolecular O—H···N and O—H···O hydrogen bonds (Table 1) and π - π interactions between the aromatic rings with the shortest centroid-centroid separation of 3.527 (2) Å, link cation, anion and two solvent 1,10-phenanthroline molecules into a hydrogen-bonded cluster (Fig. 1).

S2. Experimental

Magnesium chloride, potassium dichromate and 1,10-phenanthroline (molar ratio 1:1:4) were dissolved in water-ethanol mixture (1:1 ν/ν , 50 ml) and refluxed for 3 h. The resulting solution was allowed to stand at room temperature for a week and yellow crystals of (I) were obtained.

S3. Refinement

C-bound H atoms were geometrically positioned [O—H = 0.93 Å], while water H atoms were located in a Fourier difference map, but placed in idealized positions [O—H = 0.85 Å]. All H atoms were refined as riding, with U_{iso} (H) =1.2 U_{eq} (C, O).

Figure 1

The hydrogen-bonded (dashed lines) cluster in (I) showing the atomic numbering and 30% probability displacement ellipsoids. Unlabelled atoms are related with the labelled ones by symmetry [-x + 1, y, 1/2 - z]. H atoms not involved in hydrogen-bonding are omitted for clarity.

Diaquabis(1,10-phenanthroline)magnesium(II) dichromate(VI) 1,10-phenanthroline disolvate

Crystal data	
$[Mg(C_{12}H_8N_2)_2(H_2O)_2][Cr_2O_7] \cdot 2C_{12}H_8N_2$ $M_r = 997.16$ Monoclinic, $C2/c$ Hall symbol: -C 2yc a = 16.761 (3) Å b = 22, 172 (4) Å	F(000) = 2048 $D_x = 1.527 \text{ Mg m}^{-3}$ Mo K\alpha radiation, \lambda = 0.71073 \mathcal{A} Cell parameters from 2800 reflections $\theta = 5.0-22.8^{\circ}$ $\mu = 0.59 \text{ mm}^{-1}$
c = 13.996 (3) Å $\beta = 123.49 (3)^{\circ}$ $V = 4338 (2) \text{ Å}^{3}$ Z = 4	T = 293 K Prism, yellow $0.30 \times 0.28 \times 0.21 \text{ mm}$
Data collection Bruker SMART CCD area-detector diffractometer Radiation source: fine-focus sealed tube Graphite monochromator φ and ω scans Absorption correction: multi-scan (<i>SADABS</i> ; Sheldrick, 1996)	16762 measured reflections 3817 independent reflections 3068 reflections with $I > 2\sigma(I)$ $R_{int} = 0.020$ $\theta_{max} = 25.0^\circ, \ \theta_{min} = 3.1^\circ$ $h = -19 \rightarrow 19$ $k = -26 \rightarrow 26$
$T_{\min} = 0.826, T_{\max} = 0.878$	$l = -16 \rightarrow 15$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.051$	Hydrogen site location: inferred from
$wR(F^2) = 0.155$	neighbouring sites
S = 1.06	H-atom parameters constrained
3817 reflections	$w = 1/[\sigma^2(F_o^2) + (0.0878P)^2 + 5.6611P]$
308 parameters	where $P = (F_{o}^{2} + 2F_{c}^{2})/3$
0 restraints	$(\Delta/\sigma)_{\rm max} < 0.001$
Primary atom site location: structure-invariant	$\Delta ho_{ m max} = 0.87 \ { m e} \ { m \AA}^{-3}$
direct methods	$\Delta \rho_{\rm min} = -0.46 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
04	0.5000	0.0547 (2)	0.2500	0.135 (2)	
Mg1	0.5000	0.32609 (6)	0.2500	0.0429 (3)	
C12	0.42272 (18)	0.41277 (11)	0.3486 (2)	0.0341 (6)	
C4	0.36810 (18)	0.45551 (13)	0.3620 (2)	0.0387 (6)	
N1	0.40575 (15)	0.39775 (10)	0.24512 (19)	0.0374 (5)	
N2	0.55208 (16)	0.34161 (11)	0.4315 (2)	0.0427 (6)	
C7	0.5222 (2)	0.39865 (14)	0.5573 (2)	0.0431 (7)	
C11	0.50124 (18)	0.38299 (12)	0.4484 (2)	0.0367 (6)	
O1W	0.60296 (19)	0.26585 (11)	0.2850 (2)	0.0743 (8)	
C5	0.3893 (2)	0.46843 (14)	0.4739 (3)	0.0479 (7)	
H5	0.3515	0.4957	0.4826	0.057*	
C2	0.2783 (2)	0.46981 (15)	0.1593 (3)	0.0503 (7)	
H2	0.2303	0.4890	0.0930	0.060*	
C3	0.2941 (2)	0.48458 (14)	0.2624 (3)	0.0471 (7)	
H3	0.2565	0.5136	0.2674	0.057*	
C6	0.4639 (2)	0.44126 (15)	0.5673 (3)	0.0509 (8)	
H6	0.4772	0.4507	0.6395	0.061*	
C10	0.6264 (2)	0.31578 (16)	0.5247 (3)	0.0557 (8)	
H10	0.6616	0.2871	0.5145	0.067*	
C1	0.3345 (2)	0.42583 (14)	0.1536 (3)	0.0469 (7)	
H1	0.3217	0.4155	0.0820	0.056*	
C9	0.6539 (2)	0.32924 (18)	0.6350 (3)	0.0637 (10)	
H9	0.7068	0.3104	0.6971	0.076*	
C8	0.6026 (2)	0.37051 (17)	0.6519 (3)	0.0575 (9)	
H8	0.6205	0.3801	0.7260	0.069*	

H1B	0.5962	0.2278	0.2851	0.086*
H1A	0.6369	0.2686	0.2572	0.086*
C24	0.7163 (2)	0.30719 (14)	0.1147 (3)	0.0448 (7)
C16	0.7005 (2)	0.32042 (15)	0.0067 (3)	0.0496 (7)
C23	0.7918 (2)	0.33854 (14)	0.2156 (3)	0.0467 (7)
C19	0.8456 (2)	0.38268 (16)	0.2027 (3)	0.0513 (8)
N3	0.66308 (19)	0.26634 (13)	0.1282 (2)	0.0533 (7)
N4	0.8060 (2)	0.32422 (14)	0.3182 (2)	0.0577 (7)
C18	0.8266 (2)	0.39479 (17)	0.0912 (3)	0.0585 (9)
H18	0.8621	0.4241	0.0830	0.070*
C17	0.7583 (2)	0.36451 (18)	-0.0013 (3)	0.0590 (9)
H17	0.7486	0.3725	-0.0722	0.071*
C13	0.5949 (3)	0.23787 (17)	0.0359 (3)	0.0611 (9)
H13	0.5584	0.2097	0.0448	0.073*
C14	0.5743 (3)	0.24734 (17)	-0.0736 (3)	0.0641 (9)
H14	0.5252	0.2262	-0.1358	0.077*
C20	0.9162 (2)	0.41347 (18)	0.3012 (3)	0.0642 (10)
H20	0.9527	0.4434	0.2963	0.077*
C15	0.6273 (2)	0.28822 (17)	-0.0877 (3)	0.0601 (9)
H15	0.6151	0.2949	-0.1602	0.072*
C21	0.9307 (3)	0.3991 (2)	0.4040 (3)	0.0712 (11)
H21	0.9775	0.4188	0.4704	0.085*
C22	0.8749 (3)	0.35454 (19)	0.4088 (3)	0.0681 (10)
H22	0.8863	0.3452	0.4801	0.082*
Cr1	0.60986 (4)	0.08803 (3)	0.29232 (5)	0.0543 (2)
O2	0.69117 (19)	0.04355 (13)	0.3843 (2)	0.0739 (8)
O3	0.6203 (3)	0.09376 (18)	0.1873 (2)	0.1033 (11)
01	0.6225 (2)	0.15268 (13)	0.3521 (3)	0.0874 (9)

Atomic displacement parameters $(Å^2)$

U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
0.069 (3)	0.058 (3)	0.271 (8)	0.000	0.090 (4)	0.000
0.0517 (8)	0.0367 (8)	0.0523 (8)	0.000	0.0364 (7)	0.000
0.0324 (13)	0.0281 (14)	0.0418 (14)	-0.0044 (10)	0.0205 (11)	-0.0012 (10)
0.0358 (13)	0.0335 (15)	0.0485 (16)	-0.0045 (11)	0.0243 (13)	-0.0040 (11)
0.0372 (12)	0.0352 (13)	0.0380 (12)	0.0007 (9)	0.0196 (10)	-0.0003 (9)
0.0403 (12)	0.0390 (14)	0.0523 (14)	0.0048 (10)	0.0277 (11)	0.0096 (10)
0.0438 (15)	0.0441 (17)	0.0387 (14)	-0.0092 (12)	0.0211 (13)	0.0024 (12)
0.0356 (13)	0.0338 (14)	0.0411 (14)	-0.0048 (11)	0.0214 (12)	0.0042 (11)
0.105 (2)	0.0451 (14)	0.125 (2)	0.0226 (13)	0.0963 (19)	0.0224 (14)
0.0520 (16)	0.0456 (18)	0.0575 (18)	-0.0037 (13)	0.0375 (15)	-0.0070 (14)
0.0419 (15)	0.0481 (18)	0.0508 (17)	0.0093 (13)	0.0192 (14)	0.0080 (14)
0.0395 (14)	0.0388 (17)	0.0640 (19)	0.0052 (12)	0.0292 (14)	0.0006 (13)
0.0643 (19)	0.0529 (19)	0.0462 (16)	-0.0120 (15)	0.0373 (16)	-0.0081 (14)
0.0470 (17)	0.054 (2)	0.064 (2)	0.0127 (14)	0.0293 (16)	0.0199 (15)
0.0470 (16)	0.0472 (18)	0.0414 (15)	0.0003 (13)	0.0213 (14)	0.0005 (13)
0.0467 (17)	0.071 (3)	0.0535 (19)	0.0029 (16)	0.0154 (16)	0.0253 (17)
	U^{11} 0.069 (3) 0.0517 (8) 0.0324 (13) 0.0358 (13) 0.0372 (12) 0.0403 (12) 0.0403 (12) 0.0438 (15) 0.0356 (13) 0.105 (2) 0.0520 (16) 0.0419 (15) 0.0395 (14) 0.0643 (19) 0.0470 (17) 0.0470 (16) 0.0467 (17)	U^{11} U^{22} $0.069 (3)$ $0.058 (3)$ $0.0517 (8)$ $0.0367 (8)$ $0.0324 (13)$ $0.0281 (14)$ $0.0358 (13)$ $0.0335 (15)$ $0.0372 (12)$ $0.0352 (13)$ $0.0403 (12)$ $0.0390 (14)$ $0.0438 (15)$ $0.0441 (17)$ $0.0356 (13)$ $0.0338 (14)$ $0.105 (2)$ $0.0451 (14)$ $0.0520 (16)$ $0.0456 (18)$ $0.0419 (15)$ $0.0481 (18)$ $0.0395 (14)$ $0.0388 (17)$ $0.0643 (19)$ $0.0529 (19)$ $0.0470 (17)$ $0.054 (2)$ $0.0470 (16)$ $0.0472 (18)$ $0.0467 (17)$ $0.071 (3)$	U^{11} U^{22} U^{33} $0.069(3)$ $0.058(3)$ $0.271(8)$ $0.0517(8)$ $0.0367(8)$ $0.0523(8)$ $0.0324(13)$ $0.0281(14)$ $0.0418(14)$ $0.0358(13)$ $0.0335(15)$ $0.0485(16)$ $0.0372(12)$ $0.0352(13)$ $0.0380(12)$ $0.0403(12)$ $0.0390(14)$ $0.0523(14)$ $0.0438(15)$ $0.0441(17)$ $0.0387(14)$ $0.0356(13)$ $0.0338(14)$ $0.0411(14)$ $0.105(2)$ $0.0451(14)$ $0.125(2)$ $0.0520(16)$ $0.0456(18)$ $0.0575(18)$ $0.0419(15)$ $0.0481(18)$ $0.0508(17)$ $0.0395(14)$ $0.0529(19)$ $0.0462(16)$ $0.0470(17)$ $0.054(2)$ $0.0644(2)$ $0.0470(16)$ $0.0472(18)$ $0.0414(15)$ $0.0467(17)$ $0.071(3)$ $0.0535(19)$	U^{11} U^{22} U^{33} U^{12} $0.069 (3)$ $0.058 (3)$ $0.271 (8)$ 0.000 $0.0517 (8)$ $0.0367 (8)$ $0.0523 (8)$ 0.000 $0.0324 (13)$ $0.0281 (14)$ $0.0418 (14)$ $-0.0044 (10)$ $0.0358 (13)$ $0.0335 (15)$ $0.0485 (16)$ $-0.0045 (11)$ $0.0372 (12)$ $0.0352 (13)$ $0.0380 (12)$ $0.0007 (9)$ $0.0403 (12)$ $0.0390 (14)$ $0.0523 (14)$ $0.0048 (10)$ $0.0438 (15)$ $0.0441 (17)$ $0.0387 (14)$ $-0.0092 (12)$ $0.0356 (13)$ $0.0338 (14)$ $0.0411 (14)$ $-0.0048 (11)$ $0.105 (2)$ $0.0451 (14)$ $0.125 (2)$ $0.0226 (13)$ $0.0520 (16)$ $0.0456 (18)$ $0.0575 (18)$ $-0.0037 (13)$ $0.0419 (15)$ $0.0481 (18)$ $0.0508 (17)$ $0.0093 (13)$ $0.0395 (14)$ $0.0529 (19)$ $0.0462 (16)$ $-0.0120 (15)$ $0.0470 (17)$ $0.054 (2)$ $0.064 (2)$ $0.0127 (14)$ $0.0470 (16)$ $0.0472 (18)$ $0.0414 (15)$ $0.0003 (13)$	U^{11} U^{22} U^{33} U^{12} U^{13} 0.069 (3)0.058 (3)0.271 (8)0.0000.090 (4)0.0517 (8)0.0367 (8)0.0523 (8)0.0000.0364 (7)0.0324 (13)0.0281 (14)0.0418 (14) -0.0044 (10)0.0205 (11)0.0358 (13)0.0335 (15)0.0485 (16) -0.0045 (11)0.0243 (13)0.0372 (12)0.0352 (13)0.0380 (12)0.0007 (9)0.0196 (10)0.0403 (12)0.0390 (14)0.0523 (14)0.0048 (10)0.0277 (11)0.0438 (15)0.0441 (17)0.0387 (14) -0.0092 (12)0.0211 (13)0.0356 (13)0.0338 (14)0.0411 (14) -0.0048 (11)0.0214 (12)0.105 (2)0.0451 (14)0.125 (2)0.0226 (13)0.0963 (19)0.0520 (16)0.0456 (18)0.0575 (18) -0.0037 (13)0.0375 (15)0.0419 (15)0.0481 (18)0.0508 (17)0.0093 (13)0.0192 (14)0.0395 (14)0.0388 (17)0.0640 (19)0.0052 (12)0.0292 (14)0.0643 (19)0.0529 (19)0.0462 (16) -0.0120 (15)0.0373 (16)0.0470 (17)0.054 (2)0.064 (2)0.0127 (14)0.0293 (16)0.0467 (17)0.071 (3)0.0535 (19)0.0029 (16)0.0154 (16)

C8	0.0597 (19)	0.061 (2)	0.0399 (16)	-0.0079 (16)	0.0198 (15)	0.0083 (14)
C24	0.0423 (15)	0.0439 (17)	0.0507 (16)	0.0145 (12)	0.0273 (14)	0.0063 (13)
C16	0.0462 (16)	0.0527 (19)	0.0503 (17)	0.0174 (14)	0.0268 (14)	0.0135 (14)
C23	0.0446 (16)	0.0453 (18)	0.0514 (16)	0.0152 (13)	0.0273 (14)	0.0078 (13)
C19	0.0370 (15)	0.055 (2)	0.0565 (18)	0.0120 (13)	0.0227 (14)	0.0077 (15)
N3	0.0573 (15)	0.0498 (16)	0.0617 (16)	0.0011 (12)	0.0384 (14)	0.0005 (12)
N4	0.0641 (17)	0.0592 (18)	0.0527 (15)	0.0123 (14)	0.0341 (14)	0.0042 (13)
C18	0.0449 (17)	0.064 (2)	0.068 (2)	0.0101 (15)	0.0322 (17)	0.0191 (17)
C17	0.0526 (18)	0.069 (2)	0.0556 (19)	0.0134 (16)	0.0302 (17)	0.0215 (17)
C13	0.062 (2)	0.051 (2)	0.075 (2)	-0.0018 (16)	0.0403 (19)	-0.0026 (17)
C14	0.060 (2)	0.055 (2)	0.064 (2)	0.0039 (16)	0.0255 (18)	-0.0025 (16)
C20	0.0405 (17)	0.066 (2)	0.074 (2)	0.0054 (15)	0.0244 (17)	0.0047 (18)
C15	0.060 (2)	0.062 (2)	0.0485 (17)	0.0138 (17)	0.0241 (16)	0.0055 (16)
C21	0.049 (2)	0.079 (3)	0.062 (2)	0.0107 (18)	0.0160 (18)	-0.0087 (19)
C22	0.071 (2)	0.075 (3)	0.055 (2)	0.015 (2)	0.0322 (19)	0.0016 (18)
Cr1	0.0481 (3)	0.0484 (4)	0.0652 (4)	0.0060 (2)	0.0305 (3)	0.0057 (2)
O2	0.0757 (17)	0.0743 (19)	0.0658 (15)	0.0237 (14)	0.0353 (14)	0.0140 (13)
O3	0.106 (3)	0.132 (3)	0.0579 (16)	0.020 (2)	0.0364 (17)	0.0151 (17)
01	0.113 (2)	0.0484 (16)	0.114 (2)	-0.0003 (15)	0.071 (2)	0.0028 (15)

Geometric parameters (Å, °)

04—Cr1	1.756 (2)	С9—С8	1.363 (5)
O4—Cr1 ⁱ	1.756 (2)	С9—Н9	0.9300
Mg1—O1W ⁱ	2.017 (2)	C8—H8	0.9300
Mg1—O1W	2.017 (2)	C24—N3	1.355 (4)
Mg1—N2	2.210 (3)	C24—C16	1.414 (4)
Mg1—N2 ⁱ	2.210 (3)	C24—C23	1.451 (4)
Mg1—N1	2.215 (2)	C16—C15	1.404 (5)
Mg1—N1 ⁱ	2.215 (2)	C16—C17	1.424 (5)
C12—N1	1.354 (3)	C23—N4	1.357 (4)
C12—C4	1.401 (4)	C23—C19	1.408 (5)
C12—C11	1.446 (4)	C19—C20	1.403 (5)
C4—C3	1.410 (4)	C19—C18	1.434 (5)
C4—C5	1.431 (4)	N3—C13	1.321 (4)
N1—C1	1.329 (4)	N4—C22	1.333 (5)
N2—C10	1.337 (4)	C18—C17	1.342 (5)
N2—C11	1.359 (4)	C18—H18	0.9300
C7—C11	1.406 (4)	C17—H17	0.9300
С7—С8	1.410 (4)	C13—C14	1.387 (5)
С7—С6	1.421 (5)	C13—H13	0.9300
O1W—H1B	0.8517	C14—C15	1.359 (5)
O1W—H1A	0.8491	C14—H14	0.9300
C5—C6	1.353 (5)	C20—C21	1.358 (6)
С5—Н5	0.9300	C20—H20	0.9300
C2—C3	1.356 (5)	C15—H15	0.9300
C2—C1	1.389 (4)	C21—C22	1.387 (6)
С2—Н2	0.9300	C21—H21	0.9300

С3—Н3	0.9300	C22—H22	0.9300
С6—Н6	0.9300	Cr1—O3	1.578 (3)
С10—С9	1.378 (5)	Cr1—O2	1.597 (3)
C10—H10	0.9300	Cr1—O1	1.614 (3)
C1—H1	0.9300		
Cr1-O4-Cr1 ⁱ	130.3 (3)	N1—C1—H1	118.3
O1W ⁱ —Mg1—O1W	97.08 (17)	C2—C1—H1	118.3
O1W ⁱ —Mg1—N2	97.14 (10)	C8—C9—C10	119.2 (3)
O1W—Mg1—N2	94.70 (11)	С8—С9—Н9	120.4
O1W ⁱ —Mg1—N2 ⁱ	94.70 (11)	С10—С9—Н9	120.4
O1W-Mg1-N2 ⁱ	97.14 (10)	C9—C8—C7	120.1 (3)
$N2-Mg1-N2^{i}$	162.09 (14)	С9—С8—Н8	120.0
O1W ⁱ —Mg1—N1	88.13 (10)	С7—С8—Н8	120.0
O1W - Mg1 - N1	169.28 (11)	N3-C24-C16	122.5 (3)
N2-Mg1-N1	75.31 (9)	N3-C24-C23	118.2 (3)
$N2^{i}$ Mg1 N1	91 73 (9)	$C_{16} - C_{24} - C_{23}$	1193(3)
$01W^{i}$ Mg1 $ N1^{i}$	169 28 (10)	C_{15} C_{16} C_{24}	1168(3)
$\Omega_1 W - Mg_1 - N1^i$	88 13 (10)	$C_{15} - C_{16} - C_{17}$	123.7(3)
$N_2 M_{\sigma} 1 M_1^{i}$	91 73 (9)	C_{24} C_{16} C_{17}	129.7(3)
$N2^{i}$ Mg1 $N1^{i}$	75 31 (9)	$N4-C^{23}-C^{19}$	117.3(3) 123.2(3)
M_{1} M_{α} M_{1} M_{1}	88 32 (13)	N4_C23_C24	125.2(3) 117.8(3)
N1 C12 C4	1220(2)	$C_{10} C_{23} C_{24}$	117.0(3)
N1 = C12 = C4	122.9(2) 117.6(2)	$C_{19} = C_{23} = C_{24}$	117.0(3) 117.7(2)
N1 = C12 = C11	117.0(2) 110.5(2)	$C_{20} = C_{19} = C_{23}$	117.7(3) 122.6(3)
$C_4 = C_{12} = C_{11}$	119.3 (2)	$C_{20} = C_{19} = C_{18}$	122.0(3)
C12 - C4 - C5	117.3(3)	$C_{23} = C_{19} = C_{18}$	119.7(3)
C12-C4-C5	119.8 (3)	C13 - N3 - C24	11/.0(3)
$C_3 - C_4 - C_5$	122.9 (3)	C_{22} N4— C_{23}	116.3 (3)
CI-NI-CI2	117.6 (2)	C17 - C18 - C19	121.0 (3)
CI—NI—Mgi	127.7 (2)	C17—C18—H18	119.5
C12—NI—MgI	114.72 (17)	C19—C18—H18	119.5
C10—N2—C11	117.1 (3)	C18—C17—C16	121.4 (3)
C10—N2—Mg1	128.2 (2)	С18—С17—Н17	119.3
C11—N2—Mg1	114.65 (18)	С16—С17—Н17	119.3
C11—C7—C8	116.6 (3)	N3—C13—C14	124.2 (3)
C11—C7—C6	119.8 (3)	N3—C13—H13	117.9
C8—C7—C6	123.7 (3)	C14—C13—H13	117.9
N2—C11—C7	123.3 (2)	C15—C14—C13	118.5 (3)
N2—C11—C12	117.7 (2)	C15—C14—H14	120.7
C7—C11—C12	119.0 (3)	C13—C14—H14	120.7
Mg1—O1W—H1B	124.0	C21—C20—C19	119.2 (4)
Mg1—O1W—H1A	122.7	C21—C20—H20	120.4
H1B—O1W—H1A	101.3	С19—С20—Н20	120.4
C6—C5—C4	120.5 (3)	C14—C15—C16	120.3 (3)
С6—С5—Н5	119.8	C14—C15—H15	119.9
C4—C5—H5	119.8	С16—С15—Н15	119.9
C3—C2—C1	119.4 (3)	C20—C21—C22	119.2 (4)
C3—C2—H2	120.3	C20—C21—H21	120.4

С1—С2—Н2	120.3	C22—C21—H21	120.4
C2—C3—C4	119.4 (3)	N4—C22—C21	124.4 (4)
С2—С3—Н3	120.3	N4—C22—H22	117.8
С4—С3—Н3	120.3	C21—C22—H22	117.8
C5—C6—C7	121.4 (3)	O3—Cr1—O2	108.43 (17)
С5—С6—Н6	119.3	O3—Cr1—O1	111.17 (19)
С7—С6—Н6	119.3	O2—Cr1—O1	108.75 (16)
N2—C10—C9	123.7 (3)	O3—Cr1—O4	110.76 (14)
N2—C10—H10	118.1	O2—Cr1—O4	106.38 (17)
С9—С10—Н10	118.1	O1—Cr1—O4	111.18 (18)
N1—C1—C2	123.4 (3)		

Symmetry code: (i) -x+1, y, -z+1/2.

Hydrogen-bond geometry (Å, °)

	<i>D</i> —Н	H···A	D···A	<i>D</i> —H··· <i>A</i>
01 <i>W</i> —H1 <i>A</i> ···N3	0.85	2.08	2.876 (4)	156
O1 <i>W</i> —H1 <i>B</i> …O1	0.85	1.84	2.636 (4)	154