Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Bis[4-chloro-2-(iminomethyl)phenolato]copper(II) methanol disolvate

Bei Qin

Department of Pharmacy, Xi'An Medical University, Xi'an Shaanxi 721021, People's Republic of China
Correspondence e-mail: pxh913@163.com

Received 2 August 2009; accepted 5 August 2009

Key indicators: single-crystal X-ray study; $T=298 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.005 \AA$; R factor $=0.038 ; w R$ factor $=0.084 ;$ data-to-parameter ratio $=13.8$.

The title compound, $\left[\mathrm{Cu}\left(\mathrm{C}_{7} \mathrm{H}_{5} \mathrm{ClNO}\right)_{2}\right] \cdot 2 \mathrm{CH}_{3} \mathrm{OH}$, possesses crystallographic twofold symmetry, with the twofold axis passing through the central $\mathrm{Cu}^{\mathrm{II}}$ ion. The metal centre is coordinated by two O atoms and two N atoms from two symmetry-related Schiff base ligands, forming a slightly distorted cis- $\mathrm{CuN}_{2} \mathrm{O}_{2}$ square-planar geometry. The complex molecules are linked via the solvent methanol molecules by $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds, leading to the formation of chains along the b axis.

Related literature

For general background to Schiff base copper(II) complexes, see: Adsule et al. (2006); Erxleben \& Schumacher (2001); Stewart et al. (1961). For related structures, see: Li \& Zhang (2004); Wei et al. (2004).

Experimental

Crystal data
$\left[\mathrm{Cu}\left(\mathrm{C}_{7} \mathrm{H}_{5} \mathrm{ClNO}\right)_{2}\right] \cdot 2 \mathrm{CH}_{4} \mathrm{O} \quad$ Monoclinic, $\mathrm{C} 2 / \mathrm{c}$
$M_{r}=436.76$
$b=7.639$ (1) \AA
$c=14.6681$ (15) \AA
$\beta=129.376$ (2) ${ }^{\circ}$
$V=1784.5(3) \AA^{3}$
$Z=4$
Data collection

Bruker SMART CCD area-detector	4502 measured reflections
diffractometer	1568 independent reflections
Absorption correction: multi-scan	1167 reflections with $I>2 \sigma(I)$
$(S A D A B S ;$ Sheldrick, 1996 $)$	$R_{\text {int }}=0.048$
$\quad T_{\min }=0.801, T_{\max }=0.886$	

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.038$	114 parameters
$w R\left(F^{2}\right)=0.084$	H-atom parameters constrained
$S=1.05$	$\Delta \rho_{\max }=0.38 \mathrm{e} \AA^{-3}$
1568 reflections	$\Delta \rho_{\min }=-0.27 \mathrm{e}^{-3}$

Table 1
Hydrogen-bond geometry $\left(\AA^{\circ},{ }^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
O2-H2 $\cdots \mathrm{O} 1$	0.82	2.04	$2.822(3)$	160
N1-H1 O^{i}	0.86	2.20	$2.986(4)$	153

Symmetry code: (i) $x, y-1, z$.

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97.

The author thanks Xi'An Medical University for financial support.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CI2879).

References

Adsule, S., Barve, V., Chen, D., Ahmed, F., Dou, Q. P., Padhye, S. \& Sarkar, F. H. (2006). J. Med. Chem. 49, 7242-7246.

Bruker (2000). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
Erxleben, A. \& Schumacher, D. (2001). Eur. J. Inorg. Chem. 12, 3039-3046.
Li, Z.-X. \& Zhang, X.-L. (2004). Acta Cryst. E60, m958-m959.
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Stewart, J. M., Lingafelter, E. C. \& Breazeale, J. D. (1961). Acta Cryst. 14, 888 891.

Wei, Y.-B., Yuan, C.-X. \& Yang, P. (2004). Acta Cryst. C60, m512-m514.

supporting information

Bis[4-chloro-2-(iminomethyl)phenolato]copper(II) methanol disolvate

Bei Qin

S1. Comment

The syntheses of copper(II) complexes with Schiff base have been reported for their applications in the design and construction of new magnetic materials (Erxleben \& Schumache, 2001; Stewart et al., 1961). Some of these complexes also inhibit the cellular proteasome activity (Adsule et al., 2006). As an extension of the work on structural characterization of mononuclear copper(II) complexes, the crystal structure of the title compound is reported.
Complex (I) is a mononuclear copper(II) compound. The central $\mathrm{Cu}^{\mathrm{II}}$ atom is coordinated by two O atoms and two N atoms of the two Schiff base ligands to form a slightly distorted square-planar geometry, with angles subtended at the copper(II) atoms in the range $84.48(12)^{\circ}-172.02(10)^{\circ}$. The $\mathrm{Cu}-\mathrm{O}$ and $\mathrm{Cu}-\mathrm{N}$ bond lengths are 1.915 (2) \AA and 1.939 (2) \AA, respectively, which are a little longer than the corresponding value of 1.842 (3) \AA and 1.837 (3) \AA observed in a similar Schiff base copper(II) complex (Li \& Zhang, 2004).
Intermolecular $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds involving atoms O 1 and N 1 from the Schiff base and O 2 from the methanol (Table 1) link the molecules to form chains along the b axis. From Fig. 2, it can be seen that benzene rings from neighbouring complexes are parallel but the distance between their centroids is $3.852(2) \AA$, which is longer than the distance $(3.4 \AA$) between neighbouring base pairs in DNA (Wei et al., 2004), indicating no $\pi \cdots \pi$ packing interactions.

S2. Experimental

All chemicals were of reagent grade and commercially available from the Beijing Chemical Reagents Company of China, and were used without further purification. 5-Chloro-2-hydroxybenzaldehyde ($0.2 \mathrm{mmol}, 31.32 \mathrm{mg}$), isopropylamine (0.2 mmol, 11.8 mg) and $\mathrm{Cu}(\mathrm{Ac})_{2}(0.1 \mathrm{mmol} 18.2 \mathrm{mg})$ were dissolved in methanol $(10 \mathrm{ml})$. The mixture was stirred at room temperature for 30 min and then filtered. The filtrate was allowed to stand in air for 7 d , after which time yellow blockshaped crystals of the title compound were formed by slow evaporation of the solvent.

S3. Refinement

H atoms attached to C and N atoms were placed in geometrically idealized positions $(\mathrm{N}-\mathrm{H}=0.86 \AA$ and $\mathrm{C}-\mathrm{H}=0.93-0.96$ \AA) and constrained to ride on their parent atoms, with $U_{\mathrm{iso}}(\mathrm{H})=1.2_{\text {Ueq }}(\mathrm{C}, \mathrm{N}) . \mathrm{H}$ atoms attached to O atoms (water) were located in difference Fourier maps and constrained to ride on their parent atoms, with $U_{\text {iso }}(\mathrm{H})=1.2_{\text {Ueq }}(\mathrm{O})$.

Figure 1
The asymmetric unit of (I), showing 30\% probability displacement ellipsoids. The dashed line indicates a hydrogen bond; symmetry code: (A) $1-x, y, 3 / 2-z$.

Figure 2

Part of the crystal packing of (I), viewed along the b axis. Hydrogen bonds are shown as dashed lines.

Bis[4-chloro-2-(iminomethyl)phenolato]copper(II) methanol disolvate

Crystal data

$\left[\mathrm{Cu}\left(\mathrm{C}_{7} \mathrm{H}_{5} \mathrm{ClNO}\right)_{2}\right] \cdot 2 \mathrm{CH}_{4} \mathrm{O}$
$M_{r}=436.76$
Monoclinic, $C 2 / c$
Hall symbol: -C 2yc
$a=20.603$ (2) \AA
$b=7.639$ (1) \AA
$c=14.6681(15) \AA$
$\beta=129.376(2)^{\circ}$
$V=1784.5$ (3) \AA^{3}
$Z=4$

Data collection

Bruker SMART CCD area-detector diffractometer
Radiation source: fine-focus sealed tube
Graphite monochromator
φ and ω scans
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
$T_{\text {min }}=0.801, T_{\text {max }}=0.886$

$$
F(000)=892
$$

$$
D_{\mathrm{x}}=1.626 \mathrm{Mg} \mathrm{~m}^{-3}
$$

$$
\text { Mo } K \alpha \text { radiation, } \lambda=0.71073 \AA
$$

$$
\text { Cell parameters from } 1362 \text { reflections }
$$

$$
\theta=2.6-27.5^{\circ}
$$

$\mu=1.55 \mathrm{~mm}^{-1}$
$T=298 \mathrm{~K}$
Block, yellow
$0.15 \times 0.11 \times 0.08 \mathrm{~mm}$

$$
\begin{aligned}
& 4502 \text { measured reflections } \\
& 1568 \text { independent reflections } \\
& 1167 \text { reflections with } I>2 \sigma(I) \\
& R_{\text {int }}=0.048 \\
& \theta_{\max }=25.0^{\circ}, \theta_{\min }=2.6^{\circ} \\
& h=-24 \rightarrow 20 \\
& k=-9 \rightarrow 7 \\
& l=-15 \rightarrow 17
\end{aligned}
$$

Refinement

Refinement on F^{2}

Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.038$
$w R\left(F^{2}\right)=0.084$
$S=1.05$
1568 reflections
114 parameters
0 restraints
Primary atom site location: structure-invariant direct methods

Secondary atom site location: difference Fourier map
Hydrogen site location: inferred from neighbouring sites
H -atom parameters constrained
$w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.0346 P)^{2}\right]$
where $P=\left(F_{0}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\max }=0.001$
$\Delta \rho_{\text {max }}=0.38$ e \AA^{-3}
$\Delta \rho_{\text {min }}=-0.27 \mathrm{e}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two 1.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor $w R$ and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>\sigma\left(F^{2}\right)$ is used only for calculating R-factors (gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F, and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^{2})

	x	y	z	$U_{\text {iso }} * / U_{\text {eq }}$
Cu 1	0.5000	$0.17304(7)$	0.7500	$0.0365(2)$

C11	$0.11369(5)$	$0.33974(13)$	$0.15757(7)$	$0.0592(3)$
N1	$0.41857(15)$	$-0.0028(3)$	$0.6418(2)$	$0.0413(7)$
H1	0.4297	-0.1088	0.6674	0.050^{*}
O1	$0.43140(12)$	$0.3587(2)$	$0.64243(18)$	$0.0417(6)$
O2	$0.41114(18)$	$0.6573(3)$	$0.7355(2)$	$0.0727(8)$
H2	0.4284	0.5693	0.7249	0.109^{*}
C1	$0.3505(2)$	$0.0205(4)$	$0.5374(3)$	$0.0407(8)$
H1A	0.3177	-0.0776	0.4964	0.049^{*}
C2	$0.32026(18)$	$0.1865(4)$	$0.4774(3)$	$0.0342(7)$
C3	$0.36158(18)$	$0.3465(4)$	$0.5328(3)$	$0.0343(7)$
C4	$0.32418(18)$	$0.5002(4)$	$0.4667(3)$	$0.0414(8)$
H4	0.3504	0.6069	0.5010	0.050^{*}
C5	$0.25007(19)$	$0.4981(5)$	$0.3530(3)$	$0.0439(8)$
H5	0.2269	0.6020	0.3110	0.053^{*}
C6	$0.21020(18)$	$0.3407(4)$	$0.3012(3)$	$0.0408(8)$
C7	$0.24355(19)$	$0.1877(4)$	$0.3604(3)$	$0.0411(8)$
H7	0.2159	0.0829	0.3240	0.049^{*}
C20	$0.4423(2)$	$0.6610(5)$	$0.8525(3)$	$0.0618(10)$
H20A	0.5025	0.6544	0.9048	0.093^{*}
H20B	0.4204	0.5632	0.8665	0.093^{*}
H20C	0.4254	0.7680	0.8666	0.093^{*}

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Cu1	$0.0396(3)$	$0.0265(3)$	$0.0406(3)$	0.000	$0.0241(3)$	0.000
C11	$0.0508(5)$	$0.0672(7)$	$0.0368(5)$	$0.0024(5)$	$0.0170(4)$	$-0.0017(4)$
N1	$0.0480(16)$	$0.0252(14)$	$0.0447(16)$	$-0.0017(13)$	$0.0266(14)$	$-0.0018(12)$
O1	$0.0385(12)$	$0.0252(12)$	$0.0398(13)$	$-0.0011(9)$	$0.0147(11)$	$0.0018(9)$
O2	$0.118(2)$	$0.0396(15)$	$0.0717(19)$	$0.0145(15)$	$0.0654(18)$	$0.0053(13)$
C1	$0.0474(19)$	$0.0295(17)$	$0.049(2)$	$-0.0093(15)$	$0.0324(18)$	$-0.0109(15)$
C2	$0.0352(16)$	$0.0332(17)$	$0.0381(17)$	$0.0000(15)$	$0.0251(15)$	$-0.0016(14)$
C3	$0.0362(17)$	$0.0296(18)$	$0.0398(18)$	$0.0007(14)$	$0.0253(16)$	$0.0008(14)$
C4	$0.0429(18)$	$0.0338(18)$	$0.0427(19)$	$-0.0015(15)$	$0.0248(16)$	$0.0013(15)$
C5	$0.050(2)$	$0.0404(19)$	$0.045(2)$	$0.0080(17)$	$0.0314(17)$	$0.0103(16)$
C6	$0.0379(18)$	$0.050(2)$	$0.0327(17)$	$0.0020(16)$	$0.0214(15)$	$-0.0004(15)$
C7	$0.0457(19)$	$0.0416(19)$	$0.0409(19)$	$-0.0048(17)$	$0.0299(17)$	$-0.0087(16)$
C20	$0.068(3)$	$0.054(2)$	$0.062(3)$	$0.002(2)$	$0.040(2)$	$-0.001(2)$

Geometric parameters $\left(\AA,{ }^{\circ}\right)$

$\mathrm{Cu} 1-\mathrm{O} 1^{\mathrm{i}}$	$1.9152(19)$	$\mathrm{C} 2-\mathrm{C} 3$	$1.414(4)$
$\mathrm{Cu} 1-\mathrm{O} 1$	$1.9152(19)$	$\mathrm{C} 2-\mathrm{C} 7$	$1.415(4)$
$\mathrm{Cu} 1-\mathrm{N} 1$	$1.939(2)$	$\mathrm{C} 3-\mathrm{C} 4$	$1.402(4)$
$\mathrm{Cu} 1-\mathrm{N} 1^{\mathrm{i}}$	$1.939(2)$	$\mathrm{C} 4-\mathrm{C} 5$	$1.372(4)$
$\mathrm{Cl} 1-\mathrm{C} 6$	$1.754(3)$	$\mathrm{C} 4-\mathrm{H} 4$	0.93
$\mathrm{~N} 1-\mathrm{C} 1$	$1.272(4)$	$\mathrm{C} 5-\mathrm{C} 6$	$1.380(4)$
$\mathrm{N} 1-\mathrm{H} 1$	0.86	$\mathrm{C} 5-\mathrm{H} 5$	0.93

O1-C3	1.315 (3)	C6-C7	1.355 (4)
O2-C20	1.400 (4)	C7-H7	0.93
O2-H2	0.82	C20-H20A	0.96
C1-C2	1.440 (4)	C20-H20B	0.96
C1-H1A	0.93	C20-H20C	0.96
O1-Cu1-O1	84.48 (12)	C4-C3-C2	117.4 (3)
$\mathrm{Ol}^{\mathbf{i}}-\mathrm{Cu} 1-\mathrm{N} 1$	172.02 (10)	C5-C4-C3	122.0 (3)
$\mathrm{O} 1-\mathrm{Cu} 1-\mathrm{N} 1$	92.03 (9)	C5-C4-H4	119.0
$\mathrm{Ol}{ }^{\text {i }}-\mathrm{Cu} 1-\mathrm{N} 1^{\text {i }}$	92.03 (9)	C3-C4-H4	119.0
$\mathrm{O} 1-\mathrm{Cu} 1-\mathrm{N} 1^{\text {i }}$	172.02 (10)	C4-C5-C6	119.6 (3)
N1-Cu1-N1 ${ }^{\text {i }}$	92.31 (15)	C4- $45-\mathrm{H} 5$	120.2
C1-N1-Cu1	127.5 (2)	C6-C5-H5	120.2
C1-N1-H1	116.2	C7-C6-C5	121.1 (3)
Cu1-N1-H1	116.2	C7-C6-Cl1	119.6 (3)
C3-O1-Cu1	128.18 (18)	C5-C6-Cl1	119.3 (2)
C20-O2-H2	109.5	C6-C7-C2	120.3 (3)
N1-C1-C2	125.3 (3)	C6-C7-H7	119.8
N1-C1-H1A	117.3	$\mathrm{C} 2-\mathrm{C} 7-\mathrm{H} 7$	119.8
C2-C1-H1A	117.3	O2-C20-H20A	109.5
C3-C2-C7	119.6 (3)	O2-C20-H20B	109.5
C3-C2-C1	122.7 (3)	H20A-C20-H20B	109.5
C7-C2-C1	117.6 (3)	$\mathrm{O} 2-\mathrm{C} 20-\mathrm{H} 20 \mathrm{C}$	109.5
O1-C3-C4	118.8 (3)	H20A-C20-H20C	109.5
O1-C3-C2	123.8 (3)	H20B-C20-H20C	109.5
O1-Cu1-N1-C1	4.2 (3)	C7-C2-C3-C4	-1.0 (4)
N1- ${ }^{\text {- }} \mathrm{Cu} 1-\mathrm{N} 1-\mathrm{Cl}$	-169.1 (3)	$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$	-177.5 (3)
O1- ${ }^{\text {i }}$ - ${ }^{\text {l }}-\mathrm{O}-\mathrm{C} 3$	179.9 (3)	O1-C3-C4-C5	-178.1 (3)
N1-Cu1-O1-C3	-7.3 (3)	C2-C3-C4-C5	0.5 (5)
Cu1-N1-C1-C2	0.4 (5)	C3-C4-C5-C6	0.4 (5)
N1-C1-C2-C3	-4.3 (5)	C4-C5-C6-C7	-0.8 (5)
N1-C1-C2-C7	179.2 (3)	C4-C5-C6-Cl1	177.9 (2)
$\mathrm{Cu} 1-\mathrm{O} 1-\mathrm{C} 3-\mathrm{C} 4$	-175.7 (2)	C5-C6-C7-C2	0.3 (5)
Cu1-O1-C3-C2	5.8 (4)	C11-C6-C7-C2	-178.4 (2)
C7-C2-C3-O1	177.5 (3)	C3-C2-C7-C6	0.7 (5)
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{O} 1$	1.1 (5)	C1-C2-C7-C6	177.3 (3)

Symmetry code: (i) $-x+1, y,-z+3 / 2$.
Hydrogen-bond geometry ($A,{ }^{\circ}$)

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 2-\mathrm{H} 2 \cdots \mathrm{O} 1$	0.82	2.04	$2.822(3)$	160
$\mathrm{~N} 1-\mathrm{H} 1 \cdots \mathrm{O}^{2 i}$	0.86	2.20	$2.986(4)$	153

Symmetry code: (ii) $x, y-1, z$.

