Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

## *N*-Cyano-7*a*-methoxycarbonyl-6,14endo-ethenotetrahydronorthebaine

#### Mustafa Odabaşoğlu,<sup>a</sup> Serkan Yavuz,<sup>b</sup> Özgür Pamir,<sup>b</sup> Orhan Büyükgüngör<sup>c</sup>\* and Yılmaz Yıldırır<sup>b</sup>

<sup>a</sup>Chemistry Program, Denizli Higher Vocational School, Pamukkale University, TR-20159 Kınıklı, Denizli, Turkey, <sup>b</sup>Department of Chemistry, Faculty of Arts & Science, Gazi University, Ankara, Turkey, and <sup>c</sup>Department of Physics, Faculty of Arts & Science, Ondokuz Mayıs University, TR-55139 Kurupelit Samsun, Turkey Correspondence e-mail: orhanb@omu.edu.tr

Received 29 July 2009; accepted 15 August 2009

Key indicators: single-crystal X-ray study; T = 296 K; mean  $\sigma$ (C–C) = 0.003 Å; R factor = 0.036; wR factor = 0.089; data-to-parameter ratio = 8.5.

In the title compound (systematic name: methyl 17-cyano-3,6-dimethoxy-4,5 $\alpha$ -epoxy-6,14-*endo*-ethenomorphinan-7carboxylate), C<sub>23</sub>H<sub>24</sub>N<sub>2</sub>O<sub>5</sub>, the dihydrofuran ring adopts a twist conformation, while the piperidine ring is in a chair conformation. The benzene-fused cyclohexene ring adopts an envelope conformation. An intramolecular C-H···O hydrogen bond is observed. Intermolecular C-H···O hydrogen bonds form C(5) chains along the *a* and *b* axes, respectively, and together they form a three-dimensional network.

#### **Related literature**

For general background, see: Parrish *et al.* (2004); Bentley & Hardy (1967); Marton *et al.* (1995); Derrick *et al.* (2000); Lenz *et al.* (1986); Hoskin & Hanks (1991); Takemori *et al.* (1972); Liu *et al.* (2005). For the synthesis, see: Odabaşoğlu *et al.* (2009). For graph-set notation, see: Bernstein *et al.* (1995); Etter (1990). For ring conformations, see: Cremer & Pople (1975).



V = 1972.59 (13) Å<sup>3</sup>

 $0.63 \times 0.44 \times 0.27 \text{ mm}$ 

9908 measured reflections

2328 independent reflections

2035 reflections with  $I > 2\sigma(I)$ 

Mo  $K\alpha$  radiation

 $\mu = 0.10 \text{ mm}^{-1}$ 

T = 296 K

 $R_{\rm int} = 0.021$ 

Z = 4

#### Experimental

#### Crystal data

 $\begin{array}{l} C_{23}H_{24}N_2O_5 \\ M_r = 408.44 \\ \text{Orthorhombic, } P2_12_12_1 \\ a = 7.1880 \ (3) \text{ \AA} \\ b = 11.1380 \ (4) \text{ \AA} \\ c = 24.6389 \ (10) \text{ \AA} \end{array}$ 

#### Data collection

Stoe IPDS 2 diffractometer Absorption correction: integration (X-RED32; Stoe & Cie, 2002)  $T_{min} = 0.953, T_{max} = 0.975$ 

#### Refinement

 $\begin{array}{ll} R[F^2 > 2\sigma(F^2)] = 0.036 & 274 \text{ parameters} \\ wR(F^2) = 0.089 & \text{H-atom parameters constrained} \\ S = 1.04 & \Delta\rho_{\max} = 0.20 \text{ e } \text{\AA}^{-3} \\ 2328 \text{ reflections} & \Delta\rho_{\min} = -0.20 \text{ e } \text{\AA}^{-3} \end{array}$ 

#### Table 1

Hydrogen-bond geometry (Å, °).

| $D - H \cdot \cdot \cdot A$                                                                 | D-H  | $H \cdot \cdot \cdot A$ | $D \cdots A$ | $D - \mathbf{H} \cdot \cdot \cdot A$ |
|---------------------------------------------------------------------------------------------|------|-------------------------|--------------|--------------------------------------|
| $\begin{array}{c} C20-H20A\cdots O5\\ C3-H3\cdots O1^{i}\\ C9-H9\cdots N2^{ii} \end{array}$ | 0.96 | 2.55                    | 3.120 (3)    | 118                                  |
|                                                                                             | 0.93 | 2.54                    | 3.399 (3)    | 153                                  |
|                                                                                             | 0.98 | 2.49                    | 3.467 (4)    | 179                                  |

Symmetry codes: (i)  $-x, y + \frac{1}{2}, -z + \frac{3}{2}$ ; (ii)  $x - \frac{1}{2}, -y + \frac{3}{2}, -z + 1$ .

Data collection: X-AREA (Stoe & Cie, 2002); cell refinement: X-AREA; data reduction: X-RED32 (Stoe & Cie, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

The authors gratefully acknowledge financial support from the Scientific and Technical Research Council of Turkey (TUBITAK, project No. 107 T676). We also thank the Turkish Grain Board (TMO) for the supply of thebaine.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CI2873).

#### References

Bentley, K. W. & Hardy, D. G. (1967). J. Am. Chem. Soc. 89, 3267-3273.

- Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.
- Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.
- Derrick, I., Coop, A., Al-Mousawi, S. M., Husbands, S. M. & Lewis, J. W. (2000). Tetrahedron Lett. 41, 7571–7576.
- Etter, M. C. (1990). Acc. Chem. Res. 23, 120-126.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
- Hoskin, P. J. & Hanks, G. W. (1991). Drugs, 41, 326-338.
- Lenz, G. R., Evans, S. M., Walters, D. E. & Hopfinger, A. J. (1986). *Opiates*, p. 65. London: Academic Press.
- Liu, H., Zhong, B., Lui, C., Wu, B. & Gong, Z. (2005). Acta Chim. Slov. 52, 80–85.
- Marton, J., Miklos, S., Hosztafi, S. & Makleit, S. (1995). Synth. Commun. 25, 829–848.
- Odabaşoğlu, M., Yavuz, S., Pamir, Ö., Yıldırır, Y. & Büyükgüngör, O. (2009). Acta Cryst. E65, 0864.

# organic compounds

Parrish, D., Chen, W., Coop, A. & Deschamps, J. R. (2004). Acta Cryst. E60, 0793–0794.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.

Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany. Takemori, A. E., Hayashi, G. & Smits, S. E. (1972). Eur. J. Pharmacol. 20, 85– 91.

# supporting information

Acta Cryst. (2009). E65, o2205-o2206 [doi:10.1107/S1600536809032450]

### N-Cyano-7*a*-methoxycarbonyl-6,14-*endo*-ethenotetrahydronorthebaine

#### Mustafa Odabaşoğlu, Serkan Yavuz, Özgür Pamir, Orhan Büyükgüngör and Yılmaz Yıldırır

#### S1. Comment

Morphine alkaloids and semisynthetic derivatives are important drugs for the relief of severe pain. A wide variety of modifications of the well known alkaloids thebaine, codeine and morphine have been described. The Diels-Alder adducts of the thebaine are key intermediates in the synthesis of the potent opioid analgesics (Parrish *et al.*, 2004). Diels-Alder reactions between thebaine and dienophiles predominantly give rise to  $7\alpha$  adducts, and the corresponding  $7\beta$  adducts have received little attention due to their difficulty of preparation (Bentley & Hardy 1967; Marton *et al.*, 1995; Derrick *et al.*, 2000).

The nature of the substituent at the nitrogen atom in morphine alkaloids is a significant factor having both quantitative and qualitative influence on their pharmacological activity (Lenz *et al.*, 1986). The synthesis and pharmacological activities of 6,14-endoethanomorphinan derivatives have been extensively studied. The typical examples of the pharmacological active compounds were reported in the literature such as buprenorphine (Hoskin & Hanks 1991), etorphine (Takemori *et al.*, 1972) and thienorphine (Liu *et al.*, 2005).

The overall view and atom-labelling of the molecule of (I) are displayed in Fig. 1. The five-membered ring [O2/C6/C5/C11/C17] adopts a twist conformation. Rings A (N1/C9/C10/C11/C12/C13), B(C4/C5/C11/C10/C9/C8), C(C10/C11/C17/C16/C18/C19) and D(C10/C14/C15/C16/C18/C19) are not planar, having total puckering amplitudes, Q<sub>T</sub>, of 0.596 (3) Å, 0.582 (2) Å, 0.768 (2)Å and 0.823 (2) Å, respectively. Rings A, B, C and D adopt chair, envelope, distorted boat and distorted boat conformations, respectively [for ring A:  $\varphi = 96$  (2)° and  $\theta = 9.4$  (3)°; for ring B:  $\varphi = 350.1$  (3)° and  $\theta = 125.3$  (3)°; for ring C:  $\varphi = 179.0$  (2)° and  $\theta = 90.8$  (2)°; for ring D:  $\varphi = 6.2$  (2)° and  $\theta = 85.8$  (1)°; Cremer & Pople, 1975). An intramolecular C20—H20A···O5 hydrogen bond is observed (Fig. 1).

The crystal packing is stabilized by intermolecular C9—H9···N2 and C3—H3···O1 hydrogen bonds (Table 1). As shown in Fig. 2 and Fig. 3, each of these hydrogen bonds forms a C(5) chain (Bernstein *et al.*, 1995; Etter, 1990) and together they form a three-dimensional network.

#### **S2. Experimental**

6,14-*endo*-Etheno- $7\alpha$ -methoxycarbonyltetrahydrothebaine was prepared according to the literature method (Odabaşoğlu *et al.*, 2009). For the preparation of the title compound, 6,14-*endo*-etheno- $7\alpha$ -methoxycarbonyltetrahydrothebaine (240 mg, 0,6 mmol) was heated under reflux with cyanogen bromide (85m g, 0,8 mmol) in dry chloroform (20 ml) for 24 h and monitored by TLC. After evaporation of the solvent, the reaction mixture was separated by column chromatography, using a mixture of methanol-chloroform (1:1) as the eluant. The *N*-cyanonor compound was recrystallized from methanol in 2 d (m.p.440–441 K).

#### **S3. Refinement**

H atoms were positioned geometrically (C-H = 0.93–0.98 Å) and refined using a riding model with  $U_{iso}(H) = 1.2U_{eq}(C)$  and  $1.5U_{eq}(methyl C)$ . A rotating–group model was used for the methyl groups. In the absence of significant anomalous scattering, 1694 Friedel pairs were merged in the final refinement.



#### Figure 1

A view of (I), with the atomic numbering scheme. Displacement ellipsoids are drawn at the 15% probability level. The dashed line indicates a hydrogen bond.



#### Figure 2

Part of the crystal structure of (I), showing the formation of a C(5) chain along the *b* axis. H atoms not involved in hydrogen bonds (dashed lines) have been omitted for clarity [symmetry code: (i) -*x*, 1/2 + y, 3/2 - z].



#### Figure 3

Part of the crystal structure of (I), showing the formation of a C(5) chain along the *a* axis. H atoms not involved in hydrogen bonds (dashed lines) have been omitted for clarity [symmetry codes: (i) x - 1/2, 3/2 - y, 1 - z; (ii) x + 1/2, 3/2 - y, 1 - z].



#### Figure 4

Preparation of the title compound.

#### methyl 17-cyano-3,6-dimethoxy-4,5a-epoxy-6,14- endo-ethenomorphinan-7-carboxylate

Crystal data

C<sub>23</sub>H<sub>24</sub>N<sub>2</sub>O<sub>5</sub>  $M_r = 408.44$ Orthorhombic,  $P2_12_12_1$ Hall symbol: P 2ac 2ab a = 7.1880 (3) Å b = 11.1380 (4) Å c = 24.6389 (10) Å V = 1972.59 (13) Å<sup>3</sup> Z = 4

#### Data collection

Stoe IPDS 2 diffractometer Radiation source: sealed X-ray tube, 12 x 0.4 mm long-fine focus Plane graphite monochromator Detector resolution: 6.67 pixels mm<sup>-1</sup>  $\omega$ -scan rotation method Absorption correction: integration (*X-RED32*; Stoe & Cie, 2002)

#### Refinement

Refinement on  $F^2$ Least-squares matrix: full  $R[F^2 > 2\sigma(F^2)] = 0.036$  $wR(F^2) = 0.089$ S = 1.042328 reflections 274 parameters 0 restraints Primary atom site location: structure-invariant direct methods F(000) = 864  $D_x = 1.375 \text{ Mg m}^{-3}$ Mo K\alpha radiation,  $\lambda = 0.71073 \text{ Å}$ Cell parameters from 9908 reflections  $\theta = 1.8-28.0^{\circ}$   $\mu = 0.10 \text{ mm}^{-1}$  T = 296 KPrism, colourless  $0.63 \times 0.44 \times 0.27 \text{ mm}$ 

 $T_{\min} = 0.953, T_{\max} = 0.975$ 9908 measured reflections 2328 independent reflections 2035 reflections with  $I > 2\sigma(I)$  $R_{\text{int}} = 0.021$  $\theta_{\text{max}} = 26.5^{\circ}, \theta_{\text{min}} = 2.0^{\circ}$  $h = -9 \rightarrow 9$  $k = -13 \rightarrow 13$  $l = -30 \rightarrow 20$ 

Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained  $w = 1/[\sigma^2(F_o^2) + (0.0504P)^2 + 0.208P]$ where  $P = (F_o^2 + 2F_c^2)/3$  $(\Delta/\sigma)_{max} = 0.001$  $\Delta\rho_{max} = 0.20 \text{ e } \text{Å}^{-3}$  $\Delta\rho_{min} = -0.20 \text{ e } \text{Å}^{-3}$ 

#### Special details

**Geometry**. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

**Refinement**. Refinement of  $F^2$  against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on  $F^2$ , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative  $F^2$ . The threshold expression of  $F^2 > \sigma(F^2)$  is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on  $F^2$  are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

|      | x          | у            | Ζ            | $U_{ m iso}$ */ $U_{ m eq}$ |  |
|------|------------|--------------|--------------|-----------------------------|--|
| C1   | 0.1582 (3) | 0.5657 (2)   | 0.76990 (11) | 0.0558 (6)                  |  |
| C2   | 0.1229 (3) | 0.6871 (2)   | 0.76212 (13) | 0.0651 (8)                  |  |
| H2   | 0.0430     | 0.7264       | 0.7859       | 0.078*                      |  |
| C3   | 0.2027 (3) | 0.7513 (2)   | 0.72016 (12) | 0.0584 (7)                  |  |
| H3   | 0.1697     | 0.8312       | 0.7148       | 0.070*                      |  |
| C4   | 0.3316 (3) | 0.6975 (2)   | 0.68598 (10) | 0.0494 (5)                  |  |
| C5   | 0.3793 (3) | 0.5805 (2)   | 0.69774 (9)  | 0.0431 (5)                  |  |
| C6   | 0.2847 (3) | 0.5129 (2)   | 0.73515 (9)  | 0.0438 (5)                  |  |
| C7   | 0.0990 (5) | 0.5179 (3)   | 0.86177 (15) | 0.0929 (11)                 |  |
| H7A  | 0.2283     | 0.5034       | 0.8690       | 0.139*                      |  |
| H7B  | 0.0245     | 0.4650       | 0.8836       | 0.139*                      |  |
| H7C  | 0.0693     | 0.5997       | 0.8705       | 0.139*                      |  |
| C8   | 0.3985 (4) | 0.7488 (2)   | 0.63180 (11) | 0.0619 (7)                  |  |
| H8A  | 0.4784     | 0.8171       | 0.6391       | 0.074*                      |  |
| H8B  | 0.2912     | 0.7783       | 0.6120       | 0.074*                      |  |
| C9   | 0.5055 (4) | 0.6599 (2)   | 0.59495 (10) | 0.0550 (6)                  |  |
| H9   | 0.4781     | 0.6798       | 0.5570       | 0.066*                      |  |
| C10  | 0.4513 (3) | 0.5280 (2)   | 0.60475 (9)  | 0.0445 (5)                  |  |
| C11  | 0.5026 (3) | 0.5014 (2)   | 0.66483 (8)  | 0.0405 (4)                  |  |
| C12  | 0.7122 (3) | 0.5215 (2)   | 0.67525 (9)  | 0.0492 (5)                  |  |
| H12A | 0.7375     | 0.5101       | 0.7136       | 0.059*                      |  |
| H12B | 0.7827     | 0.4618       | 0.6553       | 0.059*                      |  |
| C13  | 0.7765 (4) | 0.6444 (3)   | 0.65865 (10) | 0.0615 (7)                  |  |
| H13A | 0.7284     | 0.7040       | 0.6837       | 0.074*                      |  |
| H13B | 0.9113     | 0.6482       | 0.6594       | 0.074*                      |  |
| C14  | 0.5448 (4) | 0.4336 (2)   | 0.56775 (9)  | 0.0530 (6)                  |  |
| H14A | 0.4972     | 0.4407       | 0.5310       | 0.064*                      |  |
| H14B | 0.6782     | 0.4466       | 0.5668       | 0.064*                      |  |
| C15  | 0.5020 (3) | 0.3077 (2)   | 0.59042 (9)  | 0.0464 (5)                  |  |
| H15  | 0.6147     | 0.2777       | 0.6083       | 0.056*                      |  |
| C16  | 0.3421 (3) | 0.31523 (19) | 0.63470 (9)  | 0.0414 (5)                  |  |
| C17  | 0.4396 (3) | 0.37595 (19) | 0.68281 (8)  | 0.0413 (5)                  |  |
| H17  | 0.5488     | 0.3285       | 0.6932       | 0.050*                      |  |
| C18  | 0.1924 (3) | 0.3955 (2)   | 0.61281 (9)  | 0.0460 (5)                  |  |
| H18  | 0.0696     | 0.3701       | 0.6096       | 0.055*                      |  |

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters  $(Å^2)$ 

| C19  | 0.2453 (3) | 0.5040 (2)   | 0.59850 (9)  | 0.0476 (5)  |
|------|------------|--------------|--------------|-------------|
| H19  | 0.1625     | 0.5615       | 0.5856       | 0.057*      |
| C20  | 0.3673 (4) | 0.1229 (2)   | 0.67858 (11) | 0.0580 (6)  |
| H20A | 0.4882     | 0.1129       | 0.6627       | 0.087*      |
| H20B | 0.3058     | 0.0465       | 0.6803       | 0.087*      |
| H20C | 0.3802     | 0.1550       | 0.7145       | 0.087*      |
| C21  | 0.4457 (3) | 0.2176 (2)   | 0.54757 (10) | 0.0524 (6)  |
| C22  | 0.4577 (6) | 0.0119 (3)   | 0.52491 (12) | 0.0800 (9)  |
| H22A | 0.3286     | -0.0057      | 0.5309       | 0.120*      |
| H22B | 0.5310     | -0.0578      | 0.5331       | 0.120*      |
| H22C | 0.4760     | 0.0340       | 0.4876       | 0.120*      |
| C23  | 0.8136 (4) | 0.7260 (2)   | 0.56914 (10) | 0.0583 (6)  |
| N1   | 0.7083 (4) | 0.6693 (2)   | 0.60326 (9)  | 0.0710 (7)  |
| N2   | 0.9105 (5) | 0.7735 (3)   | 0.53969 (12) | 0.1007 (10) |
| 01   | 0.0625 (3) | 0.4968 (2)   | 0.80685 (10) | 0.0924 (8)  |
| O2   | 0.3187 (2) | 0.39121 (14) | 0.73017 (6)  | 0.0487 (4)  |
| O3   | 0.2608 (2) | 0.20286 (14) | 0.64642 (7)  | 0.0496 (4)  |
| O4   | 0.3500 (3) | 0.2385 (2)   | 0.50871 (8)  | 0.0753 (6)  |
| 05   | 0.5139 (3) | 0.10971 (16) | 0.55952 (7)  | 0.0611 (5)  |
|      |            |              |              |             |

Atomic displacement parameters  $(Å^2)$ 

|     | $U^{11}$    | U <sup>22</sup> | $U^{33}$    | $U^{12}$     | $U^{13}$     | <i>U</i> <sup>23</sup> |
|-----|-------------|-----------------|-------------|--------------|--------------|------------------------|
| C1  | 0.0440 (11) | 0.0639 (15)     | 0.0594 (15) | -0.0158 (11) | 0.0118 (11)  | -0.0196 (12)           |
| C2  | 0.0411 (12) | 0.0655 (17)     | 0.089 (2)   | -0.0039 (12) | 0.0063 (13)  | -0.0372 (15)           |
| C3  | 0.0479 (13) | 0.0478 (13)     | 0.0794 (18) | 0.0029 (11)  | -0.0166 (13) | -0.0162 (12)           |
| C4  | 0.0462 (12) | 0.0453 (12)     | 0.0565 (14) | -0.0042 (10) | -0.0137 (11) | -0.0037 (10)           |
| C5  | 0.0380 (10) | 0.0512 (12)     | 0.0400 (11) | -0.0009 (9)  | -0.0052 (9)  | -0.0007 (9)            |
| C6  | 0.0376 (10) | 0.0510 (12)     | 0.0429 (11) | -0.0012 (9)  | -0.0001 (9)  | -0.0062 (9)            |
| C7  | 0.076 (2)   | 0.110 (3)       | 0.093 (3)   | -0.015 (2)   | -0.0151 (18) | 0.037 (2)              |
| C8  | 0.0750 (17) | 0.0485 (13)     | 0.0622 (16) | -0.0068 (13) | -0.0176 (14) | 0.0088 (12)            |
| C9  | 0.0606 (15) | 0.0632 (15)     | 0.0413 (12) | -0.0127 (12) | -0.0101 (11) | 0.0129 (10)            |
| C10 | 0.0458 (11) | 0.0529 (12)     | 0.0347 (10) | -0.0025 (10) | -0.0048 (9)  | 0.0069 (9)             |
| C11 | 0.0374 (10) | 0.0496 (11)     | 0.0346 (10) | 0.0006 (9)   | -0.0008 (8)  | 0.0036 (9)             |
| C12 | 0.0375 (11) | 0.0722 (15)     | 0.0379 (11) | -0.0018 (10) | -0.0014 (9)  | 0.0052 (11)            |
| C13 | 0.0485 (13) | 0.0891 (19)     | 0.0469 (14) | -0.0188 (13) | -0.0052 (11) | 0.0121 (12)            |
| C14 | 0.0539 (13) | 0.0704 (15)     | 0.0348 (11) | -0.0025 (12) | 0.0042 (10)  | 0.0017 (10)            |
| C15 | 0.0399 (11) | 0.0609 (13)     | 0.0384 (11) | 0.0064 (10)  | 0.0002 (9)   | -0.0008 (10)           |
| C16 | 0.0379 (10) | 0.0469 (11)     | 0.0395 (11) | 0.0033 (9)   | 0.0016 (9)   | 0.0026 (9)             |
| C17 | 0.0388 (10) | 0.0502 (11)     | 0.0348 (11) | 0.0079 (9)   | 0.0018 (9)   | 0.0037 (9)             |
| C18 | 0.0358 (10) | 0.0554 (13)     | 0.0467 (12) | 0.0034 (10)  | -0.0052 (9)  | -0.0014 (10)           |
| C19 | 0.0465 (11) | 0.0509 (12)     | 0.0454 (11) | 0.0058 (10)  | -0.0129 (10) | 0.0016 (10)            |
| C20 | 0.0634 (15) | 0.0523 (13)     | 0.0582 (15) | 0.0050 (12)  | 0.0007 (12)  | 0.0119 (12)            |
| C21 | 0.0518 (13) | 0.0645 (15)     | 0.0408 (12) | 0.0066 (12)  | 0.0021 (10)  | -0.0039 (11)           |
| C22 | 0.117 (3)   | 0.0672 (17)     | 0.0557 (16) | 0.0099 (19)  | 0.0001 (17)  | -0.0166 (14)           |
| C23 | 0.0749 (16) | 0.0556 (14)     | 0.0443 (13) | -0.0099 (13) | 0.0118 (12)  | -0.0001 (11)           |
| N1  | 0.0676 (14) | 0.0989 (17)     | 0.0467 (12) | -0.0295 (13) | -0.0056 (10) | 0.0215 (12)            |
| N2  | 0.101 (2)   | 0.135 (3)       | 0.0660 (18) | -0.026 (2)   | 0.0247 (16)  | 0.0189 (17)            |

# supporting information

| O1 | 0.0946 (15) | 0.0935 (15) | 0.0891 (16) | -0.0483 (13) | 0.0573 (13)  | -0.0418 (13) |  |
|----|-------------|-------------|-------------|--------------|--------------|--------------|--|
| O2 | 0.0554 (8)  | 0.0505 (9)  | 0.0403 (8)  | 0.0008 (7)   | 0.0127 (7)   | 0.0014 (7)   |  |
| 03 | 0.0454 (8)  | 0.0485 (8)  | 0.0548 (9)  | 0.0022 (7)   | 0.0009 (7)   | 0.0038 (7)   |  |
| O4 | 0.0877 (14) | 0.0788 (12) | 0.0596 (12) | 0.0128 (12)  | -0.0285 (11) | -0.0099 (9)  |  |
| O5 | 0.0748 (11) | 0.0627 (10) | 0.0459 (9)  | 0.0161 (10)  | -0.0023 (9)  | -0.0078 (8)  |  |

Geometric parameters (Å, °)

| C1-01    | 1.376 (3) | C13—N1        | 1.476 (3)   |
|----------|-----------|---------------|-------------|
| C1—C6    | 1.381 (3) | C13—H13A      | 0.97        |
| C1—C2    | 1.389 (4) | C13—H13B      | 0.97        |
| C2—C3    | 1.382 (4) | C14—C15       | 1.541 (3)   |
| С2—Н2    | 0.93      | C14—H14A      | 0.97        |
| C3—C4    | 1.388 (4) | C14—H14B      | 0.97        |
| С3—Н3    | 0.93      | C15—C21       | 1.512 (3)   |
| C4—C5    | 1.379 (3) | C15—C16       | 1.587 (3)   |
| C4—C8    | 1.530 (4) | C15—H15       | 0.98        |
| C5—C6    | 1.371 (3) | C16—O3        | 1.411 (3)   |
| C5-C11   | 1.489 (3) | C16—C18       | 1.500 (3)   |
| C6—O2    | 1.383 (3) | C16—C17       | 1.534 (3)   |
| C7—O1    | 1.398 (4) | C17—O2        | 1.465 (2)   |
| С7—Н7А   | 0.96      | C17—H17       | 0.98        |
| С7—Н7В   | 0.96      | C18—C19       | 1.315 (3)   |
| С7—Н7С   | 0.96      | C18—H18       | 0.93        |
| С8—С9    | 1.548 (4) | C19—H19       | 0.93        |
| C8—H8A   | 0.97      | C20—O3        | 1.417 (3)   |
| C8—H8B   | 0.97      | C20—H20A      | 0.96        |
| C9—N1    | 1.476 (4) | C20—H20B      | 0.96        |
| C9—C10   | 1.539 (3) | С20—Н20С      | 0.96        |
| С9—Н9    | 0.98      | C21—O4        | 1.202 (3)   |
| C10—C19  | 1.513 (3) | C21—O5        | 1.330 (3)   |
| C10—C14  | 1.546 (3) | C22—O5        | 1.441 (3)   |
| C10-C11  | 1.554 (3) | C22—H22A      | 0.96        |
| C11—C17  | 1.534 (3) | C22—H22B      | 0.96        |
| C11—C12  | 1.545 (3) | C22—H22C      | 0.96        |
| C12—C13  | 1.502 (4) | C23—N2        | 1.137 (3)   |
| C12—H12A | 0.97      | C23—N1        | 1.296 (3)   |
| C12—H12B | 0.97      |               |             |
| O1—C1—C6 | 120.1 (2) | N1—C13—H13B   | 110.0       |
| O1—C1—C2 | 122.9 (2) | C12—C13—H13B  | 110.0       |
| C6—C1—C2 | 116.7 (2) | H13A—C13—H13B | 108.3       |
| C3—C2—C1 | 122.1 (2) | C15—C14—C10   | 108.61 (18) |
| С3—С2—Н2 | 119.0     | C15—C14—H14A  | 110.0       |
| С1—С2—Н2 | 119.0     | C10-C14-H14A  | 110.0       |
| C2—C3—C4 | 120.5 (2) | C15—C14—H14B  | 110.0       |
| С2—С3—Н3 | 119.8     | C10-C14-H14B  | 110.0       |
| С4—С3—Н3 | 119.7     | H14A—C14—H14B | 108.3       |

| C5—C4—C3                                                                                          | 116.5 (2)              | C21—C15—C14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 113.87 (19)              |
|---------------------------------------------------------------------------------------------------|------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|
| C5—C4—C8                                                                                          | 117.3 (2)              | C21—C15—C16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 108.75 (19)              |
| C3—C4—C8                                                                                          | 125.3 (2)              | C14—C15—C16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 110.19 (18)              |
| C6—C5—C4                                                                                          | 122.5 (2)              | C21—C15—H15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 107.9                    |
| C6—C5—C11                                                                                         | 109.66 (19)            | C14—C15—H15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 107.9                    |
| C4—C5—C11                                                                                         | 126.3 (2)              | С16—С15—Н15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 107.9                    |
| C5—C6—C1                                                                                          | 120.6 (2)              | O3—C16—C18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 107.77 (17)              |
| C5—C6—O2                                                                                          | 113.00 (18)            | O3—C16—C17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 114.96 (17)              |
| C1 - C6 - O2                                                                                      | 126.1.(2)              | C18 - C16 - C17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 110.04(17)               |
| 01—C7—H7A                                                                                         | 109 5                  | 03-C16-C15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 113.07(17)               |
| 01-C7-H7B                                                                                         | 109.5                  | C18 - C16 - C15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 107.72(18)               |
| H7A - C7 - H7B                                                                                    | 109.5                  | $C_{17}$ $C_{16}$ $C_{15}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 107.72(10)<br>102.94(16) |
| $\begin{array}{c} \mathbf{n} \mathbf{n} \mathbf{n} \mathbf{n} \mathbf{n} \mathbf{n} \mathbf{n} n$ | 109.5                  | $0^{2}$ $0^{17}$ $0^{16}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 102.94(10)<br>112.33(17) |
|                                                                                                   | 109.5                  | 02 - C17 - C10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 113.33(17)<br>107.43(16) |
|                                                                                                   | 109.5                  | $C_{16} = C_{17} = C_{11}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 107.43(10)<br>108.24(16) |
| H/B - C/ - H/C                                                                                    | 109.5                  | C10-C17-C11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 108.24 (10)              |
| C4 - C8 - C9                                                                                      | 115.4 (2)              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 109.3                    |
| C4—C8—H8A                                                                                         | 108.4                  | C16—C1/—H1/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 109.3                    |
| С9—С8—Н8А                                                                                         | 108.4                  | C11—C17—H17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 109.3                    |
| C4—C8—H8B                                                                                         | 108.4                  | C19—C18—C16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 115.9 (2)                |
| С9—С8—Н8В                                                                                         | 108.4                  | C19—C18—H18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 122.0                    |
| H8A—C8—H8B                                                                                        | 107.5                  | C16—C18—H18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 122.0                    |
| N1—C9—C10                                                                                         | 107.2 (2)              | C18—C19—C10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 114.7 (2)                |
| N1—C9—C8                                                                                          | 111.4 (2)              | C18—C19—H19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 122.6                    |
| C10—C9—C8                                                                                         | 113.1 (2)              | С10—С19—Н19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 122.6                    |
| N1—C9—H9                                                                                          | 108.3                  | O3—C20—H20A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 109.5                    |
| С10—С9—Н9                                                                                         | 108.3                  | O3—C20—H20B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 109.5                    |
| С8—С9—Н9                                                                                          | 108.3                  | H20A—C20—H20B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 109.5                    |
| C19—C10—C9                                                                                        | 113.6 (2)              | O3—C20—H20C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 109.5                    |
| C19—C10—C14                                                                                       | 104.20 (19)            | H20A—C20—H20C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 109.5                    |
| C9—C10—C14                                                                                        | 116.56 (19)            | H20B-C20-H20C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 109.5                    |
| C19—C10—C11                                                                                       | 107.17 (18)            | O4—C21—O5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 124.2 (2)                |
| C9—C10—C11                                                                                        | 105.77 (18)            | O4—C21—C15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 125.5 (2)                |
| C14—C10—C11                                                                                       | 109.19 (18)            | O5—C21—C15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 110.3 (2)                |
| C5-C11-C17                                                                                        | 101.88 (17)            | O5—C22—H22A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 109.5                    |
| C5-C11-C12                                                                                        | 113.82 (19)            | 05—C22—H22B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 109.5                    |
| C17 - C11 - C12                                                                                   | 111.83 (18)            | H22A—C22—H22B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 109.5                    |
| $C_{5}$ $-C_{11}$ $-C_{10}$                                                                       | 105 35 (18)            | $05-C^{22}-H^{22}C$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 109.5                    |
| $C_{17}$ $C_{11}$ $C_{10}$                                                                        | 112 28 (18)            | $H_{22} = H_{22} = H_{22}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 109.5                    |
| $C_{12} = C_{11} = C_{10}$                                                                        | 112.20 (18)            | $H_{22}R = C_{22} = H_{22}C$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 109.5                    |
| $C_{12} = C_{11} = C_{10}$                                                                        | 111.22(10)<br>112.8(2) | N2 C23 N1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 109.5<br>177.0(3)        |
| $C_{12} = C_{12} = C_{11}$                                                                        | 112.8 (2)              | $N_2 = C_2 = N_1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 177.9(3)                 |
| $C13 - C12 - \Pi12A$                                                                              | 109.0                  | $\begin{array}{c} C_{23} \\ \hline \\ C_{22} \\ N1 \\ \hline \\ C_{12} \\ C_{12} \\ \hline \\ C_{12} \\ \hline$ | 121.4(2)                 |
| C12 - C12 - H12A                                                                                  | 109.0                  | $C_{23} = N_1 = C_{13}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 119.8 (2)                |
| C13 - C12 - H12B                                                                                  | 109.0                  | C9—N1—C13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 116.3 (2)                |
| UII—UI2—HI2B                                                                                      | 109.0                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 116.9 (2)                |
| H12A—C12—H12B                                                                                     | 107.8                  | C6-02-C17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 106.83 (16)              |
| N1—C13—C12                                                                                        | 108.7 (2)              | C16—O3—C20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 116.63 (18)              |
| N1—C13—H13A                                                                                       | 110.0                  | C21—O5—C22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 116.6 (2)                |
| C12—C13—H13A                                                                                      | 110.0                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                          |

| O1—C1—C2—C3     | -171.3 (3)   | C10-C14-C15-C16 | 13.0 (2)     |
|-----------------|--------------|-----------------|--------------|
| C6—C1—C2—C3     | 3.1 (4)      | C21—C15—C16—O3  | 38.3 (2)     |
| C1—C2—C3—C4     | -4.1 (4)     | C14—C15—C16—O3  | 163.76 (18)  |
| C2—C3—C4—C5     | -2.6(3)      | C21—C15—C16—C18 | -80.7 (2)    |
| C2—C3—C4—C8     | 166.4 (2)    | C14—C15—C16—C18 | 44.7 (2)     |
| C3—C4—C5—C6     | 10.5 (3)     | C21—C15—C16—C17 | 162.99 (18)  |
| C8—C4—C5—C6     | -159.4(2)    | C14—C15—C16—C17 | -71.5 (2)    |
| C3—C4—C5—C11    | 175.0 (2)    | O3—C16—C17—O2   | -55.4 (2)    |
| C8—C4—C5—C11    | 5.1 (3)      | C18—C16—C17—O2  | 66.5 (2)     |
| C4—C5—C6—C1     | -11.9(3)     | C15—C16—C17—O2  | -178.91 (16) |
| C11—C5—C6—C1    | -178.7 (2)   | O3—C16—C17—C11  | -174.44 (16) |
| C4—C5—C6—O2     | 162.9 (2)    | C18—C16—C17—C11 | -52.6 (2)    |
| C11—C5—C6—O2    | -3.9(2)      | C15—C16—C17—C11 | 62.0 (2)     |
| O1—C1—C6—C5     | 179.3 (2)    | C5—C11—C17—O2   | -10.9(2)     |
| C2-C1-C6-C5     | 4.7 (3)      | C12—C11—C17—O2  | 111.03 (19)  |
| O1—C1—C6—O2     | 5.2 (4)      | C10-C11-C17-O2  | -123.14 (18) |
| C2-C1-C6-O2     | -169.4 (2)   | C5-C11-C17-C16  | 111.83 (18)  |
| C5—C4—C8—C9     | 2.8 (3)      | C12—C11—C17—C16 | -126.25 (19) |
| C3—C4—C8—C9     | -166.1 (2)   | C10-C11-C17-C16 | -0.4 (2)     |
| C4—C8—C9—N1     | -94.0 (3)    | O3—C16—C18—C19  | -178.53 (19) |
| C4—C8—C9—C10    | 26.8 (3)     | C17—C16—C18—C19 | 55.4 (3)     |
| N1—C9—C10—C19   | 179.2 (2)    | C15—C16—C18—C19 | -56.1 (3)    |
| C8—C9—C10—C19   | 56.0 (3)     | C16-C18-C19-C10 | 2.1 (3)      |
| N1-C9-C10-C14   | -59.6 (3)    | C9-C10-C19-C18  | -172.41 (19) |
| C8—C9—C10—C14   | 177.2 (2)    | C14—C10—C19—C18 | 59.7 (3)     |
| N1-C9-C10-C11   | 61.9 (2)     | C11—C10—C19—C18 | -56.0 (3)    |
| C8—C9—C10—C11   | -61.3 (2)    | C14—C15—C21—O4  | -38.1 (3)    |
| C6-C5-C11-C17   | 9.0 (2)      | C16—C15—C21—O4  | 85.2 (3)     |
| C4—C5—C11—C17   | -157.1 (2)   | C14—C15—C21—O5  | 143.4 (2)    |
| C6-C5-C11-C12   | -111.5 (2)   | C16—C15—C21—O5  | -93.3 (2)    |
| C4—C5—C11—C12   | 82.3 (3)     | N2-C23-N1-C9    | -154 (9)     |
| C6-C5-C11-C10   | 126.37 (19)  | N2-C23-N1-C13   | 45 (9)       |
| C4—C5—C11—C10   | -39.8 (3)    | C10-C9-N1-C23   | 133.5 (3)    |
| C19—C10—C11—C5  | -57.1 (2)    | C8—C9—N1—C23    | -102.3 (3)   |
| C9—C10—C11—C5   | 64.4 (2)     | C10-C9-N1-C13   | -64.4 (3)    |
| C14—C10—C11—C5  | -169.41 (18) | C8—C9—N1—C13    | 59.9 (3)     |
| C19—C10—C11—C17 | 53.0 (2)     | C12-C13-N1-C23  | -141.3 (3)   |
| C9—C10—C11—C17  | 174.49 (18)  | C12-C13-N1-C9   | 56.2 (3)     |
| C14—C10—C11—C17 | -59.3 (2)    | C6-C1-O1-C7     | 114.6 (3)    |
| C19—C10—C11—C12 | 179.1 (2)    | C2-C1-O1-C7     | -71.2 (4)    |
| C9—C10—C11—C12  | -59.3 (2)    | C5—C6—O2—C17    | -3.5 (2)     |
| C14—C10—C11—C12 | 66.8 (2)     | C1—C6—O2—C17    | 170.9 (2)    |
| C5-C11-C12-C13  | -64.4 (3)    | C16—C17—O2—C6   | -110.32 (19) |
| C17—C11—C12—C13 | -179.20 (18) | C11—C17—O2—C6   | 9.2 (2)      |
| C10-C11-C12-C13 | 54.4 (3)     | C18—C16—O3—C20  | -166.3 (2)   |
| C11—C12—C13—N1  | -48.9 (3)    | C17—C16—O3—C20  | -43.2 (2)    |
| C19—C10—C14—C15 | -64.4 (2)    | C15—C16—O3—C20  | 74.7 (2)     |

| C9-C10-C14-C15  | 169.59 (19) | O4—C21—O5—C22  | -4.0 (4)  |
|-----------------|-------------|----------------|-----------|
| C11—C10—C14—C15 | 49.9 (2)    | C15—C21—O5—C22 | 174.5 (2) |
| C10-C14-C15-C21 | 135.5 (2)   |                |           |

### Hydrogen-bond geometry (Å, °)

| D—H···A                 | D—H  | H···A | D····A    | D—H···A |  |
|-------------------------|------|-------|-----------|---------|--|
| C20—H20A…O5             | 0.96 | 2.55  | 3.120 (3) | 118     |  |
| C3—H3···O1 <sup>i</sup> | 0.93 | 2.54  | 3.399 (3) | 153     |  |
| C9—H9…N2 <sup>ii</sup>  | 0.98 | 2.49  | 3.467 (4) | 179     |  |

Symmetry codes: (i) -*x*, *y*+1/2, -*z*+3/2; (ii) *x*-1/2, -*y*+3/2, -*z*+1.