Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

N,N'-Bis[(E)-2-thienylmethylene]-4,4'oxydianiline

Xuguan Tao^a* and Hui Cui^b

^aCollege of Materials Science and Engineering, Liaocheng University, Shandong 252059, People's Republic of China, and ^bCollege of Chemistry and Chemical Engineering, Liaocheng University, Shandong 252059, People's Republic of China Correspondence e-mail: taoxuguan@lcu.edu.cn

Received 22 July 2009; accepted 21 August 2009

Key indicators: single-crystal X-ray study; T = 298 K; mean σ (C–C) = 0.007 Å; R factor = 0.090; wR factor = 0.218; data-to-parameter ratio = 13.6.

In the title molecule, $C_{22}H_{16}N_2OS_2$, which demonstrates noncrystallographic C_2 pseudosymmetry [C-O-C angle = 121.0 $(3)^{\circ}$], the two benzene rings make a dihedral angle of 62.09 (14)°. The crystal packing exhibits no significantly short intermolecular contacts.

Related literature

For general background, see: Nakajima et al. (1998); Opstal & Verpoort (2003); Chakraborty & Patel (1996). For a related structure, see Hu et al. (2008).

Experimental

Crystal data

V = 1902.0 (4) Å ³
Z = 4
Mo $K\alpha$ radiation
$\mu = 0.29 \text{ mm}^{-1}$
T = 298 K
$0.40 \times 0.37 \times 0.05 \text{ mm}$

Data collection

Bruker SMART APEX CCD areadetector diffractometer Absorption correction: multi-scan (SADABS; Sheldrick, 1996) $T_{\min} = 0.891, T_{\max} = 0.985$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.090$ $wR(F^2) = 0.218$ S = 1.083319 reflections

8674 measured reflections 3319 independent reflections 2079 reflections with $I > 2\sigma(I)$ $R_{\rm int} = 0.073$

244 parameters H-atom parameters constrained $\Delta \rho_{\rm max} = 0.26 \text{ e } \text{\AA}^{-3}$ $\Delta \rho_{\rm min} = -0.36 \text{ e } \text{\AA}^{-3}$

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1996); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

The authors acknowledge the financial support of Liaocheng University (grant No. X20090101).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CV2595).

References

Chakraborty, J. & Patel, R. N. (1996). J. Indian Chem. Soc. 73, 191-195. Hu, S.-L., Li, Y.-T. & Cao, L.-P. (2008). Acta Cryst. E64, 0115.

Nakajima, K., Ando, Y., Mano, H. & Kojima, M. (1998). Inorg. Chim. Acta, 274, 184-191.

Opstal, T. & Verpoort, F. (2003). Angew. Chem. Int. Ed. 42, 2876-2879.

Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.

supporting information

Acta Cryst. (2009). E65, o2251 [doi:10.1107/S1600536809033285]

N,N'-Bis[(E)-2-thienylmethylene]-4,4'-oxydianiline

Xuquan Tao and Hui Cui

S1. Comment

In the recent years, there is a considerable interest in the chemistry of Schiff bases (Nakajima *et al.*, 1998). This is due to the fact that Schiff bases offer opportunities for inducing substrate chirality, tuning the metal centred electronic factor, enhancing the solubility and stability of either homogeneous or heterogeneous catalysts (Opstal & Verpoort, 2003). Schiff base complexes with metals exhibit strong anticancer activity (Chakraborty & Patel, 1996). Here, we report the synthesis and crystal structure of the title compound (I)- new flexible Schiff-base ligand.

The molecule of (I) is shown in Fig. 1. Bond lengths and angles are comparable with those observed in similar compounds (Hu *et al.*, 2008). The C13=N1 and C18=N2 bond lengths of 1.244 (6) and 1.253 (6) Å, respectively, are usual for C=N double bond. Each half of the molecule displays a *trans* configuration across the C=N double bond. The dihedral angles between the benzene rings C1-C6 and C7-C12 is 62.09 (14) °.

In the crystal structure, there are no significantly short intermolecular contacts.

S2. Experimental

4-(4'-Aminophenoxy)benzenamine (10 mmol), thiophene-2-carbaldehyde (20 mmol) and 20 ml of ethanol were mixed in 50 ml flask. After stirring for 3h at 303 K, the resulting mixture was recrystallized from ethanol, affording the title compound as orange crystalline solid.

S3. Refinement

All H atoms were placed in geometrically idealized positions (C—H 0.93 Å) and treated as riding on their parent atoms, with $U_{iso}(H) = 1.2 U_{eq}(C)$.

Figure 1

The molecular structure of (I) showing the atomic numbering scheme and 30% probability displacement ellipsoids.

N,N'-Bis[(E)-2-thienylmethylene]-4,4'-oxydianiline

Crystal data

 $C_{22}H_{16}N_2OS_2$ $M_r = 388.49$ Monoclinic, $P2_1/n$ a = 6.0897 (7) Å b = 41.478 (3) Å c = 7.5300 (12) Å $\beta = 90.130$ (1)° V = 1902.0 (4) Å³ Z = 4

Data collection

Bruker SMART APEX CCD area-detector diffractometer Radiation source: fine-focus sealed tube Graphite monochromator φ and ω scans Absorption correction: multi-scan (*SADABS*; Sheldrick, 1996) $T_{\min} = 0.891, T_{\max} = 0.985$

Refinement

Secondary atom site location: difference Fourier
map
Hydrogen site location: inferred from
neighbouring sites
H-atom parameters constrained
$w = 1/[\sigma^2(F_o^2) + (0.0631P)^2 + 3.3823P]$
where $P = (F_o^2 + 2F_c^2)/3$
$(\Delta/\sigma)_{\rm max} < 0.001$
$\Delta \rho_{\rm max} = 0.26 \text{ e } \text{\AA}^{-3}$
$\Delta \rho_{\rm min} = -0.36 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

F(000) = 808

 $\theta = 3.9 - 25.0^{\circ}$

 $\mu = 0.29 \text{ mm}^{-1}$

T = 298 K

Block, red

 $R_{\rm int} = 0.073$

 $h = -6 \rightarrow 7$

 $l = -8 \rightarrow 7$

 $k = -49 \rightarrow 38$

 $D_{\rm x} = 1.357 {\rm Mg} {\rm m}^{-3}$

 $0.40 \times 0.37 \times 0.05 \text{ mm}$

8674 measured reflections

 $\theta_{\rm max} = 25.0^\circ, \ \theta_{\rm min} = 2.0^\circ$

3319 independent reflections

2079 reflections with $I > 2\sigma(I)$

Mo *K* α radiation, $\lambda = 0.71073$ Å

Cell parameters from 2059 reflections

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
S1	0.4955 (3)	0.05770 (4)	0.6056 (3)	0.0906 (6)	
S2	0.4773 (3)	0.44248 (5)	0.5080 (3)	0.0998 (7)	
N1	0.6149 (7)	0.12778 (10)	0.5599 (6)	0.0552 (11)	
N2	0.6082 (7)	0.37230 (10)	0.5480 (6)	0.0529 (11)	
01	0.9917 (5)	0.25041 (8)	0.5517 (5)	0.0489 (8)	

C1	0.8811 (7)	0.22122 (11)	0.5554 (6)	0.0409 (11)
C2	0.9821 (7)	0.19597 (11)	0.6410 (6)	0.0443 (12)
H2	1.1137	0.1994	0.7010	0.053*
C3	0.8919 (7)	0.16597 (11)	0.6389 (6)	0.0450 (12)
H3	0.9637	0.1492	0.6969	0.054*
C4	0.6937 (8)	0.15984 (10)	0.5516 (6)	0.0419 (11)
C5	0.5935 (8)	0.18563 (11)	0.4622 (6)	0.0470 (12)
Н5	0.4627	0.1822	0.4012	0.056*
C6	0.6854 (8)	0.21602 (11)	0.4629 (6)	0.0451 (12)
H6	0.6177	0.2329	0.4024	0.054*
C7	0.8781 (7)	0.27942 (10)	0.5519 (6)	0.0397 (11)
C8	0.9794 (8)	0.30454 (12)	0.4627 (6)	0.0457 (12)
H8	1.1085	0.3009	0.4001	0.055*
C9	0.8885 (8)	0.33485 (12)	0.4669 (6)	0.0475 (12)
Н9	0.9595	0.3519	0.4109	0.057*
C10	0.6885 (7)	0.34028 (11)	0.5557 (6)	0.0412 (11)
C11	0.5918 (8)	0.31457 (11)	0.6446 (6)	0.0473 (12)
H11	0.4615	0.3178	0.7062	0.057*
C12	0.6863 (7)	0.28442 (11)	0.6428 (6)	0.0440 (11)
H12	0.6201	0.2675	0.7032	0.053*
C13	0.4187 (9)	0.12173 (12)	0.5275 (7)	0.0558 (14)
H13	0.3245	0.1384	0.4960	0.067*
C14	0.3329 (9)	0.08851 (12)	0.5382 (7)	0.0556 (14)
C15	0.1330 (9)	0.07893 (13)	0.4965 (8)	0.0655 (16)
H15	0.0224	0.0927	0.4570	0.079*
C16	0.1061 (11)	0.04474 (15)	0.5191 (10)	0.085 (2)
H16	-0.0240	0.0338	0.4956	0.102*
C17	0.2895 (12)	0.03046 (15)	0.5779 (10)	0.084 (2)
H17	0.3025	0.0085	0.6006	0.101*
C18	0.4106 (9)	0.37824 (12)	0.5808 (7)	0.0555 (13)
H18	0.3178	0.3613	0.6101	0.067*
C19	0.3211 (9)	0.41082 (12)	0.5748 (7)	0.0553 (13)
C20	0.1186 (9)	0.42042 (13)	0.6180 (8)	0.0623 (15)
H20	0.0087	0.4065	0.6558	0.075*
C21	0.0893 (11)	0.45432 (15)	0.6002 (9)	0.081 (2)
H21	-0.0408	0.4650	0.6270	0.097*
C22	0.2677 (13)	0.46897 (15)	0.5412 (12)	0.100 (3)
H22	0.2775	0.4910	0.5203	0.120*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
S 1	0.0697 (11)	0.0664 (11)	0.1356 (17)	0.0015 (9)	-0.0133 (10)	0.0213 (11)
S2	0.0662 (11)	0.0620 (11)	0.171 (2)	-0.0033 (9)	0.0046 (11)	0.0270 (11)
N1	0.049 (3)	0.052 (3)	0.064 (3)	0.002 (2)	-0.002 (2)	0.004 (2)
N2	0.050 (3)	0.045 (3)	0.064 (3)	-0.001 (2)	0.001 (2)	0.001 (2)
01	0.0408 (17)	0.0418 (18)	0.064 (2)	-0.0024 (15)	0.0016 (15)	-0.0023 (15)
C1	0.041 (3)	0.040 (3)	0.042 (3)	0.000 (2)	0.003 (2)	-0.001 (2)

C2	0.038 (3)	0.047 (3)	0.047 (3)	0.005 (2)	-0.004 (2)	-0.001 (2)
C3	0.044 (3)	0.045 (3)	0.046 (3)	0.008 (2)	-0.006 (2)	0.007 (2)
C4	0.049 (3)	0.034 (3)	0.043 (3)	0.000 (2)	0.004 (2)	0.002 (2)
C5	0.042 (3)	0.049 (3)	0.050 (3)	-0.003 (2)	-0.012 (2)	0.000(2)
C6	0.049 (3)	0.041 (3)	0.045 (3)	0.005 (2)	-0.008 (2)	0.004 (2)
C7	0.045 (3)	0.037 (3)	0.038 (3)	0.003 (2)	-0.005 (2)	-0.003(2)
C8	0.038 (3)	0.052 (3)	0.047 (3)	-0.008 (2)	0.002 (2)	-0.005 (2)
C9	0.048 (3)	0.047 (3)	0.048 (3)	-0.011 (2)	-0.001 (2)	0.006 (2)
C10	0.041 (3)	0.040 (3)	0.043 (3)	-0.001 (2)	-0.005 (2)	-0.002 (2)
C11	0.045 (3)	0.046 (3)	0.050 (3)	0.001 (2)	0.010 (2)	-0.001 (2)
C12	0.044 (3)	0.041 (3)	0.046 (3)	-0.004(2)	0.008 (2)	0.001 (2)
C13	0.061 (4)	0.047 (3)	0.059 (3)	0.010 (3)	-0.001 (3)	-0.002 (2)
C14	0.062 (3)	0.047 (3)	0.058 (3)	0.001 (3)	0.006 (3)	0.000 (2)
C15	0.061 (4)	0.038 (3)	0.097 (5)	0.001 (3)	-0.022 (3)	0.002 (3)
C16	0.062 (4)	0.063 (4)	0.131 (7)	-0.015 (3)	-0.002 (4)	-0.009 (4)
C17	0.092 (5)	0.041 (4)	0.118 (6)	-0.009 (3)	0.022 (4)	0.013 (3)
C18	0.053 (3)	0.051 (3)	0.062 (3)	-0.007 (3)	-0.003 (3)	0.001 (3)
C19	0.055 (3)	0.050 (3)	0.061 (3)	-0.002 (3)	-0.006 (3)	0.001 (3)
C20	0.057 (3)	0.051 (3)	0.079 (4)	0.000 (3)	0.012 (3)	-0.005 (3)
C21	0.072 (4)	0.066 (4)	0.103 (5)	0.020 (4)	-0.018 (4)	-0.009 (4)
C22	0.089 (5)	0.041 (4)	0.170 (8)	-0.005 (4)	-0.021 (5)	0.006 (4)

Geometric parameters (Å, °)

S1—C14	1.694 (5)	С8—Н8	0.9300
S1—C17	1.701 (7)	C9—C10	1.409 (7)
S2—C19	1.698 (5)	С9—Н9	0.9300
S2—C22	1.703 (8)	C10—C11	1.390 (6)
N1-C13	1.244 (6)	C11—C12	1.377 (6)
N1-C4	1.415 (6)	C11—H11	0.9300
N2-C18	1.253 (6)	C12—H12	0.9300
N2-C10	1.416 (6)	C13—C14	1.476 (7)
01—C1	1.386 (5)	C13—H13	0.9300
O1—C7	1.388 (5)	C14—C15	1.318 (7)
C1—C2	1.374 (6)	C15—C16	1.438 (8)
C1—C6	1.396 (6)	C15—H15	0.9300
C2—C3	1.361 (6)	C16—C17	1.338 (9)
С2—Н2	0.9300	C16—H16	0.9300
C3—C4	1.396 (6)	C17—H17	0.9300
С3—Н3	0.9300	C18—C19	1.458 (7)
C4—C5	1.403 (6)	C18—H18	0.9300
C5—C6	1.379 (6)	C19—C20	1.337 (7)
С5—Н5	0.9300	C20—C21	1.423 (8)
С6—Н6	0.9300	C20—H20	0.9300
C7—C12	1.371 (6)	C21—C22	1.323 (9)
С7—С8	1.385 (6)	C21—H21	0.9300
С8—С9	1.374 (6)	C22—H22	0.9300

C14 - S1 - C17	91 9 (3)	C12—C11—H11	119 5
C19 = S2 = C22	920(3)	C10-C11-H11	119.5
C13 - N1 - C4	1204(4)	C7-C12-C11	119.9 (4)
C18 N2 C10	120.1(1) 120.5(4)	C7-C12-H12	120.0
C1 O1 C7	120.5(4) 1210(3)	$C_1 C_1 C_1 C_1 C_1 C_1 C_1 C_1 C_1 C_1 $	120.0
$C_{1} = C_{1} = C_{1}$	121.0(3) 117.3(4)	N1 - C12 - C14	120.0 121.2(5)
$C_2 = C_1 = C_1$	117.3(4) 110.8(4)	N1 C12 H12	121.2(3)
$C_2 = C_1 = C_0$	119.0(4)	11-112	119.4
01 - 01 - 00	122.0 (4)	С14—С13—Н13	119.4
$C_3 = C_2 = C_1$	120.8 (4)	C15 - C14 - C13	120.5(5)
$C_3 = C_2 = H_2$	119.6	C12 - C14 - S1	112.5 (4)
C1 - C2 - H2	119.6	C13 - C14 - S1	120.9 (4)
C2—C3—C4	121.4 (4)	C14—C15—C16	112.0 (5)
С2—С3—Н3	119.3	С14—С15—Н15	124.0
С4—С3—Н3	119.3	C16—C15—H15	124.0
C3—C4—C5	117.5 (4)	C17—C16—C15	112.4 (6)
C3—C4—N1	116.3 (4)	C17—C16—H16	123.8
C5—C4—N1	126.2 (4)	C15—C16—H16	123.8
C6—C5—C4	121.3 (4)	C16—C17—S1	111.2 (5)
С6—С5—Н5	119.4	C16—C17—H17	124.4
C4—C5—H5	119.4	S1—C17—H17	124.4
C5—C6—C1	119.3 (4)	N2-C18-C19	122.3 (5)
С5—С6—Н6	120.4	N2-C18-H18	118.8
С1—С6—Н6	120.4	C19—C18—H18	118.8
C12—C7—C8	120.6 (4)	C20-C19-C18	127.9 (5)
C12—C7—O1	123.8 (4)	C20—C19—S2	111.1 (4)
C8—C7—O1	115.4 (4)	C18—C19—S2	121.1 (4)
C9—C8—C7	119.8 (4)	C19—C20—C21	112.8 (5)
С9—С8—Н8	120.1	С19—С20—Н20	123.6
С7—С8—Н8	120.1	С21—С20—Н20	123.6
C8—C9—C10	120.4 (4)	C22—C21—C20	112.5 (6)
С8—С9—Н9	119.8	C22—C21—H21	123.8
C10—C9—H9	119.8	C20—C21—H21	123.8
C11—C10—C9	118.2 (4)	$C_{21} - C_{22} - S_{2}$	111.7 (5)
$C_{11} - C_{10} - N_2$	1263(4)	$C_{21} = C_{22} = H_{22}$	124.2
C9-C10-N2	1154(4)	S2_C22_H22	124.2
C_{12} C_{11} C_{10} C_{10}	121 0 (4)	52 622 1122	12-1.2
	121.0 (4)		
C7 01 C1 C2	-1481(4)	N2 C10 C11 C12	-179.8(4)
$C_{7} = 01 = C_{1} = C_{2}$	1+0.1(+)	$C_{12} = C_{10} = C_{11} = C_{12}$	179.0(4)
$C_{1} = C_{1} = C_{0}$	-1750(4)	$C_{0} = C_{12} = C_{11}$	0.5(7)
01 - 01 - 02 - 03	-1/3.0(4)	01 - 07 - 012 - 011	1/3.9(4)
$C_{0} - C_{1} - C_{2} - C_{3}$	-1.0(7)	C10-C11-C12-C7	-0.2(7)
$C_1 - C_2 - C_3 - C_4$	-0.5(7)	U_4 N1 C12 C14 C15	-1/9.1(4)
12 - 13 - 14 - 13	1.3 (/)	N1 - C12 - C14 - C12	-1/3.3(6)
$C_2 = C_3 = C_4 = N_1$	-1/9.4 (4)	NI-UI3-UI4-SI	3.5(/)
C13—N1—C4—C3	161.5 (5)	C1/-S1-C14-C15	-0.1 (5)
C13—N1—C4—C5	-19.6 (8)	C17—S1—C14—C13	-179.0 (5)
C3—C4—C5—C6	-1.1 (7)	C13—C14—C15—C16	178.8 (6)
N1—C4—C5—C6	-180.0 (5)	S1—C14—C15—C16	-0.1 (7)

C4—C5—C6—C1	-0.4 (7)	C14—C15—C16—C17	0.2 (9)
C2-C1-C6-C5	1.4 (7)	C15—C16—C17—S1	-0.3 (8)
O1—C1—C6—C5	175.2 (4)	C14—S1—C17—C16	0.2 (6)
C1C12	35.5 (6)	C10-N2-C18-C19	179.9 (5)
C1—O1—C7—C8	-148.9 (4)	N2-C18-C19-C20	-175.2 (6)
C12—C7—C8—C9	0.8 (7)	N2-C18-C19-S2	4.4 (8)
O1—C7—C8—C9	-175.0 (4)	C22—S2—C19—C20	0.6 (5)
C7—C8—C9—C10	-2.5 (7)	C22—S2—C19—C18	-179.1 (5)
C8—C9—C10—C11	2.8 (7)	C18—C19—C20—C21	178.5 (5)
C8—C9—C10—N2	-178.7 (4)	S2-C19-C20-C21	-1.1 (7)
C18—N2—C10—C11	-19.9 (7)	C19—C20—C21—C22	1.2 (9)
C18—N2—C10—C9	161.6 (5)	C20—C21—C22—S2	-0.8 (9)
C9—C10—C11—C12	-1.4 (7)	C19—S2—C22—C21	0.1 (6)